首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among non-canonical DNA secondary structures, G-quadruplexes are currently widely studied because of their probable involvement in many pivotal biological roles, and for their potential use in nanotechnology. The overall quadruplex scaffold can exhibit several morphologies through intramolecular or intermolecular organization of G-rich oligodeoxyribonucleic acid strands. In particular, several G-rich strands can form higher order assemblies by multimerization between several G-quadruplex units. Here, we report on the identification of a novel dimerization pathway. Our Nuclear magnetic resonance, circular dichroism, UV, gel electrophoresis and mass spectrometry studies on the DNA sequence dCGGTGGT demonstrate that this sequence forms an octamer when annealed in presence of K(+) or NH(4)(+) ions, through the 5'-5' stacking of two tetramolecular G-quadruplex subunits via unusual G(:C):G(:C):G(:C):G(:C) octads.  相似文献   

2.
C(4) photosynthesis is a plant adaptation to high levels of photorespiration. Physiological models predict that atmospheric CO(2) concentration selected for C(4) grasses only after it dropped below a critical threshold during the Oligocene (~30 Ma), a hypothesis supported by phylogenetic and molecular dating analyses. However the same models predict that CO(2) should have reached much lower levels before selecting for C(4) eudicots, making C(4) eudicots younger than C(4) grasses. In this study, different phylogenetic datasets were combined in order to conduct the first comparative analysis of the age of C(4) origins in eudicots. Our results suggested that all lineages of C(4) eudicots arose during the last 30 million years, with the earliest before 22 Ma in Chenopodiaceae and Aizoaceae, and the latest probably after 2 Ma in Flaveria. C(4) eudicots are thus not globally younger than C(4) monocots. All lineages of C(4) plants evolved in a similar low CO(2) atmosphere that predominated during the last 30 million years. Independent C(4) origins were probably driven by different combinations of specific factors, including local ecological characteristics such as habitat openness, aridity, and salinity, as well as the speciation and dispersal history of each clade. Neither the lower number of C(4) species nor the frequency of C(3)-C(4) intermediates in eudicots can be attributed to a more recent origin, but probably result from variation in diversification and evolutionary rates among the different groups that evolved the C(4) pathway.  相似文献   

3.
The temperature response of C(3) and C(4) photosynthesis   总被引:1,自引:0,他引:1  
We review the current understanding of the temperature responses of C(3) and C(4) photosynthesis across thermal ranges that do not harm the photosynthetic apparatus. In C(3) species, photosynthesis is classically considered to be limited by the capacities of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), ribulose bisphosphate (RuBP) regeneration or P(i) regeneration. Using both theoretical and empirical evidence, we describe the temperature response of instantaneous net CO(2) assimilation rate (A) in terms of these limitations, and evaluate possible limitations on A at elevated temperatures arising from heat-induced lability of Rubisco activase. In C(3) plants, Rubisco capacity is the predominant limitation on A across a wide range of temperatures at low CO(2) (<300 microbar), while at elevated CO(2), the limitation shifts to P(i) regeneration capacity at suboptimal temperatures, and either electron transport capacity or Rubisco activase capacity at supraoptimal temperatures. In C(4) plants, Rubisco capacity limits A below 20 degrees C in chilling-tolerant species, but the control over A at elevated temperature remains uncertain. Acclimation of C(3) photosynthesis to suboptimal growth temperature is commonly associated with a disproportional enhancement of the P(i) regeneration capacity. Above the thermal optimum, acclimation of A to increasing growth temperature is associated with increased electron transport capacity and/or greater heat stability of Rubisco activase. In many C(4) species from warm habitats, acclimation to cooler growth conditions increases levels of Rubisco and C(4) cycle enzymes which then enhance A below the thermal optimum. By contrast, few C(4) species adapted to cooler habitats increase Rubisco content during acclimation to reduced growth temperature; as a result, A changes little at suboptimal temperatures. Global change is likely to cause a widespread shift in patterns of photosynthetic limitation in higher plants. Limitations in electron transport and Rubisco activase capacity should be more common in the warmer, high CO(2) conditions expected by the end of the century.  相似文献   

4.
Insulin resistance is a primary characteristic of type 2 diabetes. Several lines of evidence suggest that accumulation of free fatty acids in skeletal muscle may at least in part contribute to insulin resistance and may be linked to mitochondrial dysfunction, leading to apoptosis. Palmitate treatment of several cell lines in vitro results in apoptosis and inhibits protein kinase B (Akt) activity in response to insulin. However, the role of Bax and Bcl-2 in regulating palmitate-induced apoptosis has not been well studied. Therefore, the purpose of this study was to determine whether palmitate-induced apoptosis in C(2)C(12) myotubes is dependent on Bax to Bcl-2 binding. An additional purpose of this study was to determine whether the changes in Bax to Bcl-2 binding corresponded to decreases in Akt signaling in palmitate-treated myoblasts. Apoptotic signaling proteins were examined in C(2)C(12) myotubes treated overnight with palmitate. Bax to Bcl-2 binding was determined through a coimmunoprecipitation assay that was performed in myotubes after 2 h of serum starvation, followed by 10 min of serum reintroduction. This experiment evaluated whether temporal Akt activity coincided with Bax to Bcl-2 binding. Last, the contribution of Bax to palmitate-induced apoptosis was determined by treatment with Bax siRNA. Palmitate treatment increased apoptosis in C(2)C(12) myotubes as shown by a twofold increase in DNA fragmentation, an approximately fivefold increase in caspase-3 activity, and a 2.5-fold increase in caspase-9 activity. Palmitate treatment significantly reduced Akt protein expression and Akt activity. In addition, there was a fourfold reduction in Bax to Bcl-2 binding with palmitate treatment, which mirrored the reduction in Akt(Ser473) phosphorylation. Furthermore, treatment of the C(2)C(12) myotubes with Bax siRNA attenuated the apoptotic effects of palmitate treatment. These data show that palmitate induces Bax-mediated apoptosis in C(2)C(12) myotubes and that this effect corresponds to reductions in Akt(Ser473) phosphorylation.  相似文献   

5.
The C4 speciesFlaveria trinervia is obviously better adapted to saline environments than the C3 speciesF. pringlei. Treatment with 100 mM NaCl diminished crop growth rate inF. pringlei by 38% but not inF. trinervia. Under saline conditions, more assimilates were invested in leaf growth inF. trinervia but not inF. pringlei. Electrolyte concentration inF. trinervia in control and salt treated plants is lower than inF. pringlei. Fluorescence data do not indicate a damage of PS 2 charge separation in both species. Whether the C4 photosynthetic pathway inF. trinervia is responsible for the improved salt tolerance compared toF. pringlei remains an open question.  相似文献   

6.
The activity of the enzymes catalyzing the first two steps of sulfate assimilation, ATP sulfurylase and adenosine 5'-phosphosulfate reductase (APR), are confined to bundle sheath cells in several C(4) monocot species. With the aim to analyze the molecular basis of this distribution and to determine whether it was a prerequisite or a consequence of the C(4) photosynthetic mechanism, we compared the intercellular distribution of the activity and the mRNA of APR in C(3), C(3)-C(4), C(4)-like, and C(4) species of the dicot genus Flaveria. Measurements of APR activity, mRNA level, and protein accumulation in six Flaveria species revealed that APR activity, cysteine, and glutathione levels were significantly higher in C(4)-like and C(4) species than in C(3) and C(3)-C(4) species. ATP sulfurylase and APR mRNA were present at comparable levels in both mesophyll and bundle sheath cells of C(4) species Flaveria trinervia. Immunogold electron microscopy demonstrated the presence of APR protein in chloroplasts of both cell types. These findings, taken together with results from the literature, show that the localization of assimilatory sulfate reduction in the bundle sheath cells is not ubiquitous among C(4) plants and therefore is neither a prerequisite nor a consequence of C(4) photosynthesis.  相似文献   

7.
Photosynthetic characteristics were studied in several F1 hybrids between C4 and C3-C4 species of Flaveria. Stable carbon isotope ratios, O2 inhibition of apparent photosynthesis, and phosphoenolpyruvate carboxylase activities in the hybrids were similar to the means for the parents. Values of CO2 compensation concentrations were nearer to those of the C4 parent and apparent photosynthesis was below that of both parents, being only 60 and 74% of that of the lowest (C3-C4) parent in two experiments. Reductions of CO2 compensation concentration and O2 inhibition of apparent photosynthesis as well as increases in carbon isotope ratios and phosphoenolpyruvate carboxylase activities compared to values in C3-C4 species suggest transfer of a limited degree of C4 photosynthesis to the F1 hybrids. However, the lower apparent photosynthesis of the hybrids suggests that transfer of C4 characteristics to non-C4 species is detrimental unless characteristics associated with C4 photosynthesis are fully developed. There was a highly significant negative correlation (r = −0.90) between CO2 compensation concentration and the logarithm of phosphoenolpyruvate carboxylase activity in the parents and hybrids, suggesting involvement of this enzyme in controlling the CO2 compensation concentration. Although bundle-sheath cells were more developed in leaves of hybrids than in C3-C4 parents, they appeared to contain lower quantities of organelles than those of the C4 parent. Reduced quantities of organelles in bundle-sheath cells could indicate incomplete compartmentation of partial pathways of the C4 cycle in the hybrids. This may mean that the reduction of CO2 compensation and O2 inhibition of apparent photosynthesis relative to the C3-C4 parents is less dependent on fully developed Kranz anatomy than is increased apparent photosynthesis.  相似文献   

8.
In the experiments involving incubation of the liver, brain cortex, muscle and adipose tissues homogenates with [3-14C] tryptophan for an hour 43.2-89.3% of the label was found in proteins, 7.2-47.2%--in lipids, 2.6-9.4%--in CO2. Following incubation of the above-mentioned tissue homogenates with [2-14C] alanine, proteins, lipids and CO2 contain 28.8-49.3%; 22.6-31.9% and 21.6-49.3% of radioactive label, respectively. Radioactivity of lipids synthesized by the homogenates of the investigated tissues from [3-14C] tryptophan and [2-14C] alanine is 23.5-63.5 and 21.1-56.0%, respectively, the radioactivity of CO2 being 1.4-5.1 and 9.3-11.8% of the above-mentioned compounds synthesized from [1-14C] acetate. The results obtained testify to the considerable contribution of [3-14C] tryptophan and [2-14C] alanine to protein synthesis as well as to their involvement in the substrate supply of lipogenesis and energetic processes in various organs and tissues of cattle.  相似文献   

9.
The process of photorespiration diminishes the efficiency of CO(2) assimilation and yield of C(3)-crops such as wheat, rice, soybean or potato, which are important for feeding the growing world population. Photorespiration starts with the competitive inhibition of CO(2) fixation by O(2) at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and can result in a loss of up to 50% of the CO(2) fixed in ambient air. By contrast, C(4) plants, such as maize, sugar cane and Sorghum, possess a CO(2) concentrating mechanism, by which atmospheric CO(2) is bound to C(4)-carbon compounds and shuttled from the mesophyll cells where the prefixation of bicarbonate occurs via phosphoenolpyruvate carboxylase (PEPC) into the gas-tight bundle-sheath cells, where the bound carbon is released again as CO(2) and enters the Calvin cycle. However, the anatomical division into mesophyll and bundle-sheaths cells ("Kranz"-anatomy) appears not to be a prerequisite for the operation of a CO(2) concentrating mechanism. Submerged aquatic macrophytes, for instance, can induce a C(4)-like CO(2) concentrating mechanism in only one cell type when CO(2) becomes limiting. A single cell C(4)-mechanism has also been reported recently for a terrestrial chenopod. For over 10 years researchers in laboratories around the world have attempted to improve photosynthesis and crop yield by introducing a single cell C(4)-cycle in C(3) plants by a transgenic approach. In the meantime, there has been substantial progress in overexpressing the key enzymes of the C(4) cycle in rice, potato, and tobacco. In this review there will be a focus on biochemical and physiological consequences of the overexpression of C(4)-cycle genes in C(3) plants. Bearing in mind that C(4)-cycle enzymes are also present in C(3) plants, the pitfalls encountered when C(3) metabolism is perturbed by the overexpression of individual C(4) genes will also be discussed.  相似文献   

10.
11.
12.
Leukotriene C(4) synthase   总被引:3,自引:0,他引:3  
  相似文献   

13.
A Comparison of Dark Respiration between C(3) and C(4) Plants   总被引:2,自引:2,他引:0       下载免费PDF全文
Byrd GT  Sage RF  Brown RH 《Plant physiology》1992,100(1):191-198
Lower respiratory costs were hypothesized as providing an additional benefit in C4 plants compared to C3 plants due to less investment in proteins in C4 leaves. Therefore, photosynthesis and dark respiration of mature leaves were compared between a number of C4 and C3 species. Although photosynthetic rates were generally greater in C4 when compared to C3 species, no differences were found in dark respiration rates of individual leaves at either the beginning or after 16 h of the dark period. The effects of nitrogen on photosynthesis and respiration of individual leaves and whole plants were also investigated in two species that occupy similar habitats, Amaranthus retroflexus (C4) and Chenopodium album (C3). For mature leaves of both species, there was no relationship between leaf nitrogen and leaf respiration, with leaves of both species exhibiting a similar rate of decline after 16 h of darkness. In contrast, leaf photosynthesis increased with increasing leaf nitrogen in both species, with the C4 species displaying a greater photosynthetic response to leaf nitrogen. For whole plants of both species grown at different nitrogen levels, there was a clear linear relationship between net CO2 uptake and CO2 efflux in the dark. The dependence of nightly CO2 efflux on CO2 uptake was similar for both species, although the response of CO2 uptake to leaf nitrogen was much steeper in the C4 species, Amaranthus retroflexus. Rates of growth and maintenance respiration by whole plants of both species were similar, with both species displaying higher rates at higher leaf nitrogen. There were no significant differences in leaf or whole plant maintenance respiration between species at any temperature between 18 and 42°C. The data suggest no obvious differences in respiratory costs in C4 and C3 plants.  相似文献   

14.
Variation in Quantum Yield for CO(2) Uptake among C(3) and C(4) Plants   总被引:13,自引:10,他引:3       下载免费PDF全文
The quantum yield for CO2 uptake was measured on a number of C3 and C4 monocot and dicot species. Under normal atmospheric conditions (330 microliters per liter CO2, 21% O2) and a leaf temperature of 30°C, the average quantum yields (moles CO2 per einstein) were as follows: 0.052 for C3 dicots, 0.053 for C3 grasses, 0.053 for NAD-malic enzyme type C4 dicots, 0.060 for NAD-malic enzyme type C4 grasses, 0.064 for phosphoenolpyruvate carboxykinase type C4 grasses, 0.061 for NADP-malic enzyme C4 dicots, and 0.065 for NADP-malic enzyme type C4 grasses. The quantum yield under normal atmospheric conditions was temperature dependent in C3 species, but apparently not in C4 species. Light and temperature conditions during growth appeared not to influence quantum yield. The significance of variation in the quantum yields of C4 plants was discussed in terms of CO2 leakage from the bundle sheath cells and suberization of apoplastic regions of the bundle sheath cells.  相似文献   

15.
Gillon JS  Yakir D 《Plant physiology》2000,123(1):201-214
(18)O discrimination in CO(2) stems from the oxygen exchange between (18)O-enriched water and CO(2) in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this (18)O-labeled CO(2) escapes back to the atmosphere, resulting in an effective discrimination against C(18)OO during photosynthesis (Delta(18)O). By constraining the delta(18)O of chloroplast water (delta(e)) by analysis of transpired water and the extent of CO(2)-H(2)O isotopic equilibrium (theta(eq)) by measurements of CA activity (theta(eq) = 0.75-1.0 for tobacco, soybean, and oak), we could apply measured Delta(18)O in a leaf cuvette attached to a mass spectrometer to derive the CO(2) concentration at the physical limit of CA activity, i.e. the chloroplast surface (c(cs)). From the CO(2) drawdown sequence between stomatal cavities from gas exchange (c(i)), from Delta(18)O (c(cs)), and at Rubisco sites from Delta(13)C (c(c)), the internal CO(2) conductance (g(i)) was partitioned into cell wall (g(w)) and chloroplast (g(ch)) components. The results indicated that g(ch) is variable (0.42-1.13 mol m(-2) s(-1)) and proportional to CA activity. We suggest that the influence of CA activity on the CO(2) assimilation rate should be important mainly in plants with low internal conductances.  相似文献   

16.
17.
Natural (13)C abundance is now an unavoidable tool to study ecosystem and plant carbon economies. A growing number of studies take advantage of isotopic fractionation between carbon pools or (13)C abundance in respiratory CO(2) to examine the carbon source of respiration, plant biomass production or organic matter sequestration in soils. (12)C/(13)C isotope effects associated with plant metabolism are thus essential to understand natural isotopic signals. However, isotope effects of enzymes do not influence metabolites separately, but combine to yield a (12)C/(13)C isotopologue redistribution orchestrated by metabolic flux patterns. In this review, we summarise key metabolic isotope effects and integrate them into the corpus of plant primary carbon metabolism.  相似文献   

18.
Stable isotope analysis is a major tool used in ecosystem studies to establish pathways and rates of C exchange between various ecosystem components. Little is known about isotopic effects of many such components, especially microbes. Here we report on the discovery of an unexpected pattern of C isotopic discrimination by basidiomycete fungi with far-reaching consequences for our understanding of isotopic processing in ecosystems where these microbes mediate material transfers across trophic levels. We measured fractionation effects on three ecologically relevant basidiomycete species under controlled laboratory conditions. Sucrose derived from C(3) and C(4) plants is fractionated differentially by these microbes in a taxon-specific manner. The differentiation between mycorrhizal and saprotrophic fungi observed in the field by others is not explained by intrinsic discrimination patterns. Fractionation occurs during sugar uptake and is sensitive to the nonrandom distribution of stable isotopes in the sucrose molecule. The balance between respiratory physiology and fermentative physiology modulates the degree of fractionation. These discoveries disprove the assumption that fungal C processing does not significantly alter the distribution of stable C isotopes and provide the basis for a reevaluation of ecosystem models based on isotopic evidence that involve C transfer across microbial interfaces. We provide a mechanism to account for the observed differential discrimination effects.  相似文献   

19.
Comets have been suggested as a possibly significant source of organic molecules to the early Earth. Hydrogen cyanide (HCN) is important in models of prebiotic chemistry, but may be difficult to form in the early terrestrial environment, while hydrogen isocyanide (HNC) is a `classical' tracer of interstellar ion-molecule chemistry. We have observed both HCN and HNC in 2 recent comets, bringing the number of comets with published measurements of the HNC/HCN abundance ratio to 6. The HNC/HCN ratio in comet Ikeya-Zhang appears to increase with decreasing heliocentric distance, as was previously observed for comet Hale-Bopp, indicating that the HNC is produced at least in part by processes in the cometary coma (atmosphere) and is not simply a constituent of the nuclear ices. Both comets C/2000 WM1 (Linear) and C/2002 C1 (Ikeya-Zhang) exhibit values of the HNC/HCN ratio that appear to be too large (0.09–0.19) tobe matched by current models of coma chemistry. Cometary HNC maybe a photodissociation product of organic grains or large organic polymers stored in the nucleus. We have also set a limit on the emission from the NO radical in comet WM1.  相似文献   

20.
The temperature dependence of poly(C) is shown by the infrared spectroscopy to be different for the free polynucleotide and for the polynucleotide in complexes with membranes. The intensity of stretching vibrations of C = 0 bond of poly(C) in the complex appears to be sensitive to the temperature. The intensity of this band is sharply decreased by increasing the temperature. This effect depends upon concentration of Mg2+-cations. Adsorption of poly(I)-poly(C) on the surface of vesicles from phosphatidylcholine results in the increase of the double helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号