首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The content of γ-amino butyric acid (GABA) and of other water soluble amino acids in bovine brain synaptic vesicles was determined by a modified automated amino acid analysis method. Following subcellular fractionation, GABA, glutamate and aspartate were distributed largely in the supernatant fractions and in the upper layer of the sucrose gradient. Only 10–20% of the total content was associated with the vesicular fraction. On the other hand, the other water soluble amino acids, such as serine, glycine and alanine, were evenly distributed between cytoplasmic and particulate fractions in a similar pattern to that observed with cytoplasmic enzyme markers. The results may indicate specific association of GABA, glutamate and aspartate with low density particles or cytoplasmic components.  相似文献   

2.
In addition to their general function in cellular homeostasis, thyroid lysosomes play an essential role in the biosynthesis of thyroid hormones by cleaving the macromolecular prohormone, thyroglobulin. In the present work, we have attempted to determine whether the enzyme composition of thyroid lysosomes differs from that of lysosomes from other tissues. Lysosomal enzymes, cathepsin D, beta-D-galactosidase, beta-D-glucosidase, alpha-D-mannosidase, alpha-L-fucosidase, hexosaminidase, and arylsulfatase A and B, were assayed in crude fractions from various pig tissues, heart, brain, liver, kidney, thyroid, adrenals, ovary, and spleen. It appeared that the specific activity of arylsulfatase A was at least 20 times higher in the thyroid than in most other tissues. Thyroid lysosomes purified by isopycnic centrifugation on Percoll gradients contained two major polypeptides with apparent molecular weights of 58,000 and 54,000 representing about 30% of the total protein. These polypeptides were glycosylated and were exclusively found in the intralysosomal soluble fraction obtained by osmotic pressure-dependent lysis. By fractionating intralysosomal soluble proteins by velocity sedimentation on sucrose gradients or gel permeation chromatography we identified a thyroid arylsulfatase A holoenzyme which corresponds to a 120,000 Mr species. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses of the gradient or column fractions showed that the 120-kDa protein peak with arylsulfatase A activity essentially contained the 58- and 54-kDa polypeptides in equivalent amounts. In conclusion, arylsulfatase A, a heterodimer of 120 kDa composed of two nonidentical subunits, is the major protein component of thyroid lysosomes. The superabundance of this protein in purified thyroid lysosomes is related to the very high specific activity of the enzyme in the thyroid as compared to other tissues.  相似文献   

3.
The effects of B. gingivalis W50 extracellular vesicles (ECV) on neutrophil chemotaxis and viability were assessed and compared with those of whole cells and the extracellular non-dialysable soluble protein (EP) fraction. None of the fractions tested, including soluble fractions derived from cells and ECV by sonication, induced neutrophil chemotaxis. Only ECV and cells inhibited f-MLP-stimulated chemotaxis. ECV and cells were cytotoxic towards neutrophils. The cytotoxic response was time dependent. The soluble EP fraction did not influence cell viability.  相似文献   

4.
Phospholipase C isolated from porcine mesenteric lymph node lymphocytes was distributed between the soluble and particulate fractions. Enzyme activity was found predominantly in the soluble fraction with optimal activity at pH 5.5. Gel filtration chromatography of the soluble phospholipase C revealed that it was composed of multiple species of enzyme activity. The activity associated with the particulate fraction had optimal activity at pH 7.0, as also did one of the species of soluble phospholipase C. Cellulose phosphate chromatography resolved the major soluble form into two species designated PLC-A and PLC-B. Both phenyl-Sepharose chromatography and hydroxyapatite chromatography purified these species still further. PLC-A and PLC-B demonstrated similar activities against phosphatidylinositol with a pH optimum near 5.5. The phospholipase C activities were abolished against this substrate by the addition of 1 mM-EDTA. When assayed in the presence of Ca2+-EDTA buffers providing a range of Ca2+ free concentrations, both enzymes exhibited optimal activity near 10(-3) M free Ca2+, but PLC-B was inhibited above this concentration more than PLC-A. PLC-B exhibited markedly lower activity against phosphatidylinositol 4,5-bisphosphate, suspended as liposomes of the pure phospholipid, than did PLC-A.  相似文献   

5.
Arginase, which catalyzes the cleavage of l-arginine to urea and ornithine, was detected in both soluble and particulate fractions of mouse epidermis. In a typical experiment, about 75 and 25% of the total arginase activity was associated with the soluble (100 000 × g supernatant) and the washed particulate fraction, respectively. Both soluble and particulate enzymes required the presence of divalent Mn2+ for activity. Arginase activity was increased by about 50% in the particulate fraction, but not in the soluble fraction, by preheating the fractions at either 50 or 55°C in the presence of 15 mM MnCl2. Enzyme activity in both fractions, in the absence of 15 mM MnCl2, dropped precipitously during heating. A comparison of the nature of arginases in the soluble and particulate fractions revealed similar Km values (13 mM) and pH optima (9.5) and identical heat denaturation curves. Application of 10 nmol of 12-O-tetradecanoylphorbol-13-acetate to mouse skin did not increase arginase activity in either fraction over a period of 24 h. In contrast, there was a large increase in ornithine decarboxylase activity in the soluble fraction 4.5 h after treatment. Mouse epidermal ornithine decarboxylase activity was much less than arginase activity and was predominantly localized in the soluble fraction. These results indicate that the normal level of arginase activity is not a limiting factor for the stimulation of polyamine biosynthesis by TPA. High arginase activity in mouse epidermis may play a role in providing ornithine for polyamine biosynthesis and in the production of glutamate and proline as well as in the production of keratinous proteins.  相似文献   

6.
Evidence for Membrane-Associated Choline Kinase Activity in Rat Striatum   总被引:3,自引:3,他引:0  
The distribution of choline kinase (EC 2.7.1.32) activity was investigated in subcellular fractions of rat striatum. Enzyme activity in the crude mitochondrial fraction, determined after dissolution in Triton X-100, was 5.90 mumol/g initial wet weight/h. When a crude mitochondrial preparation was hypoosmotically shocked and fractionated, followed by the addition of Triton X-100, choline kinase activity in the soluble and particulate fractions was 4.58 and 1.40 mumol/g initial wet weight/h, respectively. Enzyme activity in the particulate fraction was not detected in the absence of Triton X-100 or in the presence of NaCl (up to 1.5 M). Subcellular enzyme markers indicated that the membrane-associated activity was not attributable to mitochondrial or microsomal contamination. Kinetic analysis of the activity of soluble and membrane-solubilized choline kinase indicated Km values of 0.74 mM and 0.68 mM, respectively. Results indicate that choline kinase activity may be measured in both the soluble and the particulate fractions of rat striatum, the latter most likely involving enzyme associated with membrane through hydrophobic or covalent interactions. The specific function of the membrane-associated enzyme has not yet been determined.  相似文献   

7.
Bacteroides gingivalis strain W50 was grown in batch and continuous culture on complex medium with haemin. In batch culture, cell-bound levels of trypsin-like protease (EC 3.4.21.4), alkaline phosphatase (EC 3.1.3.1) and N-acetyl-beta-glucosaminidase (EC 3.2.1.30) increased during the exponential phase of growth. These enzyme activities were also detected in extracellular vesicles and in extracellular soluble forms in the supernatant fluid, but in lower amounts per unit biomass compared to cell-bound levels. In continuous culture, at high relative growth rates (0.7-0.9 murel), the highest proportions of enzyme activities were cell-bound. In contrast, at low relative growth rates (0.1-0.2 murel), highest enzyme levels were detected in the extracellular vesicle fraction. Levels of extracellular soluble enzymes were always low compared to cell-bound or extracellular vesicle levels, but were highest at low relative growth rates. All three enzymes appeared to be relatively stable in their soluble forms. Vesicle production appeared to be associated with actively growing cells but was influenced by growth rate. The results are consistent with the hypothesis that cell-bound 'periplasmic' enzymes are encapsulated into vesicles which are subsequently released by the cells. Therefore, levels of total extracellular enzyme (extracellular vesicle plus extracellular soluble) may depend on the rate of vesicle formation superimposed on the rates of production of 'periplasmic' enzymes in the cell.  相似文献   

8.
Crude vesicles in which prodigiosin is localized were separated from pigmented Serratia marcescens. The bacteria were grown on peptone-glycerol agar plate, suspended in saline, and fractionated into cells, vesicles, and supernatant by differential centrifugation. Electron microscopic observations showed that the fractionation was conducted properly and the separated vesicles were lysed in distilled water. The vesicles suspended in saline retained 100 kilodalton protein of which amount is correlated with prodigiosin level, but the 100 kDa protein was found in the supernatant when the vesicles were lysed in distilled water. The vesicle fraction retained few colony-forming units and little detectable activity of NADH oxidase, but showed much higher activities of protease and nuclease than the cell fraction. The profiles of the activities of the protease and the nuclease in the fractions were different from each other, that is, the protease activity in the vesicle fraction was lower than that in the supernatant fraction, whereas the nuclease activity in the vesicle fraction was higher than that in the supernatant fraction, suggesting that the two extracellular enzymes were released from the pigmented bacteria by different mechanisms.  相似文献   

9.
Hydroxylamine actived guanylate cyclase in particulate fraction of cerebral cortex of rat. Activation was most remarkable in crude mitochondrial fraction. When the crude mitochondrial fraction was subjected to osmotic shock and fractionated, guanylate cyclase activity recovered in the subfractions as assayed with hydroxylamine was only one-third of the starting material. Recombination of the soluble and the particulate fractions, however, restored guanylate cyclase activity to the same level as that of the starting material. When varying quantities of the particulate and soluble fractions were combined, enzyme activity was proportional to the quantity of the soluble fraction. Heating of the soluble or particulate fraction at 55 degrees for 5 min inactivated guanylate cyclase. The heated particulate fraction markedly activated guanylate cyclase activity in the native soluble fraction, while the heated soluble fraction did not stimulate enzyme activity in the particulate. The particulate fraction preincubated with hydroxylamine at 37 degrees for 5 min followed by washing activated guanylate cyclase activity in the soluble fraction in the absence of hydroxylamine. Further fractionation of the crude mitochondrial fraction revealed that the factor(s) needed for the activation by hydroxylamine is associated with the mitochondria. The mitochondrial fraction of cerebral cortex activated guanylate cyclase in supernatant of brain, liver, or kidney in the presence of hydroxylamine. The mitochondrial fraction prepared from liver or kidney, in turn, activated soluble guanylate cyclase in brain. Activation of guanylate cyclase by hydroxylamine was compared with that of sodium azide. Azide activated guanylate cyclase in the synaptosomal soluble fraction, while hydroxylamine inhibited it. The particulate fraction preincubated with azide followed by washing did not stimulate guanylate cyclase activity in the absence of azide. The activation of guanylate cyclase by hydroxylamine is not due to a change in the concentration of the substrate GTP, Addition of hydroxylamine did not alter the apparent Km value of guanylate cyclase for GTP. Guanylate cyclase became less dependent on manganese in the presence of hydroxylamine. Thus the activation of guanylate cyclase by hydroxylamine is due to the change in the Vmax of the reaction.  相似文献   

10.
Phosphodiesterase activities for adenosine and guanosine 3':5'-monophosphates (cyclic AMP and cyclic GMP) were demonstrated in particulate and soluble fractions of rat anterior pituitary gland. Both fractions contained higher activity for cyclic GMP hydrolysis than that for cyclic AMP hydrolysis when these activities were assayed at subsaturating substrate concentrations. Addition of protein activator and CaCl2 to either whole homogenate, particulate or supernatant fraction stimulated both cyclic AMP and cyclic GMP phosphadiesterase activities. Almost 80% of cyclic AMP and 90% of cyclic GMP hydrolyzing activities were localized in soluble fraction. Particulate-bound cyclic nucleotide phosphodiesterase activity was completely solubilized with 1% Triton X-100. Detergent-dispersed particulate and soluble enzymes were compared with respect to Ca2+ and activator requirements and gel filtration profiles. Particulate, soluble and partially purified phosphodiesterase activities were also characterized in relation to divalent cation requirements, kinetic behavior and effects of Ca2+, activator and ethyleneglycol-bis-(2-aminoethyl)-N,N'-tetraacetic acid. Gel filtration of either sonicated whole homogenate or the 10500 X g supernatant fraction showed a single peak of activity, which hydrolyzed both cyclic AMP and cyclic GMP and was dependent upon Ca2+ and activator for maximum activity. Partially purified enzyme was inhibited by 1-methyl-3-isobutylxanthine and papaverine with the concentration of inhibitor giving 50% inhibition at 0.4 muM substrate being 20 muM and 24 muM for cyclic AMP and 7 muM and 10 muM for cyclic GMP, respectively. Theophylline, caffeine and theobromine were less effective. The rat anterior pituitary also contained a protein activator which stimulated both pituitary cyclic nucleotide phosphodiesterase(s) as well as activator-deficient brain cyclic GMP and cyclic AMP phosphodiesterases. Chromatography of the sonicated pituitary extract on DEAE-cellulose column chromatography resolved the phosphodiesterase into two fractions. Both enzyme fractions hydrolyzed cyclic AMP and cyclic GMP and had comparable apparent Km values for the two nucleotides. Hydrolysis of cyclic GMP and cyclic AMP by fraction II enzyme was stimulated 6--7-fold by both pituitary and brain activator in the presence of micromolar concentrations of Ca2+.  相似文献   

11.
Phosphatidic acid phosphohydrolase (PPH) activity was determined in human polymorphonuclear leukocytes (PMNs) by measuring the hydrolysis of [32P]phosphatidic acid (PA) added to cell sonicates. Enzyme activity was localized primarily to a soluble fraction. Soluble and particulate activities required magnesium and were inhibited by calcium, N-ethylmaleimide, sphingosine, and propranolol. The activity in unstimulated PMNs was 0.64 +/- 0.11 nmol of PA hydrolyzed.mg protein-1.min-1 in particulate and 4.20 +/- 0.42 in soluble fractions. Stimulation of PMNs with 1 microM f-Met-Leu-Phe (FMLP) for 10 min caused a slight decrease in soluble activity and a small increase in the activity of particulate fractions. Preincubation with 10 microM cytochalasin B for 5 min before FMLP stimulation markedly enhanced both of these changes. The effect of FMLP plus cytochalasin B was rapid (less than 10 s), whereas the calcium ionophore A23187 (1 microM) and phorbol myristate acetate (100 ng/ml) caused slower and smaller changes in enzyme activity. These results indicate that after chemoattractant stimulation; PPH activity decreases in the soluble fraction and increases in the particulate fraction suggesting that PPH may participate in signal transduction in the PMN.  相似文献   

12.
Purification of the major protein-tyrosine-phosphatases of human placenta   总被引:50,自引:0,他引:50  
This report describes the purification of the major protein-tyrosine-phosphatases from human placenta. Enzyme activity was followed with a novel artificial substrate, namely reduced, carboxamidomethylated, and maleylated lysozyme, phosphorylated on tyrosine by a partially purified preparation of insulin and epidermal growth factor receptor kinases, also from human placenta. The key step in the purification of the protein-tyrosine-phosphatases was affinity chromatography on a column of thiophosphorylated, reduced, carboxamidomethylated, and maleylated lysozyme-Sepharose. Purification was carried out separately from both the soluble and particulate fractions. Whereas multiple and distinct enzyme forms were obtained from each of these, little difference could be detected between the behavior of the "soluble" enzyme subtypes and their "particulate" counterparts. The major subtypes were purified to apparent homogeneity with an approximately 23,000-fold enrichment and 10% yield from the soluble fraction and a 4,300-fold enrichment and 13% yield from the particulate fraction. Both samples migrated as bands of 35 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and had specific activities of approximately 45,000 nmol of Pi released min-1 mg-1, at least 2-3-fold higher than that of the type 1 and 2A serine/threonine phosphatases. The level of protein-tyrosine-phosphatases in the soluble fraction of human placenta (2,000 units/g of protein) was approximately the same as protein-serine/threonine-phosphatases 1 and 2A in skeletal muscle.  相似文献   

13.
Norepinephrine and dopamine-β-hydroxylase, used as noradrenergic vesicle markers, were found to be decreased in the rat vas deferens 10 days after castration. Five days of testosterone administration to castrated animals increased the enzyme activity over that of controls but did not modify norepinephrine content. In tissue fractions obtained by differential centrifugation, the highest activities of the noradrenergic markers appeared in the vesicular fraction of controls and in the soluble fraction of castrated animals. Testosterone reversed the effect of castration: it increased dopamine-β-hydroxylase activity in the vesicular and soluble fractions, while norepinephrine increased only in the vesicular fraction. Results obtained after continuous sucrose gradient centrifugation of vesicular fractions suggested that these changes principally affected the number of light noradrenergic vesicles while testosterone increased the number of vesicles reduced by castration. Hormonal manipulations also modified some functional properties of nerve endings: norepinephrine depletion after transmural stimulation in the presence of tetraethylammonium, as well as the release of the neurotransmitter, were decreased after castration. These effects were reversed by testosterone. The results suggest a modulatory effect of testosterone on the norepinephrine storage system and on the functional properties of the adrenergic innervation of vas deferens.  相似文献   

14.
Subcellular localization of the leucine biosynthetic enzymes in yeast   总被引:12,自引:3,他引:9  
When baker's yeast spheroplasts were lysed by mild osmotic shock, practically all of the isopropylmalate isomerase and the beta-isopropylmalate dehydrogenase was released into the 30,000 x g supernatant fraction, as was the cytosol marker enzyme, glucose-6-phosphate dehydrogenase. alpha-Isopropylmalate synthase, however, was not detected in the initial supernatant, but could be progressively solubilized by homogenization, appearing more slowly than citrate synthase but faster than cytochrome oxidase. Of the total glutamate-alpha-ketoisocaproate transaminase activity, approximately 20% was in the initial soluble fraction, whereas solubilization of the remainder again required homogenization of the spheroplast lysate. Results from sucrose density gradient centrifugation of a cell-free particulate fraction and comparison with marker enzymes suggested that alpha-isopropylmalate synthase was located in the mitochondria. It thus appears that, in yeast, the first specific enzyme in the leucine biosynthetic pathway (alpha-isopropylmalate synthase) is particulate, whereas the next two enzymes in the pathway (isopropylmalate isomerase and beta-isopropylmalate dehydrogenase) are "soluble," with glutamate-alpha-ketoisocaproate transaminase activity being located in both the cytosol and particulate cell fractions.  相似文献   

15.
The existence of an intracellular phospholipase A2 (PLA2) involved in the production of 1-O-alkyl-sn-glycero-3-phosphocholine and free arachidonic acid has been repeatedly postulated. Using 1-O-hexadecyl-2-[3H]arachidonoyl-sn-glycero-3-phosphocholine as a substrate and a series of conventional and high-pressure liquid chromatographic techniques, we have purified a PLA2 from the soluble fraction of differentiated human monocytic U937 cells. The enzyme has been purified nearly 2000-fold to homogeneity. The purified enzyme has a molecular mass of 56 kDa, under reducing conditions, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The enzyme activity has a pH optimum of 8.0 and is calcium concentration-dependent. The EC50 for the activation of the enzyme activity by calcium is 300 nM. When the cells were homogenized in the presence of the calcium chelator EGTA (0.2 mM), the enzyme was found to be soluble (more than 90% of the activity in the 100,000 x g supernatant). However, when Ca2+ concentration was controlled from 10 nM to 100 microM in Ca2(+)-EGTA buffers, increasing amounts of the activity were found in the particulate fraction (100,000 x g pellet). This suggests that membrane translocation and activation of the soluble PLA2 may be regulated by physiological intracellular levels of Ca2+. The purified enzyme hydrolyzed different phosphatidylcholine substrates presented in either vesicular or Triton X-100 mix micellar forms. In both situations, the enzyme showed a high degree of specificity for arachidonic acid on the sn-2 position of the substrate. Substitution of palmitic or oleic on the sn-2 position substantially reduced the hydrolytic activity of the enzyme. When vesicles of arachidonic acid-containing phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol were presented to the purified enzyme, all of them were hydrolyzed with comparable efficiency. However, only phosphatidylcholine and phosphatidylinositol were hydrolyzed when presented in Triton X-100 mixed micelles.  相似文献   

16.
Association of prolyl hydroxylase activity with membranes   总被引:6,自引:0,他引:6  
Addition of ionic and nonionic detergents to whole homogenates of liver, kidney and lung prepared by a mild homogenization technique resulted in a two- to three-fold increase of prolyl hydroxylase activity. After subcellular fractionation of whole homogenates of liver, particulate and supernatant fractions were incubated in the presence and absence of triton X-100 and assayed for prolyl hydroxylase activity. All particulate fractions tested were able to release significant amounts of prolyl hydroxylase activity in the presence of triton. The release of enzyme activity by triton was observed with the 1000 × g and 17,000 × g supernatants but not with the 105,000 × g supernatant; thus indicating that detergent does not activate soluble enzyme nor make the substrate more accessible to hydroxylation by the enzyme during incubation. Rigorous homogenization of the 17,000 × g particulate fraction with the Polytron ST system resulted in a substantial loss of the amount of prolyl hydroxylase activity released by treatment with triton. These data suggest that a significant amount of prolyl hydroxylase activity is associated with membranes under physiological conditions.  相似文献   

17.
Abstract: The molecular forms and membrane association of SPC2, SPC3, and furin were investigated in neuroendocrine secretory vesicles from the anterior, intermediate, and neural lobes of bovine pituitary and bovine adrenal medulla. The major immunoreactive form of SPC2 was the full-length enzyme with a molecular mass of 64 kDa. The major immunoreactive form of SPC3 was truncated at the carboxyl terminus and had a molecular mass of 64 kDa. Full-length 86-kDa SPC3 with an intact carboxyl terminus was found only in bovine chromaffin granules. Immunoreactive furin was also detected in secretory vesicles. The molecular masses of 80 and 76 kDa were consistent with carboxyl-terminal truncation of furin to remove the transmembrane domain. All three enzymes were distributed between the soluble and membrane fractions of secretory vesicles although the degree of membrane association was tissue specific and, in the case of SPC3, dependent on the molecular form of the enzyme. Significant amounts of membrane-associated and soluble forms of SPC2, SPC3, and furin were found in pituitary secretory vesicles, whereas the majority of the immunoreactivity in chromaffin granules was membrane associated. More detailed analyses of chromaffin granule membranes revealed that 86-kDa SPC3 was more tightly associated with the membrane fraction than the carboxyl terminus-truncated 64-kDa form.  相似文献   

18.
During the course of the transformation of 1,3-dichloro-2-propanol (DCP) into (R)-3-chloro-1,2-propanediol [(R)-MCP] with the cell extract of Corynebacterium sp. strain N-1074, epichlorohydrin (ECH) was transiently formed. The cell extract was fractionated into two DCP-dechlorinating activities (fractions Ia and Ib) and two ECH-hydrolyzing activities (fractions IIa and IIb) by TSKgel DEAE-5PW column chromatography. Fractions Ia and Ib catalyzed the interconversion of DCP to ECH, and fractions IIa and IIb catalyzed the transformation of ECH into MCP. Fractions Ia and IIa showed only low enantioselectivity for each reaction, whereas fractions Ib and IIb exhibited considerable enantioselectivity, yielding R-rich ECH and MCP, respectively. Enzymes Ia and Ib were isolated from fractions Ia and Ib, respectively. Enzyme Ia had a molecular mass of about 108 kDa and consisted of four subunits identical in molecular mass (about 28 kDa). Enzyme Ib was a protein of 115 kDa, composed of two different polypeptides (about 35 and 32 kDa). The specific activity of enzyme Ib for DCP was about 30-fold higher than that of enzyme Ia. Both enzymes catalyzed the transformation of several halohydrins into the corresponding epoxides with liberation of halides and its reverse reaction. Their substrate specificities and immunological properties differed from each other. Enzyme Ia seemed to be halohydrin hydrogen-halide-lyase which was already purified from Escherichia coli carrying a gene from Corynebacterium sp. strain N-1074.  相似文献   

19.
We have studied the in vivo phosphorylation of clathrin-coated vesicle proteins from rat reticulocytes. The major 32P-labeled polypeptides of clathrin-coated vesicles isolated from metabolically labeled cells were the the 165-, 100-110-, and 50-kDa polypeptides of the assembly protein, the clathrin beta-light chain, and to a lesser extent the clathrin alpha-light chain. The phosphorylation of the assembled (particulate) and unassembled (soluble) pools of clathrin and assembly protein was compared by immunoprecipitating the respective protein complexes from particulate and soluble cell fractions. Although all the phosphorylated polypeptides were present in both fractions, the extent of labeling was protein and fraction specific: the apparent specific activities of the assembly protein 50-kDa polypeptide and clathrin light chain were higher in the unassembled pool, whereas those of the 100-110-kDa polypeptides were higher in the assembled pool. The amino acids and polypeptide fragments labeled in vivo appeared similar to those labeled in vitro.  相似文献   

20.
1. Phosphodiesterase activity in rat liver supernatant and solubilized rat liver particulate fractions was chromatographed on Q Sepharose and several characteristics of each peak determined. 2. Rat liver supernatant contained four peaks of activity. The first two of these corresponded to type I and II phosphodiesterases. The fourth peaks was similar to a type V activity and the third peak could not be definitely classified. 3. Particulate activity solubilized by mild protease treatment also contained four peaks of activity. The first two corresponded to the first two from the supernatant, the fourth was a type IV enzyme which is the insulin activated phosphodiesterase. The third peak could not be definitely characterized. 4. Particulate activity solubilised by Triton X-100 contained three peaks. Two had the properties of a type IV enzyme but only one of these was immunologically identified as the insulin sensitive enzyme. The remaining activity was similar to the chymotrypsin peak 3 activity. 5. Most of the particulate phosphodiesterase of rat liver is found in a microsomal fraction, and most is the insulin sensitive type IV enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号