首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single unit responses in the middle cervical sympathetic ganglion ofEmys orbicularis to stimulation of other nerves and changes in these responses during the action of sympathetic blocking agents on the ganglion were investigated. The results showed that some fibers of the cervical sympathetic trunk of the turtle are interrupted in this ganglion. Postganglionic fibers pass out of the ganglion and enter the lateral branch and the sympathetic trunk. Other fibers pass through the ganglion without interruption and, together with postganglionic fibers, leave the ganglion in the cervical sympathetic trunk in a cranial direction. The velocity of conduction of excitation along the preganglionic fibers is between 4–3 and 2–1.5 m/sec and along the postganglionic fibers between 4–2.6 and 0.7–0.5 m/sec (fibers of types B2 and C). Synaptic delay in the fast-conducting fibers averages 6.6 msec. Preganglionic fast-conducting fibers form synaptic contacts on neurons with type B2 axons, while preganglionic slow-conducting fibers form contacts on neurons with type C axons. Terminals of two preganglionic fibers differing very slightly in their threshold of excitability, and probably constituting the same group, converge on some neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukranian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 83–89, January–February, 1972.  相似文献   

2.
The effect of the muscarinic receptor antagonist AF-DX 116 on the inhibitory action of muscarinic agonists and on responses mediated by nicotinic or muscarinic ganglionic transmission was studied in the superior cervical ganglion of the anesthetized cat. The postganglionic compound action potential evoked by cervical sympathetic trunk stimulation was depressed by methacholine or acetylcholine (ACh) injected into the ganglionic arterial supply. The depression was blocked by AF-DX 116. The compound action potentials evoked by preganglionic stimulus trains were also depressed when the intratrain frequency was 2 Hz or greater. This intratrain depression was, however, insensitive to AF-DX 116. The anticholinesterase drug physostigmine markedly enhanced the intratrain depression of the compound action potential. This effect was reversed by AF-DX 116. During nicotinic receptor block with hexamethonium, preganglionic stimulus trains with intratrain frequencies of 5 Hz or greater produced nicitating membrane contractions that could be blocked by the M1 muscarinic receptor antagonist pirenzepine. The amplitude of the contractions increased with frequency and reached a maximum at 20-40 Hz. AF-DX 116 had no effect on these responses. After administration of physostigmine, the amplitude of the nictitating membrane responses decreased with increasing intratrain frequency. AF-DX 116 reversed this effect. The data suggest that, in the superior cervical ganglion, AF-DX 116 sensitive muscarinic receptors which depress synaptic transmission are activated by exogenous agonists but not by the ACh released by the preganglionic axon terminals unless cholinesterase activity is inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The synapses of the rat superior cervical sympathetic ganglion were studied with both conventional and ultrastructural histochemical methods. Besides the cholinergic synapses polarized from preganglionic fibers to sympathetic ganglion neurons, two morphologically and functionally different types of synapses were observed in relation to the small granule-containing (catecholamine-containing) cells of the rat superior cervical ganglion. The first type is an efferent adrenergic synapse polarized from granule-containing cells to the dendrites of the sympathetic ganglion neurons. This type of synapse might mediate the inhibitory effects (slow inhibitory postsynaptic potentials) induced by catecholamines on the sympathetic neurons. The second type is a reciprocal type of synapse between the granule-containing cells and the cholinergic preganglionic fibers. Through such synapses, these cells could exert a modulating effect on the excitatory preganglionic fibers. Therefore, we propose that these cells, through their multiple synaptic connections, exhibit a local modulatory feedback system in the rat sympathetic ganglia and may serve as interneurons between the preganglionic and postganglionic sympathetic neurons.  相似文献   

4.
Calcium currents modulated by adrenergic receptors in sympathetic neurons   总被引:1,自引:0,他引:1  
The superior cervical sympathetic ganglion is currently being used as a model neuronal system for the study of Ca2+-dependent processes in the mammalian nervous system. We have characterized a regenerative calcium conductance in postganglionic neurons. This Ca2+ current contributes to the shoulder of the action potential. In addition, Ca2+ influx during the spike activates a K+ conductance, which generates a hyperpolarizing afterpotential. These Ca2+-dependent potentials are antagonized by catecholamines. Pharmacologic studies suggest that alpha 2-adrenergic receptors inhibit the regenerative voltage-dependent Ca2+ influx that occurs during the action potential. Alpha-adrenergic agonists were also found to reduce the depression of the compound action potential following a train of preganglionic stimuli. We hypothesize that alpha 2-receptors function primarily to antagonize Ca2+ influx and thereby exert significant control over neuronal excitability and release of neurotransmitters.  相似文献   

5.
Afferent stimulation of one canine thoracic cardiopulmonary nerve can generate compound action potentials in another ipsilateral cardiopulmonary nerve. These compound action potentials persist after acute decentralization of the middle cervical ganglion, indicating that they result from neural activity in the middle cervical ganglion and thoracic nerves. Changing the frequency of stimulation can alter the compound action potentials, suggesting that temporal facilitation or inhibition occurs in this middle cervical ganglion preparation. The compound action potentials can be modified by stimulation of sympathetic preganglionic fibers and by hexamethonium, atropine, phentolamine, propranolol, and (or) manganese. It thus appears that afferent cardiopulmonary nerves can activate efferent cardiopulmonary nerves via synaptic mechanisms in the stellate and middle cervical ganglia. It also appears that these mechanisms involve adrenergic and cholinergic receptors and are influenced by preganglionic sympathetic fibers arising from the cord.  相似文献   

6.
The aim of this study was to investigate which of the processes involved in synaptic transmission are affected by morphine in concentrations comparable to those used during surgical procedures. The effects of morphine sulfate on ganglionic transmission were studied in the stellate ganglion of the cat using intracellular and extracellular recordings in vitro. The neurons of the stellate ganglion were depolarized using preganglionic nerve stimulation, postganglionic nerve stimulation, and intracellular stimulation before and after introduction of morphine sulfate (up to 20 micrograms/mL). Tissue concentrations of morphine were estimated using radiolabeled morphine. Axonal transmission and the excitability of the postganglionic neurons to direct intracellular stimulation was not affected at the concentrations of morphine studied. In addition, morphine had a dose-dependent depolarizing effect on the resting membrane potential of most of the neurons in the stellate ganglion. Such neuronal depolarizations alone could initially produce excitation in some cell populations, followed by inhibition, secondary to the membrane depolarization, leading to depression of sympathetic nerve activity. The overall ganglionic transmission as recorded using an evoked potential was biphasic. At low doses morphine facilitated transmission, while at larger doses morphine attenuated evoked potentials. These effects do not appear to be mediated through classical opiate receptors since they are not blocked by naloxone.  相似文献   

7.
A study of the tonic electrical activity of nerves containing preganglionic and postganglionic fibers in the superior cervical and stellate sympathetic ganglia of cats and rabbits has shown that this activity consists of groups of spikes synchronous with the pulse or respiration, and occurs on a background of irregular low-amplitude impulses. The frequency of spikes is higher (250/sec) in nerves containing preganglionic fibers than in those containing postganglionic fibers (100/sec). Groups of spikes in a nerve containing preganglionic fibers correspond in some preparations to groups of spikes of lower frequency in a nerve containing postganglionic fibers of the same ganglion; in other preparations, this correspondence was lacking, apparently due to the absence of synaptic contacts between those groups of pre- and postganglionic neurons whose activity was recorded. Neurons send axons to different nerves (cardiac and vertebral) of the stellate ganglion discharged synchronously in some preparations, and asynchronously in others. Where synchronization was observed, the neurons discharged in rhythm with cardiac contractions.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 303–308, November–December, 1969.  相似文献   

8.
Individual nerves of the superior cervical sympathetic ganglion were stimulated in acute experiments on cats, and action potentials (AP) were recorded from other nerves of the ganglion in order to clarify whether or not there is transmission of excitation through the ganglion from one nerve to another and to establish whether this transmission is continuous or synaptic. The method of intracellular recording from neurons of the ganglion was also used. It is established that stimulation of the cervical sympathetic nerve evokes AP in all of the peripheral nerves of the ganglion, a circumstance that is the result of synaptic transmission of excitation. There is no transmission of excitation in the reverse direction or between any of the 12 peripheral nerves of the ganglion (including the four branches of the internal carotid nerve). Orthodromic excitation is recorded intracellularly from neurons of the ganglion during stimulation of the cervical sympathetic nerve, and antidromic excitation is recorded during stimulation of a peripheral nerve (the internal carotid nerve). It follows that the pathways through the ganglion which conduct excitation from the cervical sympathetic nerve into all of the remaining nerves of the ganglion are synaptic. Analysis of EPSP latent periods indicated that preganglionic fibers that differ sharply with respect to threshold and conduction rate (groups S2 and S4) converge on one and the same neurons of the ganglion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 216–224, March–April, 1970.  相似文献   

9.
Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with positive terminals around them. Ghrelin receptors are therefore expressed by subgroups of preganglionic neurons, including those of vasoconstrictor pathways and of pathways controlling gut function, but are absent from some other neurons, including those innervating sweat glands and the secretomotor neurons that supply the submaxillary salivary glands.  相似文献   

10.
Tonic activity of neurons of the superior cervical sympathetic ganglion was recorded by the "sucrose gap" method and in the 4th and 5th lumbar sympathetic ganglia with the aid of focal nonpolarizing electrodes in acute experiments on anesthetized cats and rabbits. The preganglionic fibers of the ganglia were left intact. Stimulation of the depressor nerve not only sharply inhibited the tonic activity of the ganglia but also led to the appearance of electropositive potentials of 0.7 ± 0.2 mV in the superior cervical ganglion and 20–250 µV in the lumbar ganglia. The amplitude of this potential was unchanged by atropine (1 · 10–6M). A similar effect occured without stimulation of the depressor nerve, after division of the preganglionic fibers or blocking of their conduction; it is attributed to the cessation of preganglionic tonic impulses which induce not only spikes, but also many EPSPs in neurons of the ganglion. Their frequency in the lumbar ganglia was 4/sec. Summation of these EPSPs leads to constant electronegativity of the ganglion surface relative to the postganglionic fibers, and its disappearance is recorded as a positive potential. Stimulation of the depressor nerve thus does not induce IPSPs in the ganglion; consequently, the inhibition of synaptic activity observed under these circumstances is located in the CNS and not in the ganglion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 6, No. 5, pp. 519–524, September–October, 1974.  相似文献   

11.
It has been shown in acute experiments on cats and kittens that the pre- and postganglionic nerves of the caudal mesenteric sympathetic ganglion (CMSG) are bioelectrically active from the first day of the animal's life. When the impulsation which comes to the ganglion along the afferent and preganglionic fibers is removed, the impulse activity of the post-ganglionic neurons disappears completely. In newborn kittens the level of activity of the postganglionic fibers is determined to a greater degree by the afferent impulsation of the hypogastric nerves than in adult cats. The effect of the preganglionic impulsation, especially that coming through the intramesenteric nerves, predominates in adult animals. The efferent impulsation of the hypogastric nerves in cats not older than five days disappeared after sectioning of two to three preganglionic branches of the CMSG; in six to nine and 14 to 15-day-old cats, after sectioning of four and in month old cats after sectioning of five; and in two to three month old cats after sectioning of six branches. In adult cats after the first sectioning the postganglionic impulsation frequently intensified, and after sectioning of seven branches the activity completely disappeared. Automatic activity of the ganglia was not observed, postganglionic impulsation developed and changed under the influence of the impulses coming to the ganglion.Scientific Research Institute of Childhood and Adolescent Physiology, Academy of Pedagogical Sciences USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 533–542, September–October, 1971.  相似文献   

12.
Summary The presence of neurofilament (NF)-like and glial fibrillary acidic protein (GFAP)-like immunoreactivities was studied in sympathetic ganglia of adult rats and guinea pigs during normal conditions and after perturbation. In the superior cervical ganglion (SCG) of normal rats, many ganglion cells and nerve fibers show NF immunoreactivity. Some of these nerve fibers disappear after preganglionic decentralization of SCG; this indicates the presence of a mixture of preand postganglionic NF-positive nerves in the ganglion. Cuts in both preand postganglionic nerves result in a marked increase in GFAP immunoreactivity in SCG, whereas NF immunoreactivity increases in nerve cell bodies after preganglionic cuts. Only a few ganglion cells show NF immunoreactivity in the normal SCG of guinea pig. All intraganglionic NF-positive nerves are of preganglionic origin; decentralization abolishes NF immunoreactivity in these nerve fibers. The inferior mesenteric ganglion, the hypogastric nerves and colonic nerves in guinea pigs contain large numbers of strongly NF-immunoreactive nerve fibers.When the SCG of adult rat is grafted to the anterior eye chamber of adult rat recipients, both ganglionic cell bodies and nerve fibers, forming on the host iris from the grafted ganglion, are NF-positive. As only the perikarya of these neurons normally exhibit NF immunoreactivity, and the terminal iris arborizations are NF-negative, it appears that the grafting procedure causes NF immunoreactivity to become more widespread in growing SCG neurons.  相似文献   

13.
ACh (5.10(-4) M), when applied to isolated ganglion preparations elicited an apparently antidromic discharge in the cervical sympathetic trunk. The intensity of this back-firing was found to be about 10 times lower than that of the postganglionic discharge evoked by ACh in the internal carotid nerve. Both responses however displayed a similar time course consisting mainly of an early and a late component. In the back-firing the early component died out in few seconds, while the late one lasted 20-30 seconds. The two components were cancelled by d-tubocurarine (5.10(-6) M) and atropine (10(-6) M) respectively, suggesting that both nicotinic and muscarinic cholinoceptive sites are involved. In chronically decentralized preparations ACh evoked a clear back-firing response not substantially different from that elicited in normal ganglia. Therefore it is likely that the back-firing phenomenon is not due to antidromic activation of preganglionic fibers. The back-firing observed in the rat superior cervical ganglion was interpreted as being due to activation of sympathetic neurons, known to give rise to recurrent axons in the cervical sympathetic cord.  相似文献   

14.
When responses in some nerves of the pterygopalatine ganglion of the cat in situ to stimulation of its other nerves were recorded it was found that most fibers passing through the ganglion are continuous sympathetic postganglionic fibers (at least three groups). Most of the parasympathetic preganglionic fibers forming synapses on neurons of the ganglion constitute a group of fibers with the same threshold of excitation. Intracellular recording from single neurons of the pterygopalatine ganglion showed that stimulation of the Vidian nerve evokes orthodromic spike potentials in some neurons of the ganglion with a short latent period, and in others with a long latent period (2.5–6.0 and 10–44 msec, respectively). Evidently only fast-conducting fibers terminate synaptically on most neurons of the ganglion and only slow-conducting fibers on some of them. Recording from intact nerves of the pterygopalatine ganglion revealed no tonic activity in them. Microelectrode recording from single neurons of the ganglion showed that either the frequency of generation of spike potentials is relatively low (1–3/sec) or such potentials are absent altogether.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 514–520, September–October, 1976.  相似文献   

15.
M Fujiwara  K Kurahashi 《Life sciences》1976,19(8):1175-1180
The superior cervical ganglion was reinnervated by vagal afferent fibers following heterologous cross anastomosis between the superior cervical preganglionic trunk and the vagal trunk at the level of the supranodose ganglion in cats. The contractions of the nictitating membrane and the postganglionic action potentials from the external carotid sinus nerve in response to electrical stimulation of the vagal artificial preganglionic trunk in these operated cats were inhibited by treatment with tetraethylammonium and atropine. The choline acetyltransferase activities were measured by the radiometric method. The activities in cross anastomosed superior cervical ganglion were lower than those of normal superior cervical ganglion, but higher than those of chronically decentralized superior cervical ganglion. The activities in cross anastomosed nodose ganglion were lower than those of normal nodose ganglion, but higher than those of chronically decentralized superior cervical ganglion. These results further support the view that the primary afferent vagus artificially synapsed in the superior cervical ganglion is cholinergic.  相似文献   

16.
Acute experiments on rats were made to investigate the synaptic transmission of impulses through the inferior mesenteric sympathetic ganglion in health and in different periods after a single injection of the hepatocarcinogen, 4-dimethyl-aminoazobenzene (DAB). It was found that on the second after carcinogen injection there occurs a considerable disturbance of impulse transmission through the sympathetic ganglia. This manifested in the increased latent period of the appearance of action potentials in the intestinal and hypogastric nerves, in the prolonged process of potential conduction, and in the decreased amplitude and frequency of impulse transmission through the ganglion when stimulating the preganglionic nerve. Injection of the carcinogen leads to functional sympathectomy of organs and tissues, thereby creating the conditions for penetration of its metabolites to the cells followed by their malignancy.  相似文献   

17.
18.
Summary The mean peak CV's of two electrophysiologically defined groups of fibres in the intestinal nerve of the chicken have been determined.One group of fibres is constituted by the processes of enteric cholinergic neurones which project along the side branches of the intestinal nerve and synapse within the nerve trunk. These preganglionic fibres have a mean peak CV (at 40 °C) of 0.31 m·s–1.The other group is made up of fibres of postganglionic neurones which project orally along the nerve trunk. The results suggest that some postganglionic neurones project only as far as the next ganglion whilst others project beyond the next two ganglia for distances greater than 5 mm. The postganglionic fibres have a mean peak CV (at 40 °C) of 0.71 m·s–1.These figures demonstrate that both pre- and postganglionic fibres are unmyelinated. The temperature coefficient (Q10) for the CV of unmyelinated fibres in the intestinal nerve was 1.57.Abbreviations CAP compound action potential - CV conduction velocity - Q 10 temperature coefficient  相似文献   

19.
The regulation of nicotinic acetylcholine receptors (AChRs) in chick ciliary ganglia was examined by using a radiolabeled anti-AChR mAb to quantitate the amount of receptor in ganglion detergent extracts after preganglionic denervation or postganglionic axotomy. Surgical transection of the preganglionic input to the ciliary ganglion in newly hatched chicks caused a threefold reduction in the total number of AChRs within 10 d compared with that present in unoperated contralateral control ganglia. Surgical transection of both the choroid and ciliary nerves emerging from the ciliary ganglion in newly hatched chicks to establish postganglionic axotomy led to a nearly 10-fold reduction in AChRs within 5 d compared with unoperated contralateral ganglia. The declines were specific since they could not be accounted for by changes in ganglionic protein or by decreases in neuronal survival or size. Light microscopy revealed no gross morphological differences between neurons in operated and control ganglia. A second membrane component of cholinergic relevance on chick ciliary ganglion neurons is the alpha-bungarotoxin (alpha-Bgt)-binding component. The alpha-Bgt-binding component also declined in number after either postganglionic axotomy or preganglionic denervation, but appeared to do so with a more rapid time course than did ganglionic AChRs. The results imply that cell-cell interactions in vivo specifically regulate both the number of AChRs and the number of alpha-Bgt-binding components in the ganglion. Regulation of these neuronal cholinergic membrane components clearly differs from that previously described for muscle AChRs.  相似文献   

20.
Electrical responses of some nerves of the ciliary ganglion to stimulation of its other nerves were recorded, and intracellular recordings were also made from neurons of the ganglion (in situ). The overwhelming majority of preganglionic fibers terminate synaptically on neurons of the ganglion. Postganglionic fibers leave in the lateral and medial ciliary nerves, in which the velocity of conduction of excitation ranges from 1.9 to 9.0 m/sec. A few preganglionic fibers pass through the ciliary ganglion into the lateral ciliary nerve, giving off collaterals to neurons of the ganglion, so that stimulation of the lateral ciliary nerve evokes a response in the medial ciliary nerve (preganglionic axon reflex). The resting potential of neurons of the ciliary ganglion is 57±2.8 mV, and their action potential 68±3.6 mV. Single orthodromic stimulation usually evokes a single action potential in a neuron. The amplitude of the EPSP is increased during hyperpolarization of the postsynaptic membrane, confirming the chemical nature of synaptic transmission in the ganglion. The antidromic response consists of an IS-component and spike. The spike is followed by after-hyperpolarization, with a mean amplitude equal to 31% of the spike amplitude, and the time taken for it to fall to one–third of its initial amplitude is 75–135 msec.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 101–108, July–August, 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号