首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Availability of seeds and provision of “safe sites” for seedling recruitment are essential for successful restoration of seminatural grassland communities. Inability to provide species‐specific conditions for seedling recruitment appears to be a major factor limiting establishment of fen‐meadow species on restoration sites. This contention was tested in the field for both germination and establishment conditions for a selection of fen‐meadow species. A Cirsio‐Molinietum fen meadow and an agriculturally semi‐improved species‐poor grass dominated rush pasture were used. Seeds of Carex ovalis, Cirsium dissectum, Molinia caerulea, Succisa pratensis, and Holcus lanatus were sown onto treatments comprising either irrigation or no irrigation, presence or absence of existing vegetation canopy, and presence or absence of soil disturbance. Germination of all except H. lanatus was higher in the fen meadow than in the rush pasture. The fen‐meadow site was less susceptible to drought, provided more light to the seed environment, and showed a stronger day–night variation in relative humidity compared with the rush pasture. All the fen‐meadow species responded strongly to the experimental treatments, whereas H. lanatus showed only a small response. Soil disturbance was the major factor that increased germination. Removal of the vegetation canopy improved germination only in S. pratensis. Conditions affecting survival of seedlings were different from those affecting seed germination. Seedling survival was greater on the fen‐meadow site than on the rush pasture. Canopy presence was the major factor that reduced seedling survival. Few seedlings survived in the presence of the rush pasture canopy. Irrigation and soil disturbance were of minor importance for seedling survival on both sites. Safe sites for seed germination and seedling establishment of fen‐meadow species existed on the fen meadow even without soil disturbance and gap creation. Safe sites for seedling recruitment were not present in the rush pasture. The need for species‐specific definition of safe site characteristics at the two stages of seedling recruitment (i.e., for seed germination and for seedling survival) was demonstrated. The implications of these findings for restoration of seminatural grasslands are discussed.  相似文献   

2.
Abstract. Fen meadows (Cirsio dissecti‐Molinietum) are seriously threatened by desiccation, acidification and eutro‐phication. In The Netherlands several projects were launched to restore damaged fen meadows. This review describes how successes and failures of these restoration projects depend on hydrological systems. Six hydrological systems have been distinguished, which all provide the site conditions required by this community. Nowadays, the best developed fen meadows are found in the higher Pleistocene landscape of The Netherlands, where they depend on base‐rich groundwater discharging from local or large groundwater systems. Fen meadows of the lower Holocene landscape usually occur in man‐made surface water systems. Almost all stands have been severely deteriorated. Restoration of fen meadows in the Pleistocene landscape is promising when the hydrology is only slightly disturbed or when hydrological measures are taken in combination with sod cutting. Restoration prospects of fen meadows in the Holocene landscape are low. Until now a complete regeneration of Cirsio‐Molinietum meadows has not been realized. Restoration measures failed to restore high pH values in the top soil. It is hypothesized that viable seeds of many target species lack in the soil seed bank. In addition, the dispersal capacities of these species seem to be limited.  相似文献   

3.
Abstract. Vegetation and soil seed banks of a threatened Atlantic fen meadow community were studied using recent phytosociological records and seedling emergence from soil samples. Similarly managed but differently degraded stands that suffered different levels of species impoverishment were compared. The actual vegetation was related to a set of phytosociological references representing the subassociations of the community. DCA positions of reference relevés from the different subassociations were overlapping, suggesting that in all references many common species occur. Recent records were positioned in‐between the seed bank samples and the references. The soil seed banks of all stands were dominated by ordinary species. Most character species had at most sparse seed banks and no seedlings of locally extinct character species, mentioned in historic floristic records, were detected. In contrast species of pioneer and small‐sedge communities as well as those of heathlands were abundant in the seed banks. Based on the vertical distribution of seeds in the soil layers most fen meadow species were classified into transient or short‐term persistent seed bank types. We concluded that complete restoration of the Cirsio dissecti‐Molinietum without reintroduc‐tion is only likely in stands that were degraded only a few years ago. On the other hand, the presence of viable seeds of Nanocyperion and Parvocaricetea species is promising for the restoration of these communities even after decades. Recreation of pioneer habitats by sod cutting will preserve these species.  相似文献   

4.
5.
This paper investigates the effect that manipulation of soil and vegetation conditions has on plant community development during attempts to create neutral hay meadow communities on a clay‐capped landfill in Somerset, United Kingdom. The objectives are (1) to determine the effect of manipulation of soil and vegetation on the development of the target plant community, (2) to identify whether these treatments had an effect on edaphic factors (physical and chemical properties, earthworm populations), and (3) to establish which, if any, of these edaphic parameters are underlying factors in determining the vascular plant community composition. In 2001 a commercial hay meadow seed mix was sown on three substrate treatments: (i) bare clay, (ii) a mixture of topsoil and compost ameliorant in equal proportions, and (iii) over naturally colonized vegetation. Plant community development and edaphic factors were monitored between 2001 and 2007. Although initially the presence of ameliorant promoted germination and growth of seeded species, after 2004 nonseeded competitive grasses dominated the sward. Where ameliorant was removed the target community continued to develop proving this to be the most successful treatment. This was found to be a due to suppression of competition from Elytrigia repens (Common couch), which grew most abundantly on soils with high organic matter and high soil water levels within the soil. Contrary to previous research, Trifolium repens (white clover) was not found to reduce forb diversity in this study. No evidence was found of earthworm abundance affecting plant community development.  相似文献   

6.
Question: We studied the development and persistence of the effects of nutrient pulses on biomass production and species composition in a fen meadow. Location: Nature reserve, central Netherlands, 5 m a.s.l. Methods: Single pulse fertilization with N and P in a factorial design on an undrained central and a drained margin site in a species‐rich fen meadow (Cirsio dissecti‐Molinietum). Biomass production and species composition were monitored during four years. Results: At the central site, N addition boosted biomass production, but only during one year. The species composition was not changed. P fertilization increased the biomass production and changed the species composition from a vegetation dominated by Carex panicea to a grassland community with abundant Holcus lanatus, but not before the second year. At the margin site, P fertilization changed the species composition in a similar way, but biomass production was not increased. N fertilization had no effect. At both sites the P induced shift in species composition persisted for four years although the P effect declined during the experiment. Conclusions: The biomass responses show that N was limiting in the central site. Another nutrient, besides N and P (probably K) must have been limiting in the marginal site. The fast decline of the N effect on biomass is ascribed to increased denitrification and biomass removal. The delay in the P effect on biomass and species composition and the persistence of the P effect on species composition are ascribed to fast immobilisation and subsequent slow release of fertilizer P in the peat soil. Recurrence of the P pulses is expected to cause permanent changes in species composition.  相似文献   

7.
We investigated the effects of different restoration treatments on the development of fen meadow communities: (1) depth of topsoil removal, with shallow (circa 20 cm) and deep (circa 40 cm) soil removal applied, (2) transfer of seed‐containing hay, and (3) access of large animals. We carried out a full factorial experiment with all combinations of these factors and monitored it for 4 years. We studied the effect of seed availability in the soil seed bank on species abundance in the vegetation and compared it to the effect of species introduction by hay. We observed large differences in species composition between different treatments after 4 years. The combination of hay transfer, deep soil removal, and exclusion of large animals resulted in a community with highest similarity to the target vegetation. We found that the transfer of seeds with hay had a larger effect on species abundance than the soil seed bank. Hay transfer appeared to have important consequences on vegetation development because it speeded up the establishment of the target vegetation.  相似文献   

8.
Efforts to eradicate invasive plants in restorations can unintentionally create conditions that favor reinvasion over the establishment of desired species, especially when remnant invasive propagules persist. Reducing resources needed by the invader for seedling establishment, however, may be an effective strategy to prevent reinvasion. Propagules of Phalaris arundinacea persist after removal from sedge meadow wetlands and reestablish quickly in posteradication conditions, hindering community restoration. A study was conducted in two experimental wetlands with controlled hydrologic regimes to determine if reducing light by sowing short‐lived, nonpersistent native cover crops or immobilizing soil N by incorporating soil–sawdust amendments can prevent Phalaris reinvasion, allowing native communities to recover. A 10‐species perennial target community and Phalaris were sown with high‐diversity, low‐diversity, or no cover crops in soils with or without sawdust, and seedling emergence, establishment, and growth were measured. High‐diversity cover crops reduced light, decreasing Phalaris and target community seedling establishment by 89 and 57%, respectively. Short‐term nitrogen reduction in sawdust‐amended soils delayed Phalaris seedling emergence and decreased Phalaris seedling establishment by 59% but did not affect total target community seedling establishment. The target community reduced Phalaris seedling establishment as effectively as cover crops did. In plots where the target community was grown, amending soils with sawdust further reduced Phalaris seedling growth but not establishment. Results show that use of cover crops can reduce seedling establishment of desired species and is counterproductive to restoration goals. Further, establishing target species is more important and practical for limiting Phalaris reinvasion than is immobilizing nitrogen.  相似文献   

9.
Barriers to establishing native plant communities on former pasture include dominance by a single planted species, hydrologic and edaphic alteration, and native species propagule limitation. Establishment may be dispersal‐limited (propagules do not arrive at the site), microsite‐limited (areas suitable for seedling emergence and survival do not exist), or both. Successful restoration strategies hinge on identifying and addressing critical limitations. We examined seed and microsite limitation to establishment of a native wildflower (Coreopsis lanceolata ) in a former pasture dominated by Paspalum notatum (bahiagrass). We determined the relative and interactive effects of microsite (irrigation and disturbance) and seed limitation on C. lanceolata establishment. We tested (1) irrigation (none, pre‐seeding, and pre‐ and post‐seeding), (2) disturbance (none, sethoxydim, glyphosate, and topsoil removal), and (3) C. lanceolata seeding rate (three seeding densities). Applying glyphosate before seeding increased C. lanceolata establishment compared to other disturbance treatments. Ultimately, C. lanceolata establishment was not affected by irrigation. Coreopsis lanceolata establishment was limited when seeded at 100 live seeds/m2 but not at 600 or 1100 live seeds/m2. Seed and microsite availability interactively affected C. lanceolata establishment, in that microsite limitation was biologically relevant only when a minimum number of seeds were present. In practice, both seed and microsite requirements must be met for successful establishment, and increasing the availability of seeds or microsites does not compensate for limitations of the other. Here, it is the relative importance of seed and microsite limitations that drives plant establishment; these limitations do not represent a simple dichotomy.  相似文献   

10.
Question: How do moderate grazing, topsoil removal and hay transfer affect species diversity and abundance on a eutrophic fen grassland site? Location: Northern Germany. Method: A three-factorial field experiment with the factors grazing, topsoil removal and hay transfer of diaspore-rich material was established in 2001. Soil nutrients and seed bank were analysed at the beginning of the experiment, species composition and vegetation development was monitored for four years (2002–2005). Results: Topsoil removal had a significant effect on the abundance of different plant species groups: resident vegetation of agricultural grasslands was suppressed, while clonal reed species were facilitated in recolonising the area. The establishment of regionally rare and endangered species of nutrient-poor fens and wet meadows introduced with hay was achieved mainly on plots with topsoil removal, with the exception of Rhinan-thus angustifolius, which also established on plots with intact topsoil. Effects of grazing after four years of experiments were of minor influence on species composition. Conclusion: The establishment of target plant species of nutrient-poor fens is most successful when both an adequate number of viable diaspores and suitable sites for germination and establishment are available. In our experiment this was achieved by the combination of topsoil removal and hay transfer. We recommend this combination, together with continuous management (grazing/cutting), for further restoration in fen grasslands.  相似文献   

11.
Alpine Kobresia meadows are major vegetation types on the Qinghai-Tibetan Plateau. There is growing concern over their relationships among biodiversity, productivity and environments. Despite the importance of species composition, species richness, the type of different growth forms, and plant biomass structure for Kobresia meadow ecosystems, few studies have been focused on the relationship between biomass and environmental gradient in the Kobresia meadow plant communities, particularly in relation to soil moisture and edaphic gradients. We measured the plant species composition, herbaceous litter, aboveground and belowground biomass in three Kobresia meadow plant communities in Haibei Alpine Meadow Ecosystem Research Station from 2001 to 2004. Community differences in plant species composition were reflected in biomass distribution. The total biomass showed a decrease from 13196.96±719.69 g/m2 in the sedge-dominated K. tibetica swamp to 2869.58±147.52 g/m2 in the forb and sedge dominated K. pygmaea meadow, and to 2153.08±141.95 g/m2 in the forbs and grasses dominated K. humilis along with the increase of altitude. The vertical distribution of belowground biomass is distinct in the three meadow communities, and the belowground biomass at the depth of 0-10 cm in K. tibetica swamp meadow was significantly higher than that in K. humilis and K. pygmaea meadows (P<0.01). The herbaceous litter in K. tibetica swamp was significantly higher than those in K. pygnaeca and K. humilis meadows. The effects of plant litter are enhanced when ground water and soil moisture levels are raised. The relative importance of litter and vegetation may vary with soil water availability. In the K. tibetica swamp, total biomass was negatively correlated to species richness (P<0.05); aboveground biomass was positively correlated to soil organic matter, soil moisture, and plant cover (P<0.05); belowground biomass was positively correlated with soil moisture (P<0.05). However, in the K. pygnaeca and K. humilis meadow communities, aboveground biomass was positively correlated to soil organic matter and soil total nitrogen (P<0.05). This suggests that the distribution of biomass coincided with soil moisture and edaphic gradient in alpine meadows.  相似文献   

12.
青藏高原不同草地利用方式对土壤粒径分形特征的影响   总被引:2,自引:0,他引:2  
宛倩  王杰  王向涛  刘国彬  张超 《生态学报》2022,42(5):1716-1726
研究青藏高原草地土壤粒径结构分形特征,为该地区土壤质量评价和生态恢复提供科学依据。以青藏高原4种高寒草地(放牧、围栏禁牧、围栏禁牧+补植、未干扰)为对象,采用分形理论,研究不同利用方式对高寒草地土壤颗粒组成及分形特征的影响,明确土壤粒径分形特征的影响因素。结果表明:与放牧和围栏禁牧+补植相比,围栏禁牧草地中黏粒和粉粒体积分数分别增加了60%—91.1%、43.5%—80.1%,禁牧能够促进土壤砂粒向黏粒和粉粒转变。不同草地利用方式对分形维数有显著影响,单重分形维数D值依次为放牧草地<围栏禁牧+补植草地<未干扰草地=围栏禁牧草地,多重分形维数,包括信息维数D1、信息维数/容量维数比值D1/D0和关联维数D2依次为放牧草地<围栏禁牧+补植草地<围栏禁牧草地<未干扰草地。单重分形维数D与土壤黏粒、粉粒呈极显著正相关(P<0.01);砂粒、黏粒、粉粒、有机碳和全氮是多重分形维数的限制因素。信息维数D1、信息维数/容量维数比值D1...  相似文献   

13.
Question: In fen meadows with Junco‐Molinion plant communities, falling groundwater levels may not lead to a boosted above‐ground biomass production if limitation of nutrients persists. Instead, depending on drainage intensity and micro‐topography, acidification may trigger a shift into drier and more nutrient‐poor plant communities. Location: Nature reserve, central Netherlands, 5 m a.s.l. Methods: Long‐term study (1988‐1997) in a fen meadow along a gradient in drainage intensity at different scales. Results: Above‐ground biomass increased only slightly over ten years, despite a lower summer groundwater table. The accountable factors were probably a limited availability of nutrients (K in the higher well‐drained plots, P in the intermediate plots and N in the lower hardly drained plots), plus removal of hay. Junco‐Molinion species increased in dry sites and Parvo‐caricetea species increased in wet sites, presumably primarily because of soil acidification occurring when rainwater becomes more influential than base‐rich groundwater. The extent of the shift in species composition depends primarily on the drainage intensity and secondarily on microtopography. Local hydrological measures have largely failed to restore wetter and more basic‐rich conditions. Conclusions: Acidification and nutrient removal, leaching and immobilization resulted in the succession towards Junco‐Molinion at the cost of Calthion palustris elements. Lower in the gradient this change was reduced by the presence of buffered groundwater in slightly drained sites. To conserve the typical plant communities of the Junco‐Molinion to Calthion gradient in the long term, further acidification must be prevented, for example by inundation with base‐rich surface water.  相似文献   

14.
Alpine Kobresia meadows are major vegetation types on the Qinghai-Tibetan Plateau. There is growing concern over their relationships among biodiversity, productivity and environments. Despite the im-portance of species composition, species richness, the type of different growth forms, and plant bio-mass structure for Kobresia meadow ecosystems, few studies have been focused on the relationship between biomass and environmental gradient in the Kobresia meadow plant communities, particularly in relation to soil moisture and edaphic gradients. We measured the plant species composition, her-baceous litter, aboveground and belowground biomass in three Kobresia meadow plant communities in Haibei Alpine Meadow Ecosystem Research Station from 2001 to 2004. Community differences in plant species composition were reflected in biomass distribution. The total biomass showed a de-crease from 13196.96±719.69 g/m2 in the sedge-dominated K. tibetica swamp to 2869.58±147.52 g/m2 in the forb and sedge dominated K. pygmaea meadow, and to 2153.08±141.95 g/m2 in the forbs and grasses dominated K. humilis along with the increase of altitude. The vertical distribution of below-ground biomass is distinct in the three meadow communities, and the belowground biomass at the depth of 0-10 cm in K. tibetica swamp meadow was significantly higher than that in K. humilis and K. pygmaea meadows (P<0.01). The herbaceous litter in K. tibetica swamp was significantly higher than those in K. pygnaeca and K. humilis meadows. The effects of plant litter are enhanced when ground water and soil moisture levels are raised. The relative importance of litter and vegetation may vary with soil water availability. In the K. tibetica swamp, total biomass was negatively correlated to species richness (P<0.05); aboveground biomass was positively correlated to soil organic matter, soil moisture, and plant cover (P<0.05); belowground biomass was positively correlated with soil moisture (P<0.05). However, in the K. pygnaeca and K. humilis meadow communities, aboveground biomass was posi-tively correlated to soil organic matter and soil total nitrogen (P<0.05). This suggests that the distribu-tion of biomass coincided with soil moisture and edaphic gradient in alpine meadows.  相似文献   

15.
16.
Question: What is the influence of hydrological regime, soils and management on the plant community composition and species richness of Skealoghan turlough (groundwater dependent calcareous wetland). Location: Skealoghan turlough, County Mayo, Ireland. Methods: Percentage cover of vascular plants and bryophytes were recorded, and data on hydrological regimes, soils and management were collected. Data were analysed using multivariate statistical techniques. Results: A total of 69 species of vascular plants and mosses were recorded. Cluster analysis grouped the samples into two separate communities, the Cirsio‐Molinietum and the Ranunculo‐Potentilletum anserinae plant communities. The plant community composition and species richness followed a main gradient down into the turlough basin, but also varied with microtopography, resulting in a mosaic of vegetation types. Conclusions: The biodiversity and conservation value of the site is linked to the heterogeneity in its physical environment in which hydrology, soils and grazing management all play critical roles.  相似文献   

17.
Most species‐rich fen meadows in nature reserves in The Netherlands are acidified due to weaker upwelling of base‐rich groundwater. The present study investigated whether and why turf stripping combined with superficial drainage might promote the long‐term recovery of such meadows and restore the nutrient‐poor, buffered conditions they require. In a field experiment, we analyzed changes in vegetation composition, soil parameters, and soil water chemistry in stripped plots of degraded Cirsio‐Molinietum vegetation over 12 years. After the first five years, many species from the target communities occurred in stripped plots. Both vegetation and soil data showed positive effects of turf stripping on the acid‐buffering capacity. Because sulfate concentration in the soil water decreased over time, whereas the bicarbonate concentration increased, we inferred that there was internal alkalinization driven by sulfate reduction in low‐lying stripped plots. However, the succession toward more acidophilus plant communities, in both control and stripped plots, indicated gradual acidification. This may be caused by a continuing weakening of the upward seepage of base‐rich groundwater as shown by declining calcium concentrations in the soil water. Though turf stripping exposed a nutrient‐poor soil layer with a greater acid‐buffering capacity, these positive effects might not be sufficient to combat the ongoing acidification in the long term.  相似文献   

18.
Abstract —Environmental heterogeneity in the tropics is thought to lead to specialization in plants and thereby contribute to the diversity of the tropical flora. We examine this idea with data on the habitat specificity of 35 western Amazonian species from the genera Protium, Crepidospermum, and Tetragastris in the monophyletic tribe Protieae (Burseraceae) mapped on a molecular‐based phylogeny. We surveyed three edaphic habitats that occur throughout terra firme Amazonia: white‐sand, clay, and terrace soils in eight forests across more than 2000 km in the western Amazon. Twenty‐six of the 35 species were found to be associated with only one of three soil types, and no species was associated with all three habitats; this pattern of edaphic specialization was consistent across the entire region. Habitat association mapped onto the phylogenetic tree shows association with terrace soils to be the probable ancestral state in the group, with subsequent speciation events onto clay and white‐sand soils. The repeated gain of clay association within the clade likely coincides with the emergence of large areas of clay soils in the Miocene deposited during the Andean uplift. Character optimizations revealed that soil association was not phylogenetically clustered for white‐sand and clay specialists, suggesting repeated independent evolution of soil specificity is common within the Protieae. This phylogenetic analysis also showed that multiple cases of putative sister taxa with parapatric distributions differ in their edaphic associations, suggesting that edaphic heterogeneity was an important driver of speciation in the Protieae in the Amazon basin.  相似文献   

19.
Question: How do soils and topography influence Amazonian tree diversity, a region with generally nutrient‐starved soils but some of the biologically richest tree communities on Earth? Location: Central Amazonia, near Manaus, Brazil. Methods: We evaluated the influence of 14 soil and topographic features on species diversity of rain forest trees (≥10 cm diameter at breast height), using data from 63 1‐ha plots scattered over an area of ~400 km2. Results: An ordination analysis identified three major edaphic gradients: (1) flatter areas had generally higher nutrient soils (higher clay content, carbon, nitrogen, phosphorus, pH and exchangeable bases, and lower aluminium saturation) than did slopes and gullies; (2) sandier soils had lower water storage (plant available water capacity), phosphorus and nitrogen; and (3) soil pH varied among sites. Gradient 2 was the strongest predictor of tree diversity (species richness and Fisher's α values), with diversity increasing with higher soil fertility and water availability. Gradient 2 was also the best predictor of the number of rare (singleton) species, which accounted on average for over half (56%) of all species in each plot. Conclusions: Although our plots invariably supported diverse tree communities (≥225 species ha?1), the most species‐rich sites (up to 310 species ha?1) were least constrained by soil water and phosphorus availability. Intriguingly, the numbers of rare and common species were not significantly correlated in our plots, and they responded differently to major soil and topographic gradients. For unknown reasons rare species were significantly more frequent in plots with many large trees.  相似文献   

20.
The majority of fens in Europe have been transformed for agricultural purposes and have disappeared or become degraded. Fen meadows that developed under low-intensity management of fens also have become degraded. In this paper, we consider the available restoration methods, biotic constraints for restoration and new prospects and approaches for the restoration of severely degraded fens. Due to irreversible changes in landscape settings, hydrology, soil and trophic conditions, a full restoration to natural mires is unlikely. Yet, an improvement of the ecosystem functions and revival of biodiversity in degraded fens is possible. A restoration of semi-natural meadows is one of the alternative targets. Important for restoration efforts to succeed are a sufficient reduction of nutrient levels and preventing acidification. In general, a combination of topsoil removal and seed transfer is an effective measure for fen meadow restoration, provided that groundwater seepage can be re-established. There are also several biotic limitations to fen meadow restoration, due to limited propagule availability of target species and the legacy of the former vegetation in form of its soil seed bank and high seed production by unwanted species. Under the present environmental conditions, the re-development of fen meadows on degraded fens will result in species compositions different from those observed in the past and such restoration may require considerable time and effort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号