首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The architecture of the adult arthropod visual system for many decades has contributed important character sets that are useful for reconstructing the phylogenetic relationships within this group. In the current paper we explore whether aspects of eye development can also contribute new arguments to the discussion of arthropod phylogeny. We review the current knowledge on eye formation in Trilobita, Xiphosura, Myriapoda, Hexapoda, and Crustacea. All euarthropod taxa share the motif of a proliferation zone at the side of the developing eye field that contributes new eye elements. Two major variations of this common motif can be distinguished: 1. The “row by row type” of Trilobita, Xiphosura, and Diplopoda. In this type, the proliferation zone at the side of the eye field generates new single, large elements with a high and variable cell number, which are added to the side of the eye and extend rows of existing eye elements. Cell proliferation, differentiation and ommatidial assembly seem to be separated in time but spatially confined within the precursors of the optic units which grow continuously once they are formed (intercalary growth). 2. The “morphogenetic front type” of eye formation in Crustacea + Hexapoda (Tetraconata). In this type, there is a clear temporal and spatial separation of the formation and differentiation processes. Proliferation and the initial steps of pattern formation take place in linear and parallel mitotic and morphogenetic fronts (the mitotic waves and the morphogenetic furrow/transition zone) and numerous but small new elements with a strictly fixed set of cells are added to the eye field. In Tetraconata, once formed, the individual ommatidia do not grow any more. Scutigeromorph chilopods take an intermediate position between these two major types. We suggest that the “row by row type” as seen in Trilobita, Xiphosura and Diplopoda represents the plesiomorphic developmental mode of eye formation from the euarthropod ground pattern whereas the “morphogenetic front type” is apomorphic for the Tetraconata. Our data are discussed with regard to two competing hypotheses on arthropod phylogeny, the “Tracheata” versus “Tetraconata” concept. The modes of eye development in Myriapoda is more parsimonious to explain in the Tetraconata hypothesis so that our data raise the possibility that myriapod eyes may not be secondarily reconstructed insect eyes as the prevailing hypothesis suggests.  相似文献   

2.
3.
Evolution of eye lens crystallins: the stress connection   总被引:21,自引:0,他引:21  
Crystallins, the structural proteins of the eye lens, ensure the transparency and integrity of the lens throughout life. Recent sequence comparisons have shown that evolution has recruited crystallins among already existing heat-shock proteins and stress-inducible enzymes.  相似文献   

4.
Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup   总被引:1,自引:0,他引:1  
Charles Darwin appreciated the conceptual difficulty in accepting that an organ as wonderful as the vertebrate eye could have evolved through natural selection. He reasoned that if appropriate gradations could be found that were useful to the animal and were inherited, then the apparent difficulty would be overcome. Here, we review a wide range of findings that capture glimpses of the gradations that appear to have occurred during eye evolution, and provide a scenario for the unseen steps that have led to the emergence of the vertebrate eye.  相似文献   

5.
Strepsirrhine and haplorhine primates exhibit highly derived features of the visual system that distinguish them from most other mammals. Comparative data link the evolution of these visual specializations to the sequential acquisition of nocturnal visual predation in the primate stem lineage and diurnal visual predation in the anthropoid stem lineage. However, it is unclear to what extent these shifts in primate visual ecology were accompanied by changes in eye size and shape. Here we investigate the evolution of primate eye morphology using a comparative study of a large sample of mammalian eyes. Our analysis shows that primates differ from other mammals in having large eyes relative to body size and that anthropoids exhibit unusually small corneas relative to eye size and body size. The large eyes of basal primates probably evolved to improve visual acuity while maintaining high sensitivity in a nocturnal context. The reduced corneal sizes of anthropoids reflect reductions in the size of the dioptric apparatus as a means of increasing posterior nodal distance to improve visual acuity. These data support the conclusion that the origin of anthropoids was associated with a change in eye shape to improve visual acuity in the context of a diurnal predatory habitus.  相似文献   

6.
Sex determination: the fishy tale of Dmrt1   总被引:6,自引:0,他引:6  
The idea that the Dmrt1 gene provides a unifying sex-determining mechanism in non-mammalian vertebrates is left high and dry by recent observations in fish.  相似文献   

7.
Genetic screens in flies and worms have long been a powerful way of identifying proteins that regulate synaptic transmission. A recent study of ribbon synapses in the retina of zebrafish is an excellent example of how this approach can now be applied to a vertebrate species.  相似文献   

8.
9.
10.
Recent studies have identified the leucine rich repeat protein LRRTM2 as a post-synaptic ligand of Neurexins. Neurexins also bind the post-synaptic adhesion molecules, Neuroligins. All three families of genes have been implicated in the etiologies of neurodevelopmental disorders, specifically autism spectrum disorders and schizophrenia. Does the binding promiscuity of Neurexins now suggest complex cooperativity or redundancy at the synapse? While recent studies in primary neuronal cultures and also systematic extracellular protein interaction screens suggest summative effects of these systems, we propose that studying these interactions in the developing zebrafish embryo or larvae may shed more light on their functions during synaptogenesis in vivo. These gene families have recently been extensively characterized in zebrafish, demonstrating high sequence conservation with the human genes. The simpler circuitry of the zebrafish, together with the characterization of the expression patterns down to single, identifiable neurons and the ability to knock-down or over-express multiple genes in a rapid way lend themselves to dissecting complex interaction pathways. Furthermore, the capability of performing high-throughput drug screens suggests that these small vertebrates may prove extremely useful in identifying pharmacological approaches to treating autism spectrum disorders.  相似文献   

11.
12.
The brain peptides vasopressin and oxytocin play crucial roles in the regulation of salt and water balance. The genes encoding these neurohormones are regulated by cell-specific and physiological cues, but the molecular mechanisms remain obscure. New strategies, involving the introduction of rat transgenes into rats, are being used to address these issues,(1) but the complexity of the rat genome has hampered progress. By contrast, the pufferfish, Fugu rubripes, has a “junk-free” genome.(2) The oxytocin homologue from Fugu, isotocin, has been introduced into rats(3) and is expressed in oxytocin neurons, where it is upregulated by physiological perturbations that upregulate the oxytocin gene. The Fugu and rat lineages separated 400 million years ago, yet the mechanisms that regulate the isotocin and oxytocin genes have been conserved. Fugu genome analysis and transgenesis in the physiologically tractable rat host are a powerful combination that will enable the identification of fundamental components of the neural systems that control homeostasis. BioEssays 20 :741–749, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

13.
Genes encoding proteins involved in sperm-egg interaction and fertilization exhibit a particularly fast evolution and may participate in prezygotic species isolation [1], [2]. Some of them (ZP3, ADAM1, ADAM2, ACR and CD9) have individually been shown to evolve under positive selection [3], [4], suggesting a role of positive Darwinian selection on sperm-egg interaction. However, the genes involved in this biological function have not been systematically and exhaustively studied with an evolutionary perspective, in particular across vertebrates with internal and external fertilization. Here we show that 33 genes among the 69 that have been experimentally shown to be involved in fertilization in at least one taxon in vertebrates are under positive selection. Moreover, we identified 17 pseudogenes and 39 genes that have at least one duplicate in one species. For 15 genes, we found neither positive selection, nor gene copies or pseudogenes. Genes of teleosts, especially genes involved in sperm-oolemma fusion, appear to be more frequently under positive selection than genes of birds and eutherians. In contrast, pseudogenization, gene loss and gene gain are more frequent in eutherians. Thus, each of the 19 studied vertebrate species exhibits a unique signature characterized by gene gain and loss, as well as position of amino acids under positive selection. Reflecting these clade-specific signatures, teleosts and eutherian mammals are recovered as clades in a parsimony analysis. Interestingly the same analysis places Xenopus apart from teleosts, with which it shares the primitive external fertilization, and locates it along with amniotes (which share internal fertilization), suggesting that external or internal environmental conditions of germ cell interaction may not be the unique factors that drive the evolution of fertilization genes. Our work should improve our understanding of the fertilization process and on the establishment of reproductive barriers, for example by offering new leads for experiments on genes identified as positively selected.  相似文献   

14.
Rat feeding trials were conducted with two pairs of food additiveswhich exhibit similar odor qualities but vastly different odorintensities. The maximum no-adverse-effect dietary levels ina 90-day trial were as follows: isovaleric acid, 5% 2-ethylbutyricacid, 0.6% trimethylamine, 0.16% piperidine, 0.08%. In viewof these no-effect levels, the concentrations of trimethylamineand piperidine used in human food sometimes infringe the Federal100-fold practical safety factor. In the maximum concentrationsused in food, purified 2-ethylbutyric acid and piperidine couldbe neither tasted nor smelled by human observers, and appearto serve no useful purpose as flavorings. Calculations are presentedwhich suggest that, when their widely differing odor thresholdsare taken into consideration, isovaleric acid has about 22,000times greater theoretical safety factor than 2-ethylbutyricacid for producing a given intensity of a sweaty aroma. By similarconsiderations, trimethylamine has about 260,000 times greatertheoretical safety factor than piperidine for generating a fishyodor.  相似文献   

15.

Background

The glycolytic phosphoglycerate mutases exist as non-homologous isofunctional enzymes (NISE) having independent evolutionary origins and no similarity in primary sequence, 3D structure, or catalytic mechanism. Cofactor-dependent PGM (dPGM) requires 2,3-bisphosphoglycerate for activity; cofactor-independent PGM (iPGM) does not. The PGM profile of any given bacterium is unpredictable and some organisms such as Escherichia coli encode both forms.

Methods/Principal Findings

To examine the distribution of PGM NISE throughout the Bacteria, and gain insight into the evolutionary processes that shape their phyletic profiles, we searched bacterial genome sequences for the presence of dPGM and iPGM. Both forms exhibited patchy distributions throughout the bacterial domain. Species within the same genus, or even strains of the same species, frequently differ in their PGM repertoire. The distribution is further complicated by the common occurrence of dPGM paralogs, while iPGM paralogs are rare. Larger genomes are more likely to accommodate PGM paralogs or both NISE forms. Lateral gene transfers have shaped the PGM profiles with intradomain and interdomain transfers apparent. Archaeal-type iPGM was identified in many bacteria, often as the sole PGM. To address the function of PGM NISE in an organism encoding both forms, we analyzed recombinant enzymes from E. coli. Both NISE were active mutases, but the specific activity of dPGM greatly exceeded that of iPGM, which showed highest activity in the presence of manganese. We created PGM null mutants in E. coli and discovered the ΔdPGM mutant grew slowly due to a delay in exiting stationary phase. Overexpression of dPGM or iPGM overcame this defect.

Conclusions/Significance

Our biochemical and genetic analyses in E. coli firmly establish dPGM and iPGM as NISE. Metabolic redundancy is indicated since only larger genomes encode both forms. Non-orthologous gene displacement can fully account for the non-uniform PGM distribution we report across the bacterial domain.  相似文献   

16.
17.
18.
19.
20.
A striking diversity of compound eye size and shape has evolved among insects. The number of ommatidia and their size are major determinants of the visual sensitivity and acuity of the compound eye. Each ommatidium is composed of eight photoreceptor cells that facilitate the discrimination of different colours via the expression of various light sensitive Rhodopsin proteins. It follows that variation in eye size, shape, and opsin composition is likely to directly influence vision. We analyzed variation in these three traits in D. melanogaster, D. simulans and D. mauritiana. We show that D. mauritiana generally has larger eyes than its sibling species, which is due to a combination of larger ommatidia and more ommatidia. In addition, intra- and inter-specific differences in eye size among D. simulans and D. melanogaster strains are mainly caused by variation in ommatidia number. By applying a geometric morphometrics approach to assess whether the formation of larger eyes influences other parts of the head capsule, we found that an increase in eye size is associated with a reduction in the adjacent face cuticle. Our shape analysis also demonstrates that D. mauritiana eyes are specifically enlarged in the dorsal region. Intriguingly, this dorsal enlargement is associated with enhanced expression of rhodopsin 3 in D. mauritiana. In summary, our data suggests that the morphology and functional properties of the compound eyes vary considerably within and among these closely related Drosophila species and may be part of coordinated morphological changes affecting the head capsule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号