首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is becoming apparent that caspases are essential mediators of the execution phase of apoptosis. A decrease in mitochondrial membrane potential (PsiM) is also thought to be an early event in apoptosis. In this study, we compare the effects of Bcl-2 over-expression against N-benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone (ZVAD. FMK)-sensitive caspase blockade on dexamethasone (DEX) and etoposide (VP16)-induced apoptosis in CEM T lymphoid cells. We assessed changes in nuclear chromatin, cell size, fragmentation, cell membrane permeability and PsiM. We found Bcl-2 over-expression and ZVAD.FMK-sensitive caspase inhibition were able to prevent chromatin condensation and cellular fragmentation. However, ZVAD.FMK was neither able to prevent loss of plasma membrane integrity nor PsiM depolarization which occur in both VP16 and DEX-induced apoptosis. In VP16-induced apoptosis, the increase in cell membrane permeability was actually potentiated by caspase inhibition. Interestingly, ZVAD.FMK did prevent VP16-induced but not DEX-induced cell shrinkage. These results suggest that not all the actions of Bcl-2 can be explained by its ability to prevent caspase activation. Rather Bcl-2 must have other targets of action which include functions associated with mitochondria.  相似文献   

2.
We have examined UV irradiation-induced cell death in Jurkat cells and evaluated the relationships that exist between inhibition of caspase activity and the signaling mechanisms and pathways of apoptosis. Jurkat cells were irradiated with UV-C light, either with or without pretreatment with the pan-caspase inhibitor, z-VAD-fmk (ZVAD), or the more selective caspase inhibitors z-IETD-fmk (IETD), z-LEHD-fmk (LEHD), and z-DEVD-fmk (DEVD). Flow cytometry was used to examine alterations in viability, cell size, plasma membrane potential (PMP), mitochondrial membrane potential (DeltaPsi(mito)), intracellular Na(+) and K(+) concentrations, and DNA degradation. Processing of pro-caspases 3, 8, and 9 and the pro-apoptotic protein Bid was determined by Western blotting. UV-C irradiation of Jurkat cells resulted in characteristic apoptosis within 6 h after treatment and pretreatment of cells with ZVAD blocked these features. In contrast, pretreatment of the cells with the more selective caspase inhibitors under conditions that effectively blocked DNA degradation and inhibited caspase 3 and 8 processing as well as Bid cleavage had little protective effect on the other apoptotic characteristics examined. Thus, both intrinsic and extrinsic pathways are activated during UV-induced apoptosis in Jurkat cells and this redundancy appears to assure cell death during selective caspase inhibition.  相似文献   

3.
CD95 (Fas/Apo-1) triggers apoptotic cell death via a caspase-dependent pathway. Inhibition of caspase activation blocks proapoptotic signaling and thus, prevents execution of apoptosis. Besides induction of apoptotic cell death, CD95 has been reported to trigger necrotic cell death in susceptible cells. In this study, we investigated the interplay between apoptotic and necrotic cell death signaling in T cells. Using the agonistic CD95 antibody, 7C11, we found that caspase inhibition mediated by the pancaspase inhibitor, zVAD-fmk, prevented CD95-triggered cell death in Jurkat T cells but not in A3.01 T cells, although typical hallmarks of apoptosis, such as DNA fragmentation or caspase activation were blocked. Moreover, the caspase-independent cell death in A3.01 cells exhibited typical signs of necrosis as detected by a rapid loss of cell membrane integrity and could be prevented by treatment with the radical scavenger butylated hydroxyanisole (BHA). Similar to CD95-induced cell death, apoptosis triggered by the DNA topoisomerase inhibitors, camptothecin or etoposide was shifted to necrosis when capsase activation was inhibited. In contrast to this, ZVAD was fully protective when apoptosis was triggered by the serpase inhibitor, Nalpha-tosyl-phenyl-chloromethyl ketone (TPCK). TPCK was not protective when administered to anti-CD95/ZVAD-treated A3.01 cells, indicating that TPCK does not possess anti-necrotic activity but fails to activate the necrotic death pathway. Our findings show (a) that caspase inhibition does not always protect apoptotic T cells from dying but merely activates a caspase-independent mode of cell death that results in necrosis and (b) that the caspase-inhibitor-induced shift from apoptotic to necrotic cell death is dependent on the cell type and the proapoptotic stimulus.  相似文献   

4.
Exposure of neurons to H(2)O(2) results in both necrosis and apoptosis. Caspases play a pivotal role in apoptosis, but exactly how they are involved in H(2)O(2)-mediated cell death is unknown. We examined H(2)O(2)-induced toxicity in neuronal PC12 cells and the effects of inducible overexpression of the H(2)O(2)-scavenging enzyme catalase on this process. H(2)O(2) caused cell death in a time- and concentration-dependent manner. Cell death induced by H(2)O(2) was found to be mediated in part through an apoptotic pathway as H(2)O(2)-treated cells exhibited cell shrinkage, nuclear condensation and marked DNA fragmentation. H(2)O(2) also triggered activation of caspase 3. Genetic up-regulation of catalase not only significantly reduced cell death but also suppressed caspase 3 activity and DNA fragmentation. While the caspase 3 inhibitor DEVD inhibited both caspase 3 activity and DNA fragmentation induced by H(2)O(2) it did not prevent cell death. Treatment with the general caspase inhibitor ZVAD, however, resulted in complete attenuation of H(2)O(2)-mediated cellular toxicity. These results suggest that DNA fragmentation induced by H(2)O(2) is attributable to caspase 3 activation and that H(2)O(2) may be critical for signaling leading to apoptosis. However, unlike inducibly increased catalase expression and general caspase inhibition both of which protect cells from cytotoxicity, caspase 3 inhibition alone did not improve cell survival suggesting that prevention of DNA fragmentation is insufficient to prevent H(2)O(2)-mediated cell death.  相似文献   

5.
Two cysteine protease families, caspase and calpain, are known to participate in cell death. We investigated whether a stress-specific protease activation pathway exists, and to what extent Bcl-2 plays a role in preventing drug-induced protease activity and cell death in a dopaminergic neuronal cell line, MN9D. Staurosporine (STS) induced caspase-dependent apoptosis while a dopaminergic neurotoxin, MPP(+) largely induced caspase-independent necrotic cell death as determined by morphological and biochemical criteria including cytochrome c release and fluorogenic caspase cleavage assay. At the late stage of both STS- and MPP(+)-induced cell death, Bax was cleaved into an 18-kDa fragment. This 18-kDa fragment appeared only in the mitochondria-enriched heavy membrane fraction of STS-treated cells, whereas it was detected exclusively in the cytosolic fraction of MPP(+)-treated cells. This proteolytic cleavage of Bax appeared to be mediated by calpain as determined by incubation with [(35)S]methionine-labelled Bax. Thus, cotreatment of cells with calpain inhibitor blocked both MPP(+)- and STS-induced Bax cleavage. Intriguingly, overexpression of baculovirus-derived inhibiting protein of caspase, p35 or cotreatment of cells with caspase inhibitor blocked STS- but not MPP(+)-induced Bax cleavage. This appears to indicate that calpain activation may be either dependent or independent of caspase activation within the same cells. However, cotreatment with calpain inhibitor rescued cells from MPP(+)-induced but not from STS-induced neuronal cell death. In these paradigms of dopaminergic cell death, overexpression of Bcl-2 prevented both STS- and MPP(+)-induced cell death and its associated cleavage of Bax. Thus, our results suggest that Bcl-2 may play a protective role by primarily blocking drug-induced caspase or calpain activity in dopaminergic neuronal cells.  相似文献   

6.
We characterized a novel 28S rRNA cleavage in cells infected with the murine coronavirus mouse hepatitis virus (MHV). The 28S rRNA cleavage occurred as early as 4 h postinfection (p.i.) in MHV-infected DBT cells, with the appearance of subsequent cleavage products and a decrease in the amount of intact 28S rRNA with increasing times of infection; almost all of the intact 28S rRNA disappeared by 24 h p.i. In contrast, no specific 18S rRNA cleavage was detected in infected cells. MHV-induced 28S rRNA cleavage was detected in all MHV-susceptible cell lines and all MHV strains tested. MHV replication was required for the 28S rRNA cleavage, and mature cytoplasmic 28S rRNA underwent cleavage. In certain combination of cells and viruses, pretreatment of virus-infected cells with interferon activates a cellular endoribonuclease, RNase L, that causes rRNA degradation. No interferon was detected in the inoculum used for MHV infection. Addition of anti-interferon antibody to MHV-infected cells did not inhibit 28S rRNA cleavage. Furthermore, 28S rRNA cleavage occurred in an MHV-infected mouse embryonic fibroblast cell line derived from RNase L knockout mice. Thus, MHV-induced 28S rRNA cleavage was independent of the activation of RNase L. MHV-induced 28S rRNA cleavage was also different from apoptosis-related rRNA degradation, which usually occurs concomitantly with DNA fragmentation. In MHV-infected 17Cl-1 cells, 28S rRNA cleavage preceded DNA fragmentation by at least 18 h. Blockage of apoptosis in MHV-infected 17Cl-1 cells by treatment with a caspase inhibitor did not block 28S rRNA cleavage. Furthermore, MHV-induced 28S rRNA cleavage occurred in MHV-infected DBT cells that do not show apoptotic signs, including activation of caspase-3 and DNA fragmentation. Thus, MHV-induced 28S rRNA cleavage appeared to differ from any rRNA degradation mechanism described previously.  相似文献   

7.
The regulation of proliferation and cell death is vital for homeostasis, but the mechanism that coordinately balances these events in rheumatoid arthritis (RA) remains largely unknown. In RA, the synovial lining thickens in part through increased proliferation and/or decreased synovial fibroblast cell death. Here we demonstrate that the anti-apoptotic protein, Bcl-2, is highly expressed in RA compared with osteoarthritis synovial tissues, particularly in the CD68-negative, fibroblast-like synoviocyte population. To determine the importance of endogenous Bcl-2, an adenoviral vector expressing a hammerhead ribozyme to Bcl-2 (Ad-Rbz-Bcl-2) mRNA was employed. Ad-Rbz-Bcl-2 infection resulted in reduced Bcl-2 expression and cell viability in synovial fibroblasts isolated from RA and osteoarthritis synovial tissues. In addition, Ad-Rbz-Bcl-2-induced mitochondrial permeability transition, cytochrome c release, activation of caspases 9 and 3, and DNA fragmentation. The general caspase inhibitor zVAD.fmk blocked caspase activation, poly(ADP-ribose) polymerase cleavage, and DNA fragmentation, but not loss of transmembrane potential or viability, indicating that cell death was independent of caspase activation. Ectopically expressed Bcl-xL inhibited Ad-Rbz-Bcl-2-induced mitochondrial permeability transition and apoptosis in Ad-Rbz-Bcl-2-transduced cells. Thus, forced down-regulation of Bcl-2 does not induce a compensatory mechanism to prevent loss of mitochondrial integrity and cell death in human fibroblasts.  相似文献   

8.
Bcl-2 is an antiapoptotic molecule that prevents oxidative stress damage and cell death. We investigated the possible protective mechanisms mediated by Bcl-2 during hyperoxia-induced cell death in L929 cells. In these cells, hyperoxia promoted apoptosis without DNA fragmentation. Overexpression of Bcl-2 significantly protected cells from oxygen-induced apoptosis, as shown by measurement of lactate dehydrogenase release, quantification of apoptotic nuclei, and detection of Annexin-V-positive cells. Bcl-2 partially prevented mitochondrial damage and interfered with the mitochondrial proapoptotic signaling pathway: it reduced Bax translocation to mitochondria, decreased the release of cytochrome c, and inhibited caspase 3 activation. However, treatment with the caspase inhibitor Z-VAD.fmk failed to rescue the cells from death, indicating that protection provided by Bcl-2 was due not only to caspase inhibition. Bcl-2 also prevented the release of mitochondrial apoptotic inducing factor, a mediator of caspase-independent apoptosis, correlating with the absence of oligonucleosomal DNA fragmentation. In addition, Bcl-2-overexpressing cells showed significantly higher intracellular amounts of glutathione after 72 h of oxygen exposure. In conclusion, our results demonstrate that the overexpression of Bcl-2 is able to prevent hyperoxia-induced cell death, by affecting mitochondria-dependent apoptotic pathways and increasing intracellular antioxidant compounds.  相似文献   

9.
T cells from cancer patients are often functionally impaired, which imposes a barrier to effective immunotherapy. Most pronounced are the alterations characterizing tumor-infiltrating T cells, which in renal cell carcinomas includes defective NF-kappaB activation and a heightened sensitivity to apoptosis. Coculture experiments revealed that renal tumor cell lines induced a time-dependent decrease in RelA(p65) and p50 protein levels within both Jurkat T cells and peripheral blood T lymphocytes that coincided with the onset of apoptosis. The degradation of RelA/p50 is critical for SK-RC-45-induced apoptosis because overexpression of RelA in Jurkat cells protects against cell death. The loss of RelA/p50 coincided with a decrease in expression of the NF-kappaB regulated antiapoptotic protein Bcl-xL at both the protein and mRNA level. The disappearance of RelA/p50 protein was mediated by a caspase-dependent pathway because pretreatment of T lymphocytes with a pan caspase inhibitor before coculture with SK-RC-45 blocked RelA and p50 degradation. SK-RC-45 gangliosides appear to mediate this degradative pathway, as blocking ganglioside synthesis in SK-RC-45 cells with the glucosylceramide synthase inhibitor, PPPP, protected T cells from tumor cell-induced RelA degradation and apoptosis. The ability of the Bcl-2 transgene to protect Jurkat cells from RelA degradation, caspase activation, and apoptosis implicates the mitochondria in these SK-RC-45 ganglioside-mediated effects.  相似文献   

10.
In the presence of cycloheximide, tumor necrosis factor or interleukin-1 initiates caspase activation, loss of mitochondrial membrane potential (DeltaPsi), DNA degradation, and nuclear condensation and fragmentation characteristic of apoptotic cell death in human vascular endothelial cells (EC). Inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002, but not inhibition of Akt by dominant-negative mutation, also sensitizes EC to cytokine-initiated apoptosis. Cytokine-initiated caspase activation is slower and comparatively less with LY294002 than with cycloheximide. Cycloheximide but not LY294002 decreases expression of c-FLIP (cellular FLICE inhibitory protein), an inhibitor of caspase-8 activation. The caspase inhibitor zVADfmk completely blocks caspase activation, DNA degradation, and nuclear fragmentation in both cases but only prevents loss of DeltaPsi and cell death for cytokine plus cycloheximide treatment. In contrast, overexpression of Bcl-2 protects EC treated with cytokine plus LY294002 but not EC treated with cytokine plus cycloheximide. The cathepsin B inhibitor CA-074-Me prevents loss of DeltaPsi, caspase activation, and cell death for EC treated with cytokine plus LY294002 but has no effect on EC treated with cytokine plus cycloheximide. Cathepsin B translocates from lysosomes to cytosol following treatment with LY294002 prior to the activation of caspases. These results suggest that inhibition of PI3K allows cytokines to activate a cathepsin-dependent, mitochondrial death pathway in which caspase activation is secondary, is not inhibited by c-FLIP, and is not essential for cell death.  相似文献   

11.
Okadaic acid is a specific inhibitor of serine/threonine protein phosphatase 1 (PP-1) and 2A (PP-2A). The phosphorylation and dephosphorylation at the serine/threonine residues on proteins play important roles in regulating gene expression, cell cycle progression, and apoptosis. In this study, phosphatase inhibitor okadaic acid induces apoptosis in U937 cells via a mechanism that appears to involve caspase 3 activation, but not modulation of Bcl-2, Bax, and Bcl-X(L) expression levels. Treatment with 20 or 40 nM okadaic acid for 24 h produced DNA fragmentation in U937 cells. This was associated with caspase 3 activation and PLC-gamma1 degradation. Okadaic acid-induced caspase 3 activation and PLC-gamma1 degradation and apoptosis were dose-dependent with a maximal effect at a concentration of 40 nM. Moreover, PMA (phorbol myristate acetate), PKC (protein kinase C) activator, protected U937 cells from okadaic acid-induced apoptosis, abrogated okadaic acid-induced caspase 3 activation, and specifically inhibited downregulation of XIAP (X-linked inhibitor of apoptosis) by okadaic acid. PMA cotreated U937 cells exhibited less cytochrome c release and sustained expression levels of the IAP (inhibitor of apoptosis) proteins during okadaic acid-induced apoptosis. In addition, these findings indicate that PMA inhibits okadaic acid-induced apoptosis by a mechanism that interferes with cytochrome c release and activity of caspase 3 that is involved in the execution of apoptosis.  相似文献   

12.
Coxsackievirus B3 (CVB3), an enterovirus in the family Picornaviridae, induces cytopathic changes in cell culture systems and directly injures multiple susceptible organs and tissues in vivo, including the myocardium, early after infection. Biochemical analysis of the cell death pathway in CVB3-infected HeLa cells demonstrated that the 32-kDa proform of caspase 3 is cleaved subsequent to the degenerative morphological changes seen in infected HeLa cells. Caspase activation assays confirm that the cleaved caspase 3 is proteolytically active. The caspase 3 substrates poly(ADP-ribose) polymerase, a DNA repair enzyme, and DNA fragmentation factor, a cytoplasmic inhibitor of an endonuclease responsible for DNA fragmentation, were degraded at 9 h following infection, yielding their characteristic cleavage fragments. Inhibition of caspase activation by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (ZVAD.fmk) did not inhibit the virus-induced cytopathic effect, while inhibition of caspase activation by ZVAD.fmk in control apoptotic cells induced by treatment with the porphyrin photosensitizer benzoporphyrin derivative monoacid ring A and visible light inhibited the apoptotic phenotype. Caspase activation and cleavage of substrates may not be responsible for the characteristic cytopathic effect produced by picornavirus infection yet may be related to late-stage alterations of cellular homeostatic processes and structural integrity.  相似文献   

13.
The ability of proteins of the Bcl-2 family to either induce or inhibit apoptosis is dependent on both cell type and the apoptotic stimulus. We have shown in the murine pro-B cell line FL5.12 that Bcl-2 is incapable of inhibiting tumor necrosis factor alpha (TNFalpha)-induced cell death and is cleaved during this process. One potential explanation for this observation is that caspase activation directly or indirectly inhibits Bcl-2 function. It has been suggested that caspase cleavage of Bcl-2 is responsible for its inability to block certain cell deaths. Consistent with Bcl-2 cleavage being a caspase-mediated event, this cleavage is inhibitable by 50 microM CBZ-Val-Ala-Asp-fluoromethylketone (zVAD-fmk). Furthermore, Bcl-2 can cooperate with the caspase inhibitor zVAD-fmk in a dose-dependent manner to block TNFalpha-induced cell death. Overexpression of Bcl-2 results in a 10-fold decrease in the amount of zVAD-fmk required to inhibit TNFalpha-induced apoptosis. However, cleavage-defective mutants (D31A and D34A) show no enhanced viability relative to wild-type Bcl-2 in response to TNFalpha-induced cell death and also show the same cooperativity with zVAD-fmk. These results suggest that Bcl-2 cleavage is not important for the inhibition of TNFalpha-induced cell death but do not preclude an involvement in a post-commitment phase of apoptosis.  相似文献   

14.
Apoptosis is an important cell suicide program which involves the caspases activation and is implicated in physiological and pathological processes. Poly(ADP-ribose) polymerase (PARP) cleavage is often associated with apoptosis and has been served as one hallmark of apoptosis and caspase activation. In this study, we aimed to determine TGF-beta1-induced apoptosis and to examine the involvement of caspases and its relationship with PARP cleavage. TGF-beta1 induces strong apoptosis of AML-12 cells which can be detected by DNA fragmentation, FACS, and morphological assays. Z-VAD-fmk, a selective caspase inhibitor, partially inhibits the TGF-beta1-induced apoptosis; but has no effect on TGF-beta1-induced DNA fragmentation and PARP cleavage. However, BD-fmk, a broad-spectrum caspase inhibitor, completely suppresses TGF-beta1-induced apoptosis, but unexpectedly does not inhibit TGF-beta1-induced PARP cleavage. Furthermore, Z-VAD-fmk treatment is able to completely inhibit the daunorubicin-induced apoptosis in A-431 cells, but only slightly blocks the daunorubicin-induced PARP cleavage, whereas BD-fmk can inhibit both daunorubicin-induced apoptosis and PARP cleavage completely. In addition, we observed that both TGF-beta1-induced apoptosis and PARP degradation in AML-12 cells can be completely blocked by inhibiting the protein synthesis with cycloheximide. These results demonstrate for the first time that TGF-beta1-induced caspase-dependent apoptosis is associated with caspase-independent PARP cleavage that requires the TGF-beta1-induced synthesis of new proteins. The results indicate that caspase-3 is not a major caspase involved in TGF-beta1-induced apoptosis in AML-12 cells, and is not required for apoptosis-associated DNA fragmentation. The results also suggest that PARP cleavage may occur as an independent event that can be disassociated with cell apoptosis.  相似文献   

15.
The molecular mechanism of cell death induced by 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd: Figure 1), a potent inhibitor of RNA synthesis, was performed using mouse mammary tumor FM3A cells and human fibrosarcoma HT1080 cells. ECyd induced the characteristics of apoptosis on these cells, such as morphological changes, DNA fragmentations (Figure 2), and caspase-3-like protease activation. General caspases inhibitor (Z-Asp-CH2-DCB) inhibited these changes and cell death. We also found that ECyd induced DNA and 28S ribosomal RNA (rRNA) fragmentations. Though the mechanisms of rRNA fragmentations haven't revealed, it suggests that translational function of the treated cells should be disturbed. These results indicate that antitumor mechanism of ECyd are characteristics of apoptosis on the cells and rRNA fragmentations is one of the death events resulted inhibition of RNA synthesis.  相似文献   

16.
Zhang L  Wei LJ 《Life sciences》2007,80(13):1189-1197
ACTX-8 is a protein isolated from Agkistrodon acutus snake venom in our laboratory. It demonstrates cytotoxic activity on various carcinoma cell lines in vitro. However, the mechanism by which ACTX-8 inhibits cell proliferation remains poorly understood. In this study the influence of ACTX-8 on the activation of apoptotic pathway in Hela cells was investigated. We demonstrated that cell death induced by ACTX-8 was concentration- and time-dependent. Apoptotic changes such as phosphatidyl serine externalization and DNA fragmentation were detected in ACTX-8-treated cells. Caspase activation and reactive oxygen species (ROS) production were involved in ACTX-8-induced apoptosis, but pan caspase inhibitor, z-VAD-fmk, could not inhibit cell death induced by ACTX-8 completely, which proved the existence of another pathway for ACTX-8-induced cell death. We found cytochrome c release into cytosol and mitochondrial membrane potential (MMP) dissipation in ACTX-8-treated cells, which indicated that mitochondrial pathway played a role in ACTX-8-induced cell apoptosis. The ratio of expression levels of pro- and anti-apoptotic Bcl-2 family members was not changed by ACTX-8 treatment. However Bad and Bax were translocated from cytosol into mitochondria, and the coimmunoprecipitation result indicated that in mitochondria Bak and Bcl-xL dissociation was followed by the binding of Bad and Bcl-xL. Taken together, the study indicated mitochondrial pathway played an important role in the ACTX-8-induced apoptosis, which was regulated by Bcl-2 family members.  相似文献   

17.
H E Kim  J H Oh  S K Lee  Y J Oh 《Life sciences》1999,65(3):PL33-PL40
We used the rat C6 gliomal cell line to investigate the potential role of ginsenoside Rh2 (G-Rh2) in brain tumor. G-Rh2 induced many apoptotic manifestations in C6 gliomal cells as evidenced by changes in cell morphology, generation of DNA fragmentation, activation of caspase and production of reactive oxygen species (ROS). As a result, cotreatment with antioxidants or a broad-spectrum caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone effectively attenuated G-Rh2-induced cell death. However, specific cleavage of poly(ADP-ribose)polymerase into 85 kDa protein was not detected as demonstrated in many other apoptotic paradigms. Expression levels of Bcl-2 and Bax remained unchanged following G-Rh2 treatment. Furthermore, G-Rh2-induced cell death in C6 gliomal cells overexpressing antiapoptotic protein, Bcl-X(L), was comparable to that in parental cells. Taken together, our data indicate that G-Rh2-induced cell death is mediated by the generated ROS and the activation of caspase pathway in a Bcl-X(L)-independent manner.  相似文献   

18.
Zhang Y  Wang H  Wang J  Han H  Nattel S  Wang Z 《FEBS letters》2003,540(1-3):125-132
In this study, we show that ultraviolet B radiation (UVB)-induced apoptosis of human keratinocytes involves mainly cytosolic signals with mitochondria playing a central role. Overexpression of Bcl-2 inhibited UVB-induced apoptosis by blocking the early generation of reactive oxygen species, mitochondrial cardiolipin degradation and cytochrome c release, without affecting Fas ligand (FasL)-induced cell death. It also prevented the subsequent activation of procaspase-3 and -8 as well as Bid cleavage in UVB-treated cells. Comparative analysis of UVB and FasL death pathways revealed a differential role and mechanism of caspase activation, with the UVB-induced activation of procaspase-8 only being a bystander cytosolic event rather than a major initiator mechanism, as is the case for the FasL-induced cell death. Our results suggest that Bcl-2 overexpression, by preventing reactive oxygen species production, helps indirectly to maintain the integrity of lysosomal membranes, and therefore inhibits the release of cathepsins, which contribute to the cytosolic activation of procaspase-8 in UVB-irradiated keratinocytes.  相似文献   

19.
Tian H  Wang J  Zhang B  Di J  Chen F  Li H  Li L  Pei D  Zheng J 《PloS one》2012,7(5):e37200
MDA-7/IL-24 was involved in the specific cancer apoptosis through suppression of Bcl-2 expression, which is a key apoptosis regulatory protein of the mitochondrial death pathway. However, the underlying mechanisms of this regulation are unclear. We report here that tumor-selective replicating adenovirus ZD55-IL-24 leads to Bcl-2 S-denitrosylation and concomitant ubiquitination, which take part in the 26S proteasome degradation. IL-24-siRNA completely blocks Bcl-2 ubiquitination via reversion of Bcl-2 S-denitrosylation and protects it from proteasomal degradation which confirmed the significant role of MDA-7/IL-24 in regulating posttranslational modification of Bcl-2 in cancer cells. Nitric oxide (NO) is a key regulator of protein S-nitrosylation and denitrosylation. The NO donor, sodium nitroprusside (SNP), down-regulates Bcl-2 S-denitrosylation, attenuates Bcl-2 ubiquitination and subsequently counteracts MDA-7/IL-24 induced cancer cell apoptosis, whereas NO inhibitor 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (PTIO) shows the opposite effect. At the same time, these NO modulators fail to affect Bcl-2 phosphorylation, suggesting that NO regulates Bcl-2 stability in a phosphorylation-independent manner. In addition, Bcl-2 S-nitrosylation reduction induced by ZD55-IL-24 was attributed to both iNOS decrease and TrxR1 increase. iNOS-siRNA facilitates Bcl-2 S-denitrosylation and ubiquitin-degradation, whereas the TrxR1 inhibitor auranofin prevents Bcl-2 from denitrosylation and ubiquitination, thus restrains the caspase signal pathway activation and subsequent cancer cell apoptosis. Taken together, our studies reveal that MDA-7/IL-24 induces Bcl-2 S-denitrosylation via regulation of iNOS and TrxR1. Moreover, denitrosylation of Bcl-2 results in its ubiquitination and subsequent caspase protease family activation, as a consequence, apoptosis susceptibility. These findings provide a novel insight into MDA-7/IL-24 induced growth inhibition and carcinoma apoptosis.  相似文献   

20.
Activation of death receptors initiates intrinsic apoptosis programs in various parts of the cell. To explore the possibility that ribosomal RNA (rRNA), essential for translation in ribosomes, is a target of pro-apoptotic proteins, rRNA was analyzed by electrophoresis in two apoptosis systems: human Jurkat cells treated with anti-Fas antibody and human U937 cells treated with tumor necrosis factor-alpha. In both systems, bands in addition to those of unmodified rRNA were detected a few hours after death receptor engagement. In both systems, the primary additional band was identical and comprised the 3'-terminal region of 28 S rRNA. The degradation of 28 S rRNA was simultaneous with protein synthesis inhibition in both systems. The caspase-3 inhibitor Z-DEVD-FMK suppressed rRNA degradation and protein synthesis inhibition in Jurkat cells but not in U937 cells. Together, our data suggest that different pathways are activated in the two systems we studied, and the final steps in these pathways use very similar or identical ribonucleases to cleave 28 S rRNA. These data suggest a physiological link between rRNA degradation and inhibition of protein synthesis. In general, apoptosis execution initiated by death receptor engagement is promoted by protein synthesis inhibition. Triggered by rRNA degradation, malfunction of the protein synthesis machinery may prompt death execution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号