首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Although the molecular basis of sperm-oocyte interaction is unclear, recent studies have implicated two chaperone proteins, heat shock protein 1 (HSPD1; previously known as heat shock protein 60) and tumor rejection antigen gp96 (TRA1; previously known as endoplasmin), in the formation of a functional zona-receptor complex on the surface of mammalian spermatozoa. The current study was undertaken to investigate the expression of these chaperones during the ontogeny of male germ cells through spermatogenesis, epididymal sperm maturation, capacitation, and acrosomal exocytosis. In testicular sections, both HSPD1 and TRA1 were closely associated with the mitochondria of spermatogonia and primary spermatocytes. However, this labeling pattern disappeared from the male germ line during spermiogenesis to become undetectable in testicular spermatozoa. Subsequently, these chaperones could be detected in epididymal spermatozoa and in previously unreported "dense bodies" in the epididymal lumen. The latter appeared in the precise region of the epididymis (proximal corpus), where spermatozoa acquire the capacity to recognize and bind to the zona pellucida, implicating these structures in the functional remodeling of the sperm surface during epididymal maturation. Both HSPD1 and TRA1 were subsequently found to become coexpressed on the surface of live mouse spermatozoa following capacitation in vitro and were lost once these cells had undergone the acrosome reaction, as would be expected of cell surface molecules involved in sperm-egg interaction. These data reinforce the notion that these chaperones are intimately involved in the mechanisms by which mammalian spermatozoa both acquire and express their ability to recognize the zona pellucida.  相似文献   

2.
Mammalian spermatozoa acquire the ability to fertilize an oocyte as they ascend the female reproductive tract. This process is characterized by a complex cascade of biophysical and biochemical changes collectively know as "capacitation." The attainment of a capacitated state is accompanied by a dramatic reorganization of the surface architecture to render spermatozoa competent to recognize the oocyte and initiate fertilization. Emerging evidence indicates that this process is facilitated by molecular chaperone-mediated assembly of a multimeric receptor complex on the sperm surface. However, the mechanisms responsible for gathering key recognition molecules within this putative complex have yet to be defined. In this study, we provide the first evidence that chaperones partition into detergent resistant membrane fractions (DRMs) within capacitated mouse spermatozoa and co-localize in membrane microdomains enriched with the lipid raft marker, G(M1) ganglioside. During capacitation, these microdomains coalesce within the apical region of the sperm head, a location compatible with a role in sperm-zona pellucida interaction. Significantly, DRMs isolated from spermatozoa possessed the ability to selectively bind to the zona pellucida of unfertilized, but not fertilized, mouse oocytes. A comprehensive proteomic analysis of the DRM fractions identified a total of 100 proteins, a number of which have previously been implicated in sperm-oocyte interaction. Collectively, these data provide compelling evidence that mouse spermatozoa possess membrane microdomains that provide a platform for the assembly of key recognition molecules on the sperm surface and thus present an important mechanistic insight into the fundamental cell biological process of sperm-oocyte interaction.  相似文献   

3.
Recent studies from within our laboratory have demonstrated a causal relationship between capacitation‐associated surface phosphotyrosine expression and the ability of mouse spermatozoa to recognize the oocyte and engage in sperm–zona pellucida interaction. In the studies described herein we have sought to investigate the signaling pathways that underpin the tyrosine phosphorylation of sperm surface protein targets and validate the physiological significance of these pathways in relation to sperm–zona pellucida adhesion. Through selective pharmacological inhibition we have demonstrated that surface phosphotyrosine expression is unlikely to be mediated by the canonical cAMP‐dependent protein kinase A (PKA) signaling cascade that has been most widely studied in relation to sperm capacitation. Rather, it appears to be primarily driven by the extracellular signal‐regulated kinase (ERK) module of the mitogen‐activated protein kinase (MAPK) pathway. Consistent with this notion, the main components of the ERK module (RAS, RAF1, MEK, and ERK1/2) were localized to the periacrosomal region of the head of mature mouse spermatozoa and their phosphorylation status within this region of the cell was positively modulated by capacitation. Furthermore, inhibition of several elements of this pathway suppressed sperm surface phosphotyrosine expression and induced a concomitant reduction sperm–zona pellucida interaction. Collectively, these data highlight a previously unappreciated role of the ERK module in the modification of the sperm surface during capacitation to render these cells functionally competent to engage in the process of fertilization. J. Cell. Physiol. 224:71–83, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Tyrosine phosphorylation of HSP-90 during mammalian sperm capacitation   总被引:3,自引:0,他引:3  
The process of sperm capacitation is correlated with activation of a signal transduction pathway leading to protein tyrosine phosphorylation. Whereas phosphotyrosine expression is an essential prerequisite for fertilization, the proteins that are phosphorylated during capacitation have not yet been identified. In the present study, we observed that a major target of this signaling pathway is the molecular chaperone protein, heat shock protein (HSP)-86, a member of the HSP-90 family of HSPs. We used cross-immunoprecipitation experiments to confirm the tyrosine phosphorylation of HSP-86, a process that is not inhibited by the ansamycin antibiotic, geldanamycin. The general significance of these findings was confirmed by studies in which HSP-90 was also found to be tyrosine phosphorylated in human and rat spermatozoa when incubated under conditions that support capacitation. To our knowledge, these results represent the first report of a protein that undergoes tyrosine phosphorylation during mouse sperm capacitation and the first study implicating molecular chaperones in the processes by which mammalian spermatozoa gain the ability to fertilize the oocyte.  相似文献   

5.
Sperm-oocyte interactions are among the most remarkable processes in cell biology. These cellular recognition events are initiated by an exquisitely specific adhesion of free-swimming spermatozoa to the zona pellucida, an acellular matrix that surrounds the ovulated oocyte. Decades of research focusing on this interaction have led to the establishment of a widely held paradigm that the zona pellucida receptor is a single molecular entity that is constitutively expressed on the sperm cell surface. In contrast, we have employed the techniques of blue native-polyacrylamide gel electrophoresis, far Western blotting, and proximity ligation to secure the first direct evidence in support of a novel hypothesis that zona binding is mediated by multimeric sperm receptor complex(es). Furthermore, we show that one such multimeric association, comprising the chaperonin-containing TCP1 complex (CCT/TRiC) and a zona-binding protein, zona pellucida-binding protein 2, is present on the surface of capacitated spermatozoa and could account for the zona binding activity of these cells. Collectively, these data provide an important biochemical insight into the molecular basis of sperm-zona pellucida interaction and a plausible explanation for how spermatozoa gain their ability to fertilize.  相似文献   

6.
During the passage through the epididymis, testicular spermatozoa are directly exposed to epididymal fluid and undergo maturation. Proteins and glycoproteins of epididymal fluid may be adsorbed on the sperm surface and participate in the sperm maturation process, potentially in sperm capacitation, gamete recognition, binding and fusion. In present study, we separated proteins from boar epididymal fluid and tested their binding abilities. Boar epididymal fluid proteins were separated by size exclusion chromatography and by high-performance liquid chromatography with reverse phase (RP HPLC). The protein fractions were characterized by SDS-electrophoresis and the electrophoretic separated proteins after transfer to nitrocellulose membranes were tested for the interaction with biotin-labeled ligands: glycoproteins of zona pellucida (ZP), hyaluronic acid and heparin. Simultaneously, changes in the interaction of epididymal spermatozoa with biotin-labeled ligands after pre-incubation with epididymal fluid fractions were studied on microtiter plates by the ELBA (enzyme-linked binding assay) test. The affinity of some low-molecular-mass epididymal proteins (12-17 kDa and 23 kDa) to heparin and hyaluronic acid suggests their binding ability to oviductal proteoglycans of the porcine oviduct and a possible role during sperm capacitation. Epididymal proteins of 12-18 kDa interacted with ZP glycoproteins. One of them was identified as Crisp3-like protein. The method using microtiter plates showed the ability of epididymal fluid fractions to change the interaction of the epididymal sperm surface with biotin-labeled ligands (ZP glycoproteins, hyaluronic acid and heparin). These findings indicate that some epididymal fluid proteins are bound to the sperm surface during epididymal maturation and might play a role in the sperm capacitation or the sperm-zona pellucida binding.  相似文献   

7.
Mammalian spermatozoa must undergo capacitation before acquiring the ability to fertilize the oocyte. This process is believed to be initiated following the release of surface-associated decapacitation factors that are elaborated by both the epididymis and the male accessory organs. Herein, we report the identification of a number of proteins that are actively released from the surface of mouse spermatozoa during capacitation in vitro. As anticipated, the addition of these factors back to suspensions of mouse spermatozoa was shown to suppress several correlates of the capacitation process. Specifically, they induced a significant, dose-dependent inhibition of the ability of spermatozoa to undergo a progesterone-induced acrosome reaction and to bind to the zona pellucida in vitro. Inhibition of these functions was associated with the suppression of tyrosine phosphorylation in the sperm plasma membrane but had no effect on the phosphorylation of internal proteins in either the sperm head or tail. This inhibitory activity was attributed to a subset of the isolated proteins compromising at least four putative decapacitation factors. These proteins were identified via tandem-mass spectrometry amino acid sequence analysis as plasma membrane fatty acid binding protein, cysteine-rich secretory protein 1 (CRISP1), phosphatidylethanolamine binding protein 1 (PBP), and an unnamed protein product that we have termed decapacitation factor 10 (DF10). Of these proteins, PBP was identified as a primary candidate for a decapacitation factor.  相似文献   

8.
The functional capacity for sperm interaction with the human zona pellucida and zona-free hamster oocyte was tested after human spermatozoa were capacitated by passage through a column of human cervical mucus. The results were compared with those obtained when spermatozoa from an aliquot of the same semen sample were capacitated by the standard laboratory methods involving sequential washing by dilution and centrifugation of the semen. Washed-capacitated sperm suspensions were more successful than mucus-capacitated sperm in attaching to the zona-free hamster oocyte and in fusing with its oolemma. However, the ability of mucus-capacitated sperm to penetrate the human zona pellucida was equal to washed capacitated sperm. These experiments demonstrate an approach that may be useful in comparative studies of human sperm capacitation in vivo and in vitro.  相似文献   

9.
Mammalian sperm must undergo a process known as capacitation before fertilization can take place. A key intracellular event that occurs during capacitation is protein tyrosine phosphorylation. The objective of this study was to investigate and visualize protein tyrosine phosphorylation patterns in human sperm during capacitation and interaction with the zona pellucida. The presence of specific patterns was also assessed in relation to the fertilizing capacity of the spermatozoa after in vitro fertilization. Protein tyrosine phosphorylation was investigated by immunofluorescence. Phosphorylation increased significantly with capacitation and was localized mainly to the principal piece of human sperm. Following binding to the zona pellucida, the percentage of sperm with phosphotyrosine residues localized to both the neck and the principal piece was significantly higher in bound sperm than in capacitated sperm in suspension. When the percentage of principal piece-positive sperm present after capacitation was <7%, fertilization rates after in vitro fertilization were reduced. Different compartments of human spermatozoa undergo a specific sequence of phosphorylation during both capacitation and upon binding to the zona pellucida. Tyrosine phosphorylation in the principal and neck piece may be considered a prerequisite for fertilization in humans.  相似文献   

10.
Past studies have suggested that mouse sperm surface galactosyltransferase may participate during fertilization by binding N- acetylglucosamine (GlcNAc) residues in the zona pellucida. In this paper, we examined further the role of sperm surface galactosyltransferase in mouse fertilization. Two reagents that specifically perturb sperm surface galactosyltransferase activity both inhibit sperm-zona binding. The presence of the milk protein alpha- lactalbumin specifically modifies the substrate specificity of sperm galactosyltransferase away from GlcNAc and towards glucose and simultaneously inhibits sperm binding to the zona pellucida. Similarly, UDP-dialdehyde inhibits sperm binding to the zona pellucida and sperm surface galactosyl-transferase activity to identical degrees. Of five other sperm enzymes assayed, four are unaffected by UDP-dialdehyde, and one is affected only slightly. Covalent linkage of UDP-dialdehyde to sperm dramatically inhibits binding to eggs, while treatment of eggs with UDP-dialdehyde has no effect on sperm binding. Heat-solubilized or pronase-digested zona pellucida inhibit sperm-zona binding, and they can be glycosylated by sperm with UDP-galactose. Sperm are also able to glycosylate intact zona pellucida with UDP-galactose. Thus, solubilized and intact zona pellucida act as substrates for sperm surface GlcNAc:galactosyltransferases. Finally, pretreatment of eggs with beta- N-acetylglucosaminidase inhibits sperm binding by up to 86%, while under identical conditions, pretreatment with beta-galactosidase increases sperm binding by 55%. These studies, in conjunction with those of the preceding paper dealing with surface galactosyltransferase changes during capacitation, directly suggest that galactosyltransferase is at least one of the components necessary for sperm binding to the zona pellucida.  相似文献   

11.
Caltrin is a small and basic protein of the seminal vesicle secretion that inhibits sperm calcium uptake. The influence of rat caltrin on sperm physiological processes related to fertilizing competence was studied by examining its effect on 1) spontaneous acrosomal exocytosis, 2) protein tyrosine phosphorylation, and 3) sperm-egg interaction. Results show that the presence of caltrin during in vitro capacitation both reduced the rate of spontaneous acrosomal exocytosis without altering the pattern of protein tyrosine phosphorylation, and enhanced the sperm ability to bind to the zona pellucida (ZP). The significantly higher proportion of sperm with intact acrosome observed in the presence of caltrin was accompanied by a strong inhibition in the acrosomal hyaluronidase release. Enhancement of sperm-ZP binding was evident by the increase in the percentage of eggs with bound spermatozoa as well as in the number of bound sperm per egg. Similar results were obtained when the assays were performed using spermatozoa preincubated with caltrin and then washed to remove the unbound protein, indicating that the sperm-bound caltrin was the one involved in both acrosomal exocytosis inhibition and sperm-ZP binding enhancement. Caltrin bound to the sperm head was partially released during the acrosomal exocytosis induced by Ca-ionophore A23187. Indirect immunofluorescence and immunoelectron microscopy studies revealed that caltrin molecules distributed on the dorsal sperm surface disappeared after ionophore exposure, whereas those on the ventral region remained in this localization after the treatment. The present data suggest that rat caltrin molecules bound to the sperm head during ejaculation prevent the occurrence of the spontaneous acrosomal exocytosis along the female reproductive tract. Consequently, more competent spermatozoa with intact and functional acrosome would be available in the oviduct to participate in fertilization.  相似文献   

12.
A key intracellular event during capacitation is protein tyrosine phosphorylation, but its involvement during sperm interaction with the oocyte has not been investigated. Glucose is necessary to achieve fertilization and thus may have an influence on sperm protein tyrosine phosphorylation. The objectives of this study were to 1) visualize protein tyrosine phosphorylation patterns in sperm during capacitation and interaction with the oocyte and 2) determine the influence of glucose. Protein tyrosine phosphorylation was investigated by Western analysis and immunofluorescence. Protein tyrosine phosphorylation was increased during capacitation, and immunofluorescence revealed that zona binding and gamete fusion were correlated with an increase in tyrosine phosphorylation of proteins in the midpiece. During capacitation, the absence of glucose led to a delay in the appearance of protein tyrosine phosphorylation. Following binding to the zona pellucida and the oolemma, tyrosine phosphorylation in the flagellum was also delayed in the absence of glucose and resulted in a significant inhibition of the midpiece phosphorylation. The correlation between successful gamete fusion and the tyrosine phosphorylation of midpiece proteins suggests that the effect of glucose on sperm-oocyte interaction is mediated through regulation of protein tyrosine phosphorylation in a specific area of the fertilizing sperm.  相似文献   

13.
Before fertilization, inseminated spermatozoa acquire the ability to fertilize an egg, a phenomenon called capacitation. Bovine sperm capacitation is influenced by factors originating from both the male and female genital tract, and results in intracellular and membrane changes of the spermatozoa that facilitate the induction of the acrosome reaction. However, the effects of reproductive tract secretions and capacitation on the binding of spermatozoa to the zona pellucida have not been investigated. In this study, a sperm-egg binding assay was used to determine whether the ability of bull spermatozoa to bind to the zona pellucida was altered during in vitro capacitation by heparin or oviductal fluid, or by treatment of spermatozoa from the cauda epididymidis with accessory sex gland fluid. In addition, biotinylated solubilized zona pellucida proteins were used to visualize zona binding on spermatozoa. The ability of bull spermatozoa to bind to the zona pellucida was increased after both heparin and oviductal fluid induced in vitro capacitation. Exposure of spermatozoa from the cauda epididymidis to accessory sex gland fluid resulted in a direct increase in zona binding ability, followed by a further increase during capacitation in vitro. Binding of solubilized zona proteins was restricted to the acrosomal cap of bull spermatozoa. It is suggested that the observed increased ability of bull spermatozoa to bind to the zona pellucida enables optimal sperm-egg attachment, which also relates to the induction of the acrosome reaction by the zona pellucida. Thus, increased zona binding ability is likely to be an essential part of the process of capacitation.  相似文献   

14.
Capacitated acrosome-intact spermatozoa interact with specific sugar residues on neoglycoproteins (ngps) or solubilized zona pellucida (ZP), the egg's extracellular glycocalyx, prior to the initiation of a signal transduction cascade that results in the fenestration and fusion of the sperm plasma membrane and the outer acrosomal membrane at multiple sites and exocytosis of acrosomal contents (i.e., induction of the acrosome reaction (AR)). The AR releases acrosomal contents at the site of sperm-zona binding and is thought to be a prerequisite event that allows spermatozoa to penetrate the ZP and fertilize the egg. Since Ca(2+)/calmodulin (CaM) plays a significant role in several cell signaling pathways and membrane fusion events, we have used a pharmacological approach to examine the role of CaM, a calcium-binding protein, in sperm capacitation and agonist-induced AR. Inclusion of CaM antagonists (calmodulin binding domain, calmidazolium, compound 48/80, ophiobolin A, W5, W7, and W13), either in in vitro capacitation medium or after sperm capacitation blocked the npg-/ZP-induced AR. Purified CaM largely reversed the AR blocking effects of antagonists during capacitation. Our results demonstrate that CaM plays an important role in priming (i.e., capacitation) of mouse spermatozoa as well as in the agonist-induced AR. These data allow us to propose that CaM regulates these events by modulating sperm membrane component(s).  相似文献   

15.
The recognition and binding of sperm cells to the zona pellucida (the extracellular matrix of the oocyte) are essential for fertilization and are believed to be species specific. Freshly ejaculated sperm cells do not bind to the zona pellucida. Physiologically this interaction is initiated after sperm activation in the female genital tract (capacitation) via a yet unknown mechanism, resulting in the binding of a receptor in the apical sperm plasma membrane to the zona pellucida. In order to mimic this biochemically, we isolated zona pellucida fragments from gilt ovaries to prepare an affinity column with the intact zona pellucida structure and loaded this column with solubilized apical plasma membranes of boar sperm cells before and after in vitro capacitation. With this technique we demonstrated that two plasma membrane proteins of capacitated boar sperm cells showed high affinity for zona pellucida fragments. Further analysis showed that these proteins were tyrosine phosphorylated. Plasma membrane proteins from freshly ejaculated sperm cells did not exhibit any zona pellucida binding proteins, likely because these proteins were not tyrosine phosphorylated.  相似文献   

16.
With increasing medical utilization of assisted reproductive technology (ART), scientists and clinicians have been able to study extensively multiple cell functions operating synchronously and flawlessly during the events preceding, before and after fertilization. Critical evaluation of the functional status of spermatozoa for in vitro techniques such as sperm-mucus interaction, acrosome reaction status, sperm-zona pellucida binding and penetration tests, hyaluronic acid binding assay, and computer assisted semen analysis etc. can direct a male partner of an infertile couple to more aggressive forms of treatments. In vitro selection of functionally competent sperm cells is a pre-requisite for successful outcome in in vitro fertilization or in intracytoplasmic sperm injection (ICSI). Direct injections of acrosome-intact spermatozoa into oocyte during ICSI bypassing the normal events of sperm oocyte interaction and fusion events have raised concerns with regard to fertilization abnormalities and genetic issues. The present communication briefly reviews the sperm function tests with emphasis on its correlation with fertility outcome, and the currently employed sperm selection and manipulation procedures which may have implications in assisted conception programs.  相似文献   

17.
Capacitated cynomolgus macaque sperm have a surface hyaluronidase (PH-20) that is evenly distributed over the entire head and can be visualized at the ultrastructural level using a secondary antibody labeled with colloidal gold . Exposure of sperm to mono-specific, bivalent polyclonal antibodies to PH-20 causes a rapid clustering of PH-20 . The predominant morphological consequence of PH-20 redistribution is its aggregation along the lateral edge of the sperm head. Monovalent Fab fragments of the anti-PH-20 antibody bound to the sperm head but did not induce a change in PH-20 distribution. PH-20 aggregation was observed in almost all sperm following treatment with the polyclonal antibody, but only about 20% of the sperm had morphological acrosome reactions, regardless of the time of exposure or the concentration of antibody. There was morphological evidence of swelling of the acrosomal matrix in over 50% of the sperm following exposure to anti-PH-20 antibodies. Anti-PH-20 Fab fragments did not induce the acrosome reaction or acrosomal matrix swelling. Sperm bound to macaque zona pellucida also showed aggregation of the PH-20 protein as soon as 30 sec after sperm-zona interaction. This aggregation was not observed when macaque sperm were bound to hamster zona pellucida. When macaque sperm were surface-labeled with biotin and then incubated with anti-PH-20 antibodies or macaque zona pellucida, there was no evidence of a global surface protein rearrangement, although PH-20 protein was aggregated on the surface of the same sperm cells. An increase in levels of internal sperm Ca++ was measured in association with the antibody-induced PH-20 aggregation. Fab fragments did not increase Ca++ levels, but when they were crosslinked with anti-Fab antibody there was a significant Ca++ increase and induction of acrosome reactions. Anti-PH-20 Fab fragments did not block macaque sperm binding to macaque zona pellucida or the zona-induced acrosome reaction. We conclude that PH-20 on the sperm surface is involved in sperm-zona pellucida interaction and the zona-induced acrosome reaction. Mol. Reprod. Dev. 50:207–220, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
The recognition and binding of a free-swimming spermatozoon to an ovulated oocyte is one of the most important cellular interactions in biology. While traditionally viewed as a simple lock and key mechanism, emerging evidence suggests that this event may require the concerted action of several sperm proteins. In this study we examine the hypothesis that the activity of such proteins may be coordinated by their assembly into multimeric recognition complexes on the sperm surface. Through the novel application of blue native polyacrylamide gel electrophoresis (BN-PAGE), we tender the first direct evidence that human spermatozoa do indeed express a number of high molecular weight protein complexes on their surface. Furthermore, we demonstrate that a subset of these complexes displays affinity for homologous zonae pellucidae. Proteomic analysis of two such complexes using electrospray ionization mass spectrometry identified several of the components of the multimeric 20S proteasome and chaperonin-containing TCP-1 (CCT) complexes. The latter complex was also shown to harbor at least one putative zona pellucida binding protein, ZPBP2. Consistent with a role in the mediation of sperm-zona pellucida interaction we demonstrated that antibodies directed against individual subunits of these complexes were able to inhibit sperm binding to zona-intact oocytes. Similarly, these results were able to be recapitulated using native sperm lysates, the zona affinity of which was dramatically reduced by antibody labeling of the complex receptors, or in the case of the 20S proteasome the ubiquitinated zonae ligands. Overall, the strategies employed in this study have provided novel, causal insights into the molecular mechanisms that govern sperm-egg interaction.  相似文献   

19.
Fraser LR 《Theriogenology》2008,70(8):1356-1359
Mammalian spermatozoa released into an appropriate environment in vitro can capacitate but then may undergo spontaneous acrosome reactions. Since successful sperm interaction with the zona pellucida of an unfertilized oocyte requires an intact sperm plasma membrane, spontaneous acrosome loss is biologically undesirable because it renders spermatozoa non-fertilizing. Several small molecules (fertilization promoting peptide [FPP], adenosine, calcitonin and adrenaline), found in various body fluids including seminal plasma, have been shown to regulate capacitation in vitro. They initially accelerate capacitation but then inhibit spontaneous acrosome loss, allowing spermatozoa to maintain their fertilizing potential. Specific receptors for all these molecules are present on mammalian spermatozoa and their activation by the appropriate ligands leads to modulation of membrane-associated adenylyl cyclase activity and production of cAMP, stimulating cAMP production in uncapacitated cells and inhibiting it in capacitated cells. Boar spermatozoa have been shown to respond in vitro to adenosine and FPP, suggesting that the addition of these molecules to sperm samples used for artificial insemination could be beneficial in helping spermatozoa maintain fertilizing potential until they reach their target.  相似文献   

20.
Mammalian spermatozoa attain the ability to fertilize an oocyte as they negotiate the female reproductive tract. This acquisition of functional competence is preceded by an intricate cascade of biochemical and functional changes collectively known as "capacitation." Among the universal correlates of the capacitation process is a remarkable remodeling of the lipid and protein architecture of the sperm plasma membrane. While the mechanisms that underpin this dynamic reorganization remain enigmatic, emerging evidence has raised the prospect that it may be coordinated, in part, by specialized membrane microdomains, or rafts. In the present study we have demonstrated that human spermatozoa express recognized markers of membrane rafts. Further, upon depletion of membrane cholesterol through either physiological (capacitation) or pharmacological (methyl-β-cyclodextrin) intervention, these membrane rafts appear to undergo a polarized redistribution to the peri-acrosomal region of the sperm head. This finding encourages speculation that membrane rafts represent platforms for the organization of proteins involved in sperm-oocyte interactions. Support for this notion rests with the demonstration that membrane rafts isolated on the basis of their biochemical composition in the form of detergent resistant membranes (DRMs), possess the ability to adhere to homologous zona pellucidae. Furthermore a comprehensive proteomic analysis of the DRMs identified a number of proteins known for their affinity for the zona pellucida in addition to other candidates putatively involved in the mediation of downstream binding and/or fusion with the oolemma. Collectively these data afford novel insights into the subcellular localization and potential functions of membrane rafts in human spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号