首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the presence of a similar number of glucagon and VIP receptors in liver membranes, VIP induces a negligeable stimulation of adenylate cyclase when compared with glucagon effect. In order to elucidate these discrepancies, the effects of guanine nucleotides on the VIP and glucagon-responsive adenylate cyclase of liver were compared using pure ATP as substrate. 10?8 M VIP accounted for a 1.5-fold increase of basal activity. In the presence of GTP or Gpp(NH)p (10?9 to 10?5 M), the level of cAMP production induced by VIP was no more than additive. In contrast, Gpp(NH)p potentiated the effect of glucagon on liver adenylate cyclase. These discrepancies are not explained by a difference in the peptide binding process. These data suggest that, in liver membranes, a GTP-binding protein N2 is associated with the glucagon-sensitive adenylate cyclase, but is not detected for VIP. It is suggested that N2 appears to be specific for the peptidic receptor.  相似文献   

2.
The postnatal development of mammalian skeletal muscle is associated with an increased capacity for glycogenolysis. In the present study rabbit skeletal muscle underwent a 7-fold increase in glycogen synthase and glycogen phosphorylase activity over the postnatal period of 0–8 weeks. An enriched fraction of sarcolemma was prepared from neonatal and adult muscle to examine the development of the β-adrenergic receptor-adenylate cyclase system. Adult membranes possessed a 2-fold greater Na+K+(Mg2+)-ATPase activity and a 6–8-fold greater sodium fluoride- and epinephrine-stimulated adenylate cyclase activity. The activation ratio (effector activity/basal activity) increased 2–3-fold for epinephrine and sodium fluoride in adult sarcolemma. The activation by catecholamines conformed to the physiological β2 type response with isoproterenol (1.8 · 10?8 M) > epinephrine (1.1 · 10?7 M) > norinephrine (3.2 · 10?6 M). In contrast, binding studies employing (?)-[3H] dihydroalprenolol showed little difference between neonatal and adult membranes with respect to (1) number of binding sites, (2) equilibrium dissociation constant and (3) displacement of (?)-[3H]dihydroalprenolol by catecholamine agonists.Protein and lipid components of the sarcolemma were also modified during development. Neonatal membranes possessed two glycopeptides of Mr 80 000 and 86 000, whereas in the adult only a single Mr 133 000 species was evident. The total lipid phosphorus and phospholipid composition was unchanged during development. The content of linoleic acid increased approx. 3-fold during development in the phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine phospholipids. The cholesterol content of adult membranes was decreased by 29% compared to neonatal membranes.  相似文献   

3.
Abstract– The isolation of a plasma membrane fraction from the bovine adrenal medulla and its characterization are described. The plasma membranes are enriched 13-fold in AChE, a plasma membrane marker, and represent 0.7% of the homogenate membrane protein. The yield of these membranes is typically 10-12% by the criterion of the percentage of total membrane bound AChE in the homogenate. The membranes were characterized as to their polypeptide, phospholipid and cholesterol content and compared with chromaffin vesicle, mitochondrial and microsomal membranes by these parameters. Two enzymatic components of the plasma membranes, ATPase and adenylate cyclase, were also studied. Calcium ATPase activity is 2.5-fold higher than magnesium ATPase activity, appears to be the result of a single enzyme, and is a genuine component of the plasma membranes. The magnesium stimulated activity appears to have at least two enzymatic components, one of which may be identical to the calcium ATPase. Adenylate cyclase is a plasma membrane component, but may not be uniquely localized there, as it is rather unstable throughout the fractionation procedure. It is stimulated by GTP (0.7-fold at 10?5M), GPP(NH)P (4.8-fold at 10?5M) and sodium fluoride (4.6-fold at 10?2M). It is refractory to stimulation by all other compounds tested.  相似文献   

4.
The stimulation of adenylate cyclase in various fractions of plasma membranes from rabbit small intestinal epithelium has been studied. In crude plasma membranes cholera toxin activated 5-fold at 10 micrograms/ml; vasoactive intestinal peptide (VIP) activated at concentration from 10(-8) to 10(-7) M, the maximal stimulation being 6-fold. Fluoride activated 10-fold at 10 mM. VIP-stimulated enzyme was inhibited by Ca2+ concentrations in the micromolar range. In the presence of calmodulin a biphasic response was obtained. At low Ca2+ concentration (4 x 10(-9)-6 x 10(-8) M) the enzyme was activated. As the Ca2+ concentration was increased the enzyme was concomitantly inhibited. We have investigated the mechanism by which cholera toxin activates intestinal adenylate cyclase. We have found that cholera toxin catalyzed incorporation of 32P into proteins located in the brush-border membrane whose molecular weights are in the range of 40-45kDa. These membranes bind [3H]GTP with a Kd of 1.8 x 10(-7) M. In contrast, basal lateral membranes do not contain any protein which becomes labeled in a toxin-dependent manner when incubated with cholera toxin and [32P]NAD. The modification of brush-border membrane protein occurred in spite of the absence of adenylate cyclase in these membranes. Adenylate cyclase in basal lateral membranes was poorly activated by cholera toxin as compared to crude plasma membranes. On the other hand, the ability of VIP and fluoride to activate the enzyme was enhanced in basal lateral membranes with respect to crude membranes. The results are discussed in relation to the mechanism by which cholera toxin activates adenylate cyclase in intact intestinal cells.  相似文献   

5.
ADP-ribosylation of membrane proteins from rabbit small intestinal epithelium was investigated following incubation of membranes with [32P]NAD and cholera toxin. Cholera toxin catalyzes incorporation of 32P into three proteins of 40 kDA, 45 kDa and 47 kDa located in the brush-border membrane. In contrast, basal lateral membranes do not contain any protein which becomes labeled in a toxin-dependent manner when incubated with cholera toxin and [32P]NAD. The modification of membrane proteins from brush border occurred in spite of the virtual absence in these membranes of adenylate cyclase activatable either by cholera toxin, vasoactive intestinal peptide (VIP) or fluoride. The three agents activated adenylate cyclase when crude plasma membrane were used. Cholera toxin activated fivefold at 10 micrograms/ml. Vasoactive intestinal peptide activated at concentrations from 10-300 nM, the maximal stimulation being sixfold. Fluoride activated 10-fold at 10 mM. When basal lateral membranes were assayed for adenylate cyclase it was found that, with respect to the crude membranes, the specific activity of fluoride-activated enzyme was 3.3-fold higher, VIP stimulated enzyme was maintained while cholera-toxin-stimulated enzyme showed half specific activity. Moreover, while fluoride stimulated ninefold and VIP stimulated fivefold, cholera toxin only stimulated twofold at the highest concentration. The results suggest that the activation by cholera toxin of adenylate cyclase located at the basal lateral membrane requires ADPribosylation of proteins in the brush border membrane.  相似文献   

6.
We have developed a method to ADP-ribosylate the stimulatory guanine nucleotide-binding protein of adenylate cyclase (GS) in brain membranes by using cholera toxin. In particular, we used isonicotinic acid hydrazide and 3-acetylpyridine adenine dinucleotide to inhibit the potent NAD-glycohydrolase activity of brain membranes, and we used the detergent Triton X-100 (at 0.1%) to improve the accessibility of the toxin and guanine nucleotides used for supporting the ADP-ribosylation. This method reveals that GS is a very abundant protein in membranes derived from calf brain (approximately 30 pmol/mg of protein). In brain, GS exists in large excess over the previously reported amount of the adenylate cyclase catalytic subunit. The modification of GS with an ADP-ribosyl residue (a) elicits a four- to fivefold activation of adenylate cyclase by GTP, (b) increases the stabilization of adenylate cyclase by GTP, and (c) reduces adenylate cyclase activation by fluoride but does not change basal activity, activation by guanosine 5'-(beta, gamma-imido)triphosphate, or the sensitivity of adenylate cyclase to heat-induced denaturation. A correlation between ADP-ribosylation and the alterations in the activation of adenylate cyclase by guanine nucleotides and by fluoride is presented.  相似文献   

7.
Y-1 cells specifically bind radiolabelled vasoactive intestinal peptide (VIP) with a dissociation constant of about 10?9 M. [125I]-VIP bound was not displaced by ACTH. VIP stimulates both steroid and cAMP production, with half-maximal stimulation at 10?9 and 10?8 M, respectively. At maximal concentration VIP produces the same stimulation of steroidogenesis as ACTH, but induced three times lower production of cAMP than ACTH. Y-1 DNA synthesis is inhibited by VIP in a dose-dependent manner with half-maximal inhibition at 10?8 M. At submaximal concentrations the effects of VIP and ACTH on cAMP and steroid production and on inhibition of DNA synthesis are additive. Similar additive effects on cAMP production and on inhibition of DNA synthesis were observed at submaximal ACTH and maximal VIP concentration, but the phenomenon was no longer seen at maximal concentrations of both peptides. These data suggest that in Y-1 cells VIP stimulates, through its own distinct receptors, only a part of the pool of adenylate cyclase sensitive to ACTH.  相似文献   

8.
Abstract— Mn2+ caused an 8-to 16-fold stimulation of adenylate cyclase activity in homogenates as well as synaptosomcs. isolated synaptic membranes, and slices prepared from rat brain. The stimulation occurred at low concentrations of Mn2+. with a doubling of activity at 50-60μM. and was unaffected by a 60-fold excess of Mg2+. Whether or not Mg2+ was added, inclusion of a low concentration of Mn2+ reduced, but did not prevent the stimulation of adenylate cyclase caused by dopaminc in homogenates of corpus striatum. In contrast, Ca2+. at a concentration that had little effect on basal cyclase activity, completely prevented the stimulation by dopamine. The increase of cyclase activity produced by Mn2+ in brain homogenates was potentiated by F?. Other ions, notably Hg2+. Pb2+. Cu2+ and Zn2+. in order of decreasing potency, inhibited both basal and Mn2--stimulated cyclase activity. It is proposed that the effect of Mn2+ on adenylate cyclase activity may involve only the catalytic subunit of the enzyme, and that the mechanism is different from that by which either dopamine or F? stimulates the enzyme. These results suggest that the effects of low concentrations of Mn2+ and certain other divalent metal ions on adenylate cyclase activity may be involved in their neuropsychiatrie or other toxic effects, and that such ions may also participate in normal physiological mechanisms involving cyclic nucleotides.  相似文献   

9.
The cardiac β-adrenergic coupled adenylate cyclase system was examined in young and old male Wistar rats. The concentration of binding sites for (?) 3H-DHA in membranes prepared from cardiac ventricles was 21.1 ± 2.78 (SD) fmoles/mg protein in 3–4 month old rats (young rats) and 31.2 ± 2.20 fmoles/mg protein in 24 month old rats (old rats). The dissociation constant, KD was 4.3 ± 1.8 nM and 6.7 ± 1.7 nM for young and old rats, respectively. Various compounds were used to study the characteristics of activation of adenylate cyclase in homogenates from cardiac ventricles. Basal adenylate cyclase was reduced 30% in old animals compared to young (6.1 pmoles/min/mg protein in 24 month vs. 8.6 pmoles/min/mg protein in 3–4 month). (?)Isoproterenol (10?5M) alone stimulated adenylate cyclase greater than two-fold in young rats (10.6 pmoles/min/mg protein above basal) and this stimulation was 34% lower in old animals. GppNHp (100 μM), fluoride (10 mM), and forskolin (100 μM) activation of adenylate cyclase above basal was reduced 38, 37, and 34%, respectively, in the old animals. No significant changes between the two groups were noted in the apparent affinity of GppNHp either alone or in the presence of (?)isoproterenol nor in the affinities of catecholamine agonists for activation of cyclase. These results suggest a reduction in the amount of functional regulatory protein or possibly cyclase in 24 month old rat ventricular tissue compared to 3–4 month old tissue. However, this data does not rule out the possibility of altered molecular interactions of a full complement of regulatory protein (s) with β-adrenergic receptor and/or catalytic adenylate cyclase.  相似文献   

10.
The effect of molybdate on adenylate cyclase (EC 4.6.1.1) in rat liver plasma membranes has been examined. The apparent K alpha for molybdate activation of the enzyme is 4.5 mM, and maximal, 7-fold stimulation is achieved at 50 mM. The observed increase in cAMP formation in the adenylate cyclase assay is not due to: (a) an inhibition of ATP hydrolysis; (b) a molybdate-catalyzed conversion of ATP to cAMP; (c) an inhibition of cAMP hydrolysis; or (d) an artifact in the isolation of cAMP formed in the reaction. Molybdate activation of adenylate cyclase is a general phenomenon exhibited by the enzyme in brain, cardiac, and renal tissue homogenates and in erythrocyte ghosts. However, like fluoride and guanyl-5'-yl imidodiphosphate (Gpp(NH)p), molybdate does not activate the soluble rat testicular adenylate cyclase. Molybdate is a reversible activator of adenylate cyclase. Activation is not due to an increase in ionic strength and is independent of the salt used to introduce molybdate. Molybdate does not activate adenylate cyclase previously stimulated with Gpp(NH)p or fluoride. At concentration greater than 20 mM, molybdate inhibits fluoride-stimulated adenylate cyclase, and at concentrations greater than 100 mM, molybdate stimulation of basal adenylate cyclase activity is diminished.  相似文献   

11.
The binding parameters of 125I-labeled calmodulin to bovine cerebellar membranes have been determined and correlted with the activation of adenylate cyclase by calmodulin. In the presence of saturating levels of free Ca2+, calmodulin binds to a finite number of specific membrane sites with a dissociation constant (Kd) of 1.2 nM. Furthermore, Scatchard analysis reveals a second population of binding sites with a 100-fold lower affinity for calmodulin. The Ca2+-dependence of calmodulin binding and of adenylate cyclase activation varies with the amount of calmodulin present, as can be infered from the model of sequential equilibrium reactions which describes the activation of calmodulin-dependent enzymes. On the basis of this model, a quantitative analysis of the effect of free Ca2+ and of free calmodulin concentration on both binding and activation of adenylate cyclase was carried out. This analysis shows that both processes take place only when calmodulin is complexed with at least three Ca2+ atoms. The concentration of the active calmodulin ·Ca2+ species required for half-maximal activation of adenylate cyclase is very similar to the Kd of the high affinity binding sites on brain membranes. A Hill coefficient of approx. 1 was found for both processes indicating an absence of cooperativity. Phenothiazines and thioxanthenes antipsychotic agents inhibit calmodulin binding to membranes and calmodulin-dependent activation of adenylate cyclase with a similar order of potency. These results suggest that the Ca2+-dependent binding of calmodulin to specific high affinity sites on brain membranes regulates the activation of adenylate cyclase by calmodulin.  相似文献   

12.
We have recently found the calcium dependent glycogenolytic effect of pancreastatin on rat hepatocytes and the mobilization of intracellular calcium. To further investigate the mechanism of action of pancreastatin on liver we have studied its effect on guanylate cyclase, adenylate cyclase, and phospholipase C, and we have explored the possible involvement of GTP binding proteins by measuring GTPase activity as well as the effect of pertussis toxin treatment of plasma liver membranes on the pancreastatin stimulated GTPase activity and the production of cyclic GMP and myo-inositol 1,4,5-triphosphate. Pancreastatin stimulated GTPase activity of rat liver membranes about 25% over basal. The concentration dependency curve showed that maximal stimulation was achieved at 10?7 M pancreastatin (EC50 = 3 nM). This stimulation was partially inhibited by treatment of the membranes with pertussis toxin. The effect of pancreastatin on guanylate cyclase and phospholipase C were examined by measuring the production of cyclic GMP and myo-inositol 1,4,5-triphosphate respectively. Pancreastatin increased the basal activity of guanylate cyclase to a maximum of 2.5-fold the unstimulated activity at 30°C, in a time- and dose-dependent manner, reaching the maximal stimulation above control with 10?7 M pancreastatin at 10 min (EC50 = 0.6 nM). This effect was completely abolished when rat liver membranes had been ADP-ribosylated with pertussis toxin. On the other hand, adenylate cyclase activity was not affected by pancreastatin. Phospholipase C activity of rat liver membranes was rapidly stimulated (within 2–5 min) at 30°C by 10?7 M pancreastatin, reaching a maximum at 15 min. The dose response curve showed that with 10?7 M pancreastatin, maximal stimulation was obtained (EC50 = 3 nM). GTP (10?5 M) stimulated the membrane-bound phospholipase C as expected. However, the incubation of rat liver membranes with GTP partially inhibited the stimulation of phospholipase C activity produced by pancreastatin, whereas GTP enhanced the activation of phospholipase C by vasopressin. This inhibition by GTP was dose dependent and 10?5 M GTP obtained the maximal inhibition (about 40%). the inhibitory effect of GTP on the stimulatory effect of pancreastatin on phospholipase C activity was completely abolished when rat liver membranes had previously been ADP-ribosylated with pertussis toxin. The presence of 8-Br-cGMP mimics the effect of GTP, whereas GMP-PNP increased both basal and pancreastatin-stimulated phospholipase C, suggesting a role of the cyclic GMP as a feed-back regulator of the synthesis of myo-inositol 1,4,5-triphosphate. However, the pretreatment of membranes with pertussis toxin did not modify the production of myo-Inositol 1,4,5-triphosphate stimulated by pancreastatin. In conclusion, pancreastatin activates guanylate cyclase activity and phospholipase C involving different pathways, pertussis toxin-sensitive, and -insensitive, respectively. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Prostaglandin D2 (PGD2) is one of several prostaglandins that can inhibit platelet aggregation and activate adenylate cyclase. Platelets were exposed to varying concentrations of PGD2, washed, and the adenylate cyclase response to prostaglandins, epinephrine, and sodium fluoride determined. Incubating platelets with 5 × 10?5 M PGD2 for 2 hr resulted in a 45% decrease in PGD2 activation of adenylate cyclase and a 25% decrease in stimulation by PGE1. Fluoride activation (7-fold) epinephrine inhibition (30%) and basal enzyme activity were unchanged by exposure of the platelets to PGD2. Desensitization was concentration dependent, with loss of enzyme activity first noted when platelets were incubated with 10?7 M PGD2. Enzyme sensitivity could be partially restored when desensitized platelets were washed free of PGD2 and incubated in buffer for 2 hr; complete resensitization required incubation for 24 hr in plasma. Regulation of prostaglandin sensitive platelet adenylate cyclase could be of importance in mediating the response of platelets to aggregating agents.  相似文献   

14.
Abstract— The actions of dopamine and apomorphine on the kinetic properties of striatal adenylate cyclase were investigated during ontogenesis in the rat. The maximum stimulatory effect of dopamine (5 × 10?5 M) was constant from birth to maturity (1 to 60 days of age). In contrast, the stimulatory effect elicited by apomorphine (5 × 10?5 M) was almost the same as that of dopamine in 6-day-old rats, but it declined during maturation reaching 50% of the initial value at 60 days of age. The apparent Km value for dopamine did not change during development, while the Km for apomorphine was higher in the adult than in the newborn. Apomorphine appeared to have a greater affinity than dopamine for the striatal adenylate cyclase both in adult and newborn rats.  相似文献   

15.
Investigations have been carried out on regional and developmental variations in the properties of adenylate cyclase systems in participate preparations from rat brain. EGTA was routinely included in the assay medium to minimize differences in the state of activation of these systems resulting from variations in their exposure to endogenous Ca2+. At birth, adenylate cyclase activity was much higher in the hindbrain-medullary preparations than in comparable fractions from cerebellum, cerebral cortex or subcortex (including midbrain, corpus striatum, hypothalamus and hippocampus). Adenylate cyclase activity increased during early development in preparations from all areas of the brain. Maximal levels were reached at 14 days of age or later. These levels were not greatly altered in the young adult animal, except in the hindbrain-medullary area, where a decrease in activity was observed. Adenylate cyclase systems in cerebral cortical and subcortical preparations were activated by norepinephrine and dopamine throughout development. Serotonin also stimulated adenylate cyclase activity in these preparations from young animals but was much less effective in comparable fractions from adult rats. The response to dopamine was diminished with age in cerebral cortical preparations, but not in subcortical fractions. The responses to norepinephrine increased in both brain regions during early development. Adenylate cyclase systems in particulate preparations from the cerebellum and hindbrain-medullary areas exhibited relatively poor responses to the biogenic amines. Detailed studies of the properties of the cerebral cortical adenylate cyclase systems revealed enhancement of activity by Ca2+ and F? at all stages of development with the maximal activation at 2–3 weeks of age. The results suggest that developmental differences in hormonal sensitivity of adenylate cyclase systems from diverse areas of the brain are related to changes in the proportions of the receptor-enzyme complexes responsive to the different biogenic amines.  相似文献   

16.
The postnatal development of skeletal muscle is accompanied by an increased capacity for glycogenolysis and anaerobic glycolysis. In the present study, regulatory features of cAMP synthesis were examined in neonatal and adult rabbit sarcolemmal membranes. Adult sarcolemma exhibited a 3-, 6-, and 10-fold greater adenylate cyclase activity than neonate for basal, NaF, and isoproterenol plus GTP, respectively. The Km for activation by isoproterenol was 1.4 X 10(-8) M and 6 X 10(-8) M for GTP. The number of beta-receptors was similar (0.9-1.2 pmol/mg). 10 microM GTP shifted isoproterenol EC50 from 1 X 10(-8) M to 1 X 10(-7) M in adult; neonatal agonist affinity was unaffected by GTP. Cholera toxin stimulated adenylate cyclase activity 2-fold and catalyzed 32P ribosylation of a Mr = 42,000 peptide in adult sarcolemma; both activities were low or absent in neonate. Isoproterenol-stimulated GTPase activity was elevated 4-fold in adult compared to neonatal sarcolemma. Mn2+ ion-stimulated basal activity, an indicator of catalytic function of adenylate cyclase, was also elevated in adult. Together, these findings suggest that the development of catecholamine-sensitive cAMP synthesis in muscle is governed by the coordinate expression of the regulatory and catalytic proteins of adenylate cyclase, but not the beta-receptor.  相似文献   

17.
—Adenylate cyclase activity of permeabilized neuroblastoma cells was measured by the conversion of [α32P]ATP into labelled cyclic AMP. Adenosine (10?6 - 10?4m ) induced a dose-dependent increase in cyclic AMP formation. This effect could not be accounted for either by an adenosine-induced inhibition of the phosphodiesterase activity present in the enzyme preparation, or by a direct conversion of adenosine into cyclic AMP. This indicates that the observed increase in cyclic AMP accumulation reflected an activation of adenylate cyclase. Adenosine is partially metabolized during the course of incubation with the enzyme preparation. However, none of the identified non-phosphorylated adenosine metabolites were able to induce an adenylate cyclase activation. This suggests that adenosine itself is the stimulatory agent. The apparent Km of the adenylate cyclase for adenosine was 5 ± 10?6-10?5m . Maximal activation represented 3-4 times the basal value (10-100 pmol cyclic AMP formed/10 min/mg protein). The adenosine effect was stereospecific, since structural analogues of adenosine were inactive. Adenosine increased the maximal velocity of the adenylate cyclase reaction. The stimulatory effect of adenosine was inhibited by theophylline. Prostaglandin PGE1 had a stimulatory effect much more pronounced than that of adenosine (6-10-fold the basal value at 10?6m ). Dopamine and norepinephrine induced a slight adenylate cyclase activation which was not potentiated by adenosine. It is concluded that adenosine is able to activate directly neuroblastoma cell adenylate cyclase. It seems very likely that such a direct activation is also present in intact nervous tissue and account, at least partly, for the observed cyclic AMP accumulation in response to adenosine.  相似文献   

18.
The interdependent effects of divalent cations, pH, and various activators of adenylate cyclase were examined in partially purified plasma membranes from rat liver. This adenylate cyclase was found to exhibit largely alkaline pH optima, in the range of 8.3 to 9.3, for the expression of basal activity, and activities with GTP, GPP(NH)P, prostaglandin E1 and GTP, and N6-(phenylisopropyl)adenosine and GTP. Glucagon and GTP, while increasing activity 8- to 10-fold, shifted the optimum activity to about pH 7.5. However, stimulation of the enzyme by 10 mm NaF or 3 mm Na3VO4 was strikingly dependent on pH. In both cases activation was optimal at pH values between 6.3 and 7.3, though above about pH 8.5 fluoride was barely stimulatory and vanadate was slightly inhibitory. This effect of elevated pH to reduce fluoride- or vanadate-stimulated activity could be prevented by glucagon plus guanine nucleotide, but could not be reversed once activity was lowered during preincubation. The data suggest that this effect was not due to the formation of an inhibitor of adenylate cyclase per se, nor to an artifact of assay methods. The effect of elevated pH was more pronounced with Mn2+ as activating cation than with Mg2+. With fluoride and lower pH adenylate cyclase was essentially Mn2+ requiring, whereas with fluoride and higher pH activity was comparable with either cation. The data suggested that combinations of pH, divalent cation, and activating ligand dictate the interactions of the constitutive subunits of the adenylate cyclase and provide additional criteria with which current models for the regulation of adenylate cyclase may be tested.  相似文献   

19.
ATP-dependent activation of adenylate cyclase   总被引:3,自引:0,他引:3  
Incubation of rat liver plasma membranes with MgCl2, ATP, and an ATP-regenerating system at 4 degrees C provides a 4-7-fold persistent activation of adenylate cyclase. Enzyme activation is time-dependent and 48 h of incubation is usually required to achieve maximal stimulation of adenylate cyclase activity. The activation described is not affected by GTP, cAMP, or cGMP, and does not occur when ATP is replaced by a nonphosphorylating analogue, adenyl-5'-imidodiphosphate. In addition to ATP, the activation requires Mg2+ and an ATP-regenerating system. The activation described is not additive with that produced by fluoride and analysis of basal and fluoride activities following extended incubation for 48 h reveals identical activities which decay at the same rate. These results are consistent with our model (11) which invokes phosphorylation-dephosphorylation mechanisms in regulating adenylate cyclase activity.  相似文献   

20.
The binding of [3H](?)-alprenolol (a potent β-adrenergic antagonist) to sites in frog erythrocyte membranes has been studied by a centrifugal assay. The specificity of the binding sites is strikingly similar to what might be expected of the β-adrenergic receptor binding sites which mediate stimulation of adenylate cyclase by catecholamines in these membranes. The sites bind β-adrenergic antagonists and agonists with affinities which are directly related to their antagonist or agonist potency on the frog erythrocyte membrane adenylate cyclase. Binding shows strict stereospecificity with (?)-isomers exhibiting two orders of magnitude higher affinities than (+)-isomers. Dissociation constants for potent β-adrenergic antagonists are in the range of 10?9 – 10?8M whereas those for β-adrenergic agonists are about two orders of magnitude higher (≥ 10?6M).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号