首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work demonstrates the first example of a fungal lactate dehydrogenase (LDH) expressed in yeast. A L(+)-LDH gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adh1 promoter and terminator and then placed in a 2μ-containing yeast-replicating plasmid. The resulting construct, pLdhA68X, was transformed and tested by fermentation analyses in haploid and diploid yeast containing similar genetic backgrounds. Both recombinant strains utilized 92 g glucose/l in approximately 30 h. The diploid isolate accumulated approximately 40% more lactic acid with a final concentration of 38 g lactic acid/l and a yield of 0.44 g lactic acid/g glucose. The optimal pH for lactic acid production by the diploid strain was pH 5. LDH activity in this strain remained relatively constant at 1.5 units/mg protein throughout the fermentation. The majority of carbon was still diverted to the ethanol fermentation pathway, as indicated by ethanol yields between 0.25–0.33 g/g glucose. S. cerevisiae mutants impaired in ethanol production were transformed with pLdhA68X in an attempt to increase the lactic acid yield by minimizing the conversion of pyruvate to ethanol. Mutants with diminished pyruvate decarboxylase activity and mutants with disrupted alcohol dehydrogenase activity did result in transformants with diminished ethanol production. However, the efficiency of lactic acid production also decreased. Electronic Publication  相似文献   

2.
Two transformation systems, based on the use of CaCl2/PEG and Agrobacterium tumefaciens, respectively, were developed for the zygomycete Rhizopus oryzae. Irrespective of the selection marker used, a pyr4 marker derived from R. niveus or a dominant amdS+ marker from Aspergillus nidulans, and irrespective of the configuration of the transforming DNA (linear or circular), the transformants obtained with the CaCl2/PEG transformation method were found to carry multiple copies of tandemly linked vector molecules, which failed to integrate into the genomic DNA. Furthermore, these transformants displayed low mitotic stability. In contrast, transformants obtained by Agrobacterium-mediated transformation were mitotically stable, even under non-selective conditions. Detailed analysis of these transformants revealed that the transforming DNA had integrated into the genome of R. oryzae at a single locus in independently obtained transformants. In addition, truncation of the transforming DNA was observed, resulting in the integration of the R. niveus pyr4 marker gene, but not the second gene located on the transferred DNA. Modification of the transforming DNA, resulting in partial resistance to restriction enzyme digestion, was observed in transformants obtained with the CaCl2/PEG transformation method, suggesting that a specific genome defence mechanism may exist in R. oryzae. It is likely that the unique mechanism used by A. tumefaciens to deliver its transferred DNA to its hosts facilitates bypass of the host defence mechanisms, thus allowing the DNA to integrate into the chromosomal genome.An erratum to this article can be found at Communicated by C. P. Hollenberg  相似文献   

3.
Genome sequence analysis of Xanthomonas oryzae pv. oryzae has revealed a cluster of 12 ORFs that are closely related to the gum gene cluster of Xanthomonas campestris pv. campestris. The gum gene cluster of X. oryzae encodes proteins involved in xanthan production; however, there is little experimental evidence supporting this. In this study, biochemical analyses of xanthan produced by a defined set of X. oryzae gum mutant strains allowed us to preliminarily assign functions to most of the gum gene products: biosynthesis of the pentasaccharide repeating unit for GumD, GumM, GumH, GumK, and GumI, xanthan polymerization and transport for GumB, GumC, GumE, and GumJ, and modification of the pentasaccharide repeating unit for GumF, GumG, and GumL. In addition, we found that the exopolysaccharides are essential but not specific for the virulence of X. oryzae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Sang-Yoon Kim and Jeong-Gu Kim contributed equally to this work.  相似文献   

4.
5.
Bacterial blight (BB) of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most devastating bacterial disease in rice. A virulence-attenuated mutant strain HNU89K9 of X. oryzae pv. oryzae (KACC10331), with a transposon insertion in the pilQ gene was used for this study. The pilQ was involved in the gene cluster pilMNOPQ of the Xoo genome. Growth rate of the pilQ mutant was similar to that of wild-type. At level of amino acids, PilQ of Xoo showed that a high sequence identities more than 94% and 70% to Xanthomonas species and to Xyllela fastidiosa, respectively but a low sequence homology less than 30% to other bacterial species. The twitching motility forming a marginal fringe on PSA media was observed on colony of the wild-type strain KACC10331, but not in mutant HNU89K9. Wild-type Xoo cells formed a biofilm on the surface of the PVC plastic test tube, while the mutant strain HNU89K9 did not form a biofilm. The results suggest that the pilQ gene of X. oryzae pv. oryzae plays a critical role in pathogenicity, twitching motility, and biofilm formation.  相似文献   

6.
Xanthomonas oryzae pv. oryzae is the pathogen that causes bacterial leaf blight in rice. Bacterial leaf blight is the main cause for severe rice underproduction in many countries. However, with conventional methods it is difficult to quickly and reliably distinguish this pathogen from other closely related pathogenic bacteria, especially X. oryzae pv. oryzicola, the causal organism of bacterial leaf streak in rice. We have developed a novel and highly sensitive real-time method for the identification of this specific bacteria based on a TaqMan probe. This probe is designed to recognize the sequence of a putative siderophore receptor gene cds specific to X. oryzae pv. oryzae, and can be identified from either a bacterial culture or naturally infected rice seeds and leaves in only 2 h. The sensitivity of the method is 100 times higher than that of the current polymerase chain reaction (PCR) gel electrophoresis method for diagnosis.  相似文献   

7.
8.
A pea rust fungus, Uromyces viciae-fabae, has been classified into two varieties, var. viciae-fabae and var. orobi, based on differences in urediniospore wall thickness and putative host specificity in Japan. In principal component analyses, morphological features of urediniospores and teliospores of 94 rust specimens from Vicia, Lathyrus, and Pisum did not show definite host-specific morphological groups. In molecular analyses, 23 Uromyces specimens from Vicia, Lathyrus, and Pisum formed a single genetic clade based on D1/D2 and ITS regions. Four isolates of U. viciae-fabae from V. cracca and V. unijuga could infect and sporulate on P. sativum. These results suggest that U. viciae-fabae populations on different host plants are not biologically differentiated into groups that can be recognized as varieties.Contribution no. 184, Laboratory of Plant Parasitic Mycology, Institute of Agriculture and Forestry, University of Tsukuba, Japan  相似文献   

9.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

10.
Lactobacillus casei is a lactic acid bacterium that produces L-lactate as the main product of sugar fermentation via L-lactate dehydrogenase (Ldh1) activity. In addition, small amounts of the D-lactate isomer are produced by the activity of a D-hydroxycaproate dehydrogenase (HicD). Ldh1 is the main L-lactate producing enzyme, but mutation of its gene does not eliminate L-lactate synthesis. A survey of the L. casei BL23 draft genome sequence revealed the presence of three additional genes encoding Ldh paralogs. In order to study the contribution of these genes to the global lactate production in this organism, individual, as well as double mutants (ldh1 ldh2, ldh1 ldh3, ldh1 ldh4 and ldh1 hicD) were constructed and lactic acid production was assessed in culture supernatants. ldh2, ldh3 and ldh4 genes play a minor role in lactate production, as their single mutation or a mutation in combination with an ldh1 deletion had a low impact on L-lactate synthesis. A Deltaldh1 mutant displayed an increased production of D-lactate, which was probably synthesized via the activity of HicD, as it was abolished in a Deltaldh1 hicD double mutant. Contrarily to HicD, no Ldh1, Ldh2, Ldh3 or Ldh4 activities could be detected by zymogram assays. In addition, these assays revealed the presence of extra bands exhibiting D-/L-lactate dehydrogenase activity, which could not be attributed to any of the described genes. These results suggest that L. casei BL23 possesses a complex enzymatic system able to reduce pyruvic to lactic acid.  相似文献   

11.
The fungal species ofRhizopus oryzae 2062 has the capacity to carry out a single stage fermentation process for lactic acid production from potato starch wastewater. Starch hydrolysis, reducing sugar accumulation, biomass formation, and lactic acid production were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/L at pH 6.0 and 30°C was favourable for starch fermentation, resulting in a lactic acid yield of 78.3%–85.5% associated with 1.5–2.0 g/L fungal biomass produced in 36 h of fermentation.  相似文献   

12.
The fungus Rhizopus oryzae converts both glucose and xylose under aerobic conditions into chirally pure L+-lactic acid with by-products such as xylitol, glycerol, ethanol, carbon dioxide and fungal biomass. In this paper, we demonstrate that the production of lactic acid by R. oryzae CBS 112.07 only occurs under growing conditions. Deprivation of nutrients such as nitrogen, essential for fungal biomass formation, resulted in a cessation of lactic acid production. Complete xylose utilisation required a significantly lower C/N ratio (61/1) compared to glucose (201/1), caused by higher fungal biomass yields that were obtained with xylose as substrate. Decreasing the oxygen transfer rate resulted in decline of xylose consumption rates, whereas the conversion of glucose by R. oryzae was less affected. Both results were linked to the fact that R. oryzae CBS 112.07 utilises xylose via the two-step reduction/oxidation route. The consequences of these effects for R. oryzae as a potential lactic acid producer are discussed.  相似文献   

13.
Chen L  Hu B  Qian G  Wang C  Yang W  Han Z  Liu F 《Archives of microbiology》2009,191(2):163-170
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, one of the most widespread and destructive bacterial diseases in rice. This study identified and characterized the contribution of the twin-arginine translocation (Tat) pathway to motility, chemotaxis, extracellular polysaccharide (EPS) production and virulence in X. oryzae pv. oryzae strain PXO99. The tatC disruption mutant (strain TCM) of strain PXO99 were generated, and confirmed both by PCR and Southern blotting. Strain PXO99 cells were highly motile in NYGB 0.3% soft agar plate. In contrast, the tatC mutation impaired motility. Furthermore, strain TCM cells lacked detectable flagella and exhibited almost no chemotaxis toward glucose under aerobic conditions, indicating that the Tat secretion pathway contributed to flagellar biogenesis and chemotactic responses. It was also observed that strain TCM exhibited a reductive production of extracellular polysaccharide (EPS) and a significant reduction of virulence on rice plants when compared with the wild type PXO99. However, the tatC mutation in strain PXO99 did not affect growth rate and the ability to induce hypersensitive response (HR) in nonhost tobacco (Nicotiana tabacum L. cv. Samsun). Our findings indicated that the Tat system of X. oryzae pv. oryzae played an important role in the pathogen’s virulence. L. Chen, B. Hu, and G. Qian contributed equally to this research.  相似文献   

14.
The time to the most recent common ancestor of the extant populations of Plasmodium falciparum is controversial. The controversy primarily stems from the limited availability of sequences from Plasmodium reichenowi, a chimpanzee malaria parasite closely related to P. falciparum. Since the rate of nucleotide substitution differs in different loci and DNA regions, the estimation of genetic distance between P. falciparum and P. reichenowi should be performed using orthologous sequences that are evolving neutrally. Here, we obtained full-length sequences of two housekeeping genes, sarcoplasmic and endoplasmic reticulum Ca2+-ATPase (serca) and lactate dehydrogenase (ldh), from 11 isolates of P. falciparum and 1 isolate of P. reichenowi and estimate the interspecific genetic distance (divergence) between the two species and intraspecific genetic distance (polymorphism) within P. falciparum. Interspecific distance and intraspecific distance at synonymous sites of interspecies-conserved regions of serca and ldh were 0.0672±0.0088 and 0.0011±0.0007, respectively, using the Nei and Gojobori method. Based on the ratio of interspecific distance to intraspecific distance, the time to the most recent common ancestor of P. falciparum was estimated to be (8.30±5.40) × 104 and (11.62±7.56) × 104 years ago, assuming the divergence time of the two parasite species to be 5 and 7 million years ago, respectively.This article contains an online supplementary table.Reviewing Editor: Dr. Martin Kreitman  相似文献   

15.
We have investigated the floral ontogeny of Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis (of the eucalypt group, Myrtaceae) using scanning electron microscopy and light microscopy. Several critical characters for establishing relationships between these genera and to the eucalypts have been determined. The absence of compound petaline primordia in Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis excludes these taxa from the eucalypt clade. Post-anthesis circumscissile abscission of the hypanthium above the ovary in Stockwellia, Eucalyptopsis and Allosyncarpia is evidence that these three taxa form a monophyletic group; undifferentiated perianth parts and elongated fusiform buds are characters that unite Stockwellia and Eucalyptopsis as sister taxa. No floral characters clearly associate Arillastrum with either the eucalypt clade or the clade of Stockwellia, Eucalyptopsis and Allosyncarpia.We gratefully acknowledge Clyde Dunlop and Bob Harwood (Northern Territory Herbarium) for collecting specimens of Allosyncarpia, and Bruce Gray (Atherton) for collecting specimens of Stockwellia. The Australian National Herbarium (CANB) kindly lent herbarium specimens of Eucalyptopsis for examination. This research was supported by a University of Melbourne Research Development Grant to Andrew Drinnan.  相似文献   

16.
Pseudomonas stutzeri SDM was newly isolated from soil, and two stereospecific NAD-independent lactate dehydrogenase (iLDH) activities were detected in membrane of the cells cultured in a medium containing dl-lactate as the sole carbon source. Neither enzyme activities was constitutive, but both of them might be induced by either enantiomer of lactate. P. stutzeri SDM preferred to utilize lactate to growth, when both l-lactate and glucose were available, and the consumption of glucose was observed only after lactate had been exhausted. The Michaelis–Menten constant for l-lactate was higher than that for d-lactate. The l-iLDH activity was more stable at 55°C, while the d-iLDH activity was lost. Both enzymes exhibited different solubilization with different detergents and different oxidation rates with different electron acceptors. Combining activity staining and previous proteomic analysis, the results suggest that there are two separate enzymes in P. stutzeri SDM, which play an important role in converting lactate to pyruvate. Ma and Gao contributed equally to this work.  相似文献   

17.
Floral development in three species each of Leptospermum and Kunzea, and one species of Agonis, is described and compared. Differences in the number of stamens and their arrangement in the flower at anthesis are determined by the growth dynamics of the bud. In Leptospermum, early expansion of the bud is predominantly in the axial direction and causes the stamen primordia to be initiated in antepetalous chevrons. In Kunzea, early expansion occurs predominantly in the lateral direction and successive iterations of stamen primordia are inserted alternately at more or less the same level. In both genera, further expansion in the lateral plane spreads the stamens into a ring around the hypanthium. Agonis flexuosa is similar to Leptospermum. Other variable factors include the timing at which stamen initiation commences (earlier in Leptospermum than Kunzea), the duration of stamen initiation (hence the total number of stamens produced – varies within genera), and very late differential expansion that forces stamens into secondary antesepalous groups in A. flexuosa and L. myrsinoides.The authors thank Dr H. Toelken for kindly providing some material and the impetus for this project. This research was supported by Australian Research Council grant AS19131815.  相似文献   

18.
Hao J  Ma C  Gao C  Qiu J  Wang M  Zhang Y  Cui X  Xu P 《Biotechnology letters》2007,29(1):105-110
Pseudomonas stutzeri SDM oxidized dl-lactic acid (25.5 g l-1) into pyruvic acid (22.6 g l-1) over 24 h. Both NAD+-independent d-lactate dehydrogenase and NAD+-independent l-lactate dehydrogenase were found for the first time in the bioconversion of lactate to pyruvate based on the enzyme activity assay and proteomic analysis. Jianrong Hao and Cuiqing Ma contributed equally to this work  相似文献   

19.
The xylitol dehydrogenase-encoding Arxula adeninivorans AXDH gene was isolated and characterized. The gene includes a coding sequence of 1107 bp encoding a putative 368 amino acid protein of 40.3 kDa. The identity of the gene was confirmed by a high degree of homology of the derived amino acid sequence to that of xylitol dehydrogenases from different sources. The gene activity was regulated by carbon source. In media supplemented with xylitol, D-sorbitol and D-xylose induction of the AXDH gene and intracellular accumulation of the encoded xylitol dehydrogenase was observed. This activation pattern was confirmed by analysis of AXDH promoter – GFP gene fusions. The enzyme characteristics were analysed from isolates of native strains as well as from those of recombinant strains expressing the AXDH gene under control of the strong A. adeninivorans-derived TEF1 promoter. For both proteins, a molecular mass of ca. 80 kDa was determined corresponding to a dimeric structure, an optimum pH at 7.5 and a temperature optimum at 35 °C. The enzyme oxidizes polyols like xylitol and D-sorbitol whereas the reduction reaction is preferred when providing D-xylulose, D-ribulose and L-sorbose as substrates. Enzyme activity exclusively depends on NAD+ or NADH as coenzymes.  相似文献   

20.
Alcohol dehydrogenase (ADH) activity in plants is generally associated with glycolytic fermentation, which facilitates cell survival during episodes of low-oxygen stress in water-logged roots as well as chronically hypoxic regions surrounding the vascular core. Work with tobacco and potato has implicated ADH activity in additional metabolic roles, including aerobic fermentation, acetaldehyde detoxification and carbon reutilization. Here a combination of approaches has been used to examine tissue-specific patterns of Adh gene expression in order to provide insight into the potential roles of alcohol dehydrogenases, using Petunia hybrida, a solanaceous species with well-characterized genetics. A reporter-gene study, relying on the promoters of Adh1 and Adh2 to drive expression of the gene for a green fluorescent protein derivative, mgfp5, revealed unexpectedly complex patterns of GFP fluorescence in floral tissues, particularly the stigma, style and nectary. Results of GC-MS analysis suggest the association of ADH with production of aromatic compounds in the nectary. Overall the results demonstrate selective recruitment of Adh gene family members in tissues and organs associated with diverse ADH functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号