首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exocyst consists of eight rod-shaped subunits that align in a side-by-side manner to tether secretory vesicles to the plasma membrane in preparation for fusion. Two subunits, Sec3p and Exo70p, localize to exocytic sites by an actin-independent pathway, whereas the other six ride on vesicles along actin cables. Here, we demonstrate that three of the four domains of Exo70p are essential for growth. The remaining domain, domain C, is not essential but when deleted, it leads to synthetic lethality with many secretory mutations, defects in exocyst assembly of exocyst components Sec5p and Sec6p, and loss of actin-independent localization. This is analogous to a deletion of the amino-terminal domain of Sec3p, which prevents an interaction with Cdc42p or Rho1p and blocks its actin-independent localization. The two mutations are synthetically lethal, even in the presence of high copy number suppressors that can bypass complete deletions of either single gene. Although domain C binds Rho3p, loss of the Exo70p-Rho3p interaction does not account for the synthetic lethal interactions or the exocyst assembly defects. The results suggest that either Exo70p or Sec3p must associate with the plasma membrane for the exocyst to function as a vesicle tether.  相似文献   

2.
The exocyst complex plays an essential role in tethering secretory vesicles to specific domains of the plasma membrane for exocytosis. However, how the exocyst complex is assembled and targeted to sites of secretion is unclear. Here, we have investigated the role of the exocyst component Exo84p in these processes. We have generated an array of temperature-sensitive yeast exo84 mutants. Electron microscopy and cargo protein traffic analyses of these mutants indicated that Exo84p is specifically involved in the post-Golgi stage of secretion. Using various yeast mutants, we systematically studied the localization of Exo84p and other exocyst proteins by fluorescence microscopy. We found that pre-Golgi traffic and polarized actin organization are required for Exo84p localization. However, none of the exocyst proteins controls Exo84p polarization. In addition, Sec3p is not responsible for the polarization of Exo84p or any other exocyst component to the daughter cell. On the other hand, several exocyst members, including Sec10p, Sec15p, and Exo70p, clearly require Exo84p for their polarization. Biochemical analyses of the exocyst composition indicated that the assembly of Sec10p, Sec15p, and Exo70p with the rest of the complex requires Exo84p. We propose that there are at least two distinct regulatory mechanisms for exocyst polarization, one for Sec3p and one for the other members, including Exo84p. Exo84p plays a critical role in both the assembly of the exocyst and its targeting to sites of secretion.  相似文献   

3.
The exocyst is a multiprotein complex that plays an important role in secretory vesicle targeting and docking at the plasma membrane. Here we report the identification and characterization of a new component of the exocyst, Exo84p, in the yeast Saccharomyces cerevisiae. Yeast cells depleted of Exo84p cannot survive. These cells are defective in invertase secretion and accumulate vesicles similar to those in the late sec mutants. Exo84p co-immunoprecipitates with the exocyst components, and a portion of the Exo84p co-sediments with the exocyst complex in velocity gradients. The assembly of Exo84p into the exocyst complex requires two other subunits, Sec5p and Sec10p. Exo84p interacts with both Sec5p and Sec10p in a two-hybrid assay. Overexpression of Exo84p selectively suppresses the temperature sensitivity of a sec5 mutant. Exo84p specifically localizes to the bud tip or mother/daughter connection, sites of polarized secretion in the yeast S. cerevisiae. Exo84p is mislocalized in a sec5 mutant. These studies suggest that Exo84p is an essential protein that plays an important role in polarized secretion.  相似文献   

4.
The exocyst serves to tether secretory vesicles to cortical sites specified by polarity determinants, in preparation for fusion with the plasma membrane. Although most exocyst components are brought to these sites by riding on secretory vesicles as they are actively transported along actin cables, Exo70p displays actin-independent localization to these sites, implying an interaction with a polarity determinant. Here we show that Exo70p directly and specifically binds to the polarity determinant scaffold protein Bem1p. The interaction involves multiple domains of both Exo70p and Bem1p. Mutations in Exo70p that disrupt its interaction with Bem1, without impairing its interactions with other known binding partners, lead to the loss of actin-independent localization. Synthetic genetic interactions confirm the importance of the Exo70p–Bem1p interaction, although there is some possible redundancy with Sec3p and Sec15p, other exocyst components that also interact with polarity determinants. Similar to Sec3p, the actin-independent localization of Exo70p requires a synergistic interaction with the phosphoinositide PI(4,5)P2.  相似文献   

5.
The exocytosis is a process of fusion of secretory vesicles with plasma membrane, which plays a prominent role in many crucial cellular processes, e.g. secretion of neurotransmitters, cytokinesis or yeast budding. Prior to the SNARE-mediated fusion, the initial contact of secretory vesicle with the target membrane is mediated by an evolutionary conserved vesicle tethering protein complex, the exocyst. In all eukaryotic cells, the exocyst is composed of eight subunits — Sec5, Sec6, Sec8, Sec10, Sec15, Exo84 and two membrane-targeting landmark subunits Sec3 and Exo70, which have been described to directly interact with phosphatidylinositol (4,5)-bisphosphate (PIP2) of the plasma membrane. In this work, we utilized coarse-grained molecular dynamics simulations to elucidate structural details of the interaction of yeast Sec3p and Exo70p with lipid bilayers containing PIP2. We found that PIP2 is coordinated by the positively charged pocket of N-terminal part of Sec3p, which folds into unique Pleckstrin homology domain. Conversely, Exo70p interacts with the lipid bilayer by several binding sites distributed along the structure of this exocyst subunit. Moreover, we observed that the interaction of Exo70p with the membrane causes clustering of PIP2 in the adjacent leaflet. We further revealed that PIP2 is required for the correct positioning of small GTPase Rho1p, a direct Sec3p interactor, prior to the formation of the functional Rho1p-exocyst-membrane assembly. Our results show the critical importance of the plasma membrane pool of PIP2 for the exocyst function and suggest that specific interaction with acidic phospholipids represents an ancestral mechanism for the exocyst regulation.  相似文献   

6.
The exocyst is an octameric protein complex required to tether secretory vesicles to exocytic sites and to retain ER tubules at the apical tip of budded cells. Unlike the other five exocyst genes, SEC3, SEC5, and EXO70 are not essential for growth or secretion when either the upstream activator rab, Sec4p, or the downstream SNARE-binding component, Sec1p, are overproduced. Analysis of the suppressed sec3Delta, sec5Delta, and exo70Delta strains demonstrates that the corresponding proteins confer differential effects on vesicle targeting and ER inheritance. Sec3p and Sec5p are more critical than Exo70p for ER inheritance. Although nonessential under these conditions, Sec3p, Sec5p, and Exo70p are still important for tethering, as in their absence the exocyst is only partially assembled. Sec1p overproduction results in increased SNARE complex levels, indicating a role in assembly or stabilization of SNARE complexes. Furthermore, a fraction of Sec1p can be coprecipitated with the exoycst. Our results suggest that Sec1p couples exocyst-mediated vesicle tethering with SNARE-mediated docking and fusion.  相似文献   

7.
The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP(2) and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.  相似文献   

8.
He B  Xi F  Zhang X  Zhang J  Guo W 《The EMBO journal》2007,26(18):4053-4065
The exocyst is an octameric protein complex implicated in the tethering of post-Golgi secretory vesicles to the plasma membrane before fusion. The function of individual exocyst components and the mechanism by which this tethering complex is targeted to sites of secretion are not clear. In this study, we report that the exocyst subunit Exo70 functions in concert with Sec3 to anchor the exocyst to the plasma membrane. We found that the C-terminal Domain D of Exo70 directly interacts with phosphatidylinositol 4,5-bisphosphate. In addition, we have identified key residues on Exo70 that are critical for its interaction with phospholipids and the small GTPase Rho3. Further genetic and cell biological analyses suggest that the interaction of Exo70 with phospholipids, but not Rho3, is essential for the membrane association of the exocyst complex. We propose that Exo70 mediates the assembly of the exocyst complex at the plasma membrane, which is a crucial step in the tethering of post-Golgi secretory vesicles for exocytosis.  相似文献   

9.
Polarized secretion requires proper targeting of secretory vesicles to specific sites on the plasma membrane. Here we report that the exocyst complex plays a key role in vesicle targeting. Sec15p, an exocyst component, can associate with secretory vesicles and interact specifically with the rab GTPase, Sec4p, in its GTP-bound form. A chain of protein-protein interactions leads from Sec4p and Sec15p on the vesicle, through various subunits of the exocyst, to Sec3p, which marks the sites of exocytosis on the plasma membrane. Sec4p may control the assembly of the exocyst. The exocyst may therefore function as a rab effector system for targeted secretion.  相似文献   

10.
The exocyst is a conserved protein complex essential for trafficking secretory vesicles to the plasma membrane. The structure of the C-terminal domain of the exocyst subunit Sec6p reveals multiple helical bundles, which are structurally and topologically similar to Exo70p and the C-terminal domains of Exo84p and Sec15, despite <10% sequence identity. The helical bundles appear to be evolutionarily related molecular scaffolds that have diverged to create functionally distinct exocyst proteins.  相似文献   

11.
Lipid raft microdomains act as organizing centers for signal transduction. We report here that the exocyst complex, consisting of Exo70, Sec6, and Sec8, regulates the compartmentalization of Glut4-containing vesicles at lipid raft domains in adipocytes. Exo70 is recruited by the G protein TC10 after activation by insulin and brings with it Sec6 and Sec8. Knockdowns of these proteins block insulin-stimulated glucose uptake. Moreover, their targeting to lipid rafts is required for glucose uptake and Glut4 docking at the plasma membrane. The assembly of this complex also requires the PDZ domain protein SAP97, a member of the MAGUKs family, which binds to Sec8 upon its translocation to the lipid raft. Exocyst assembly at lipid rafts sets up targeting sites for Glut4 vesicles, which transiently associate with these microdomains upon stimulation of cells with insulin. These results suggest that the TC10/exocyst complex/SAP97 axis plays an important role in the tethering of Glut4 vesicles to the plasma membrane in adipocytes.  相似文献   

12.
Sec6p Anchors the Assembled Exocyst Complex at Sites of Secretion   总被引:2,自引:0,他引:2       下载免费PDF全文
The exocyst is an essential protein complex required for targeting and fusion of secretory vesicles to sites of exocytosis at the plasma membrane. To study the function of the exocyst complex, we performed a structure-based mutational analysis of the Saccharomyces cerevisiae exocyst subunit Sec6p. Two “patches” of highly conserved residues are present on the surface of Sec6p; mutation of either patch does not compromise protein stability. Nevertheless, replacement of SEC6 with the patch mutants results in severe temperature-sensitive growth and secretion defects. At nonpermissive conditions, although trafficking of secretory vesicles to the plasma membrane is unimpaired, none of the exocyst subunits are polarized. This is consistent with data from other exocyst temperature-sensitive mutants, which disrupt the integrity of the complex. Surprisingly, however, these patch mutations result in mislocalized exocyst complexes that remain intact. Our results indicate that assembly and polarization of the exocyst are functionally separable events, and that Sec6p is required to anchor exocyst complexes at sites of secretion.  相似文献   

13.
The exocyst is an evolutionarily conserved multiprotein complex required for the targeting and docking of post-Golgi vesicles to the plasma membrane. Through its interactions with a variety of proteins, including small GTPases, the exocyst is thought to integrate signals from the cell and signal that vesicles arriving at the plasma membrane are ready for fusion. Here we describe the three-dimensional crystal structure of one of the components of the exocyst, Exo70p, from Saccharomyces cerevisiae at 3.5A resolution. Exo70p binds the small GTPase Rho3p in a GTP-dependent manner with an equilibrium dissociation constant of approximately 70 microM. Exo70p is an extended rod approximately 155 angstroms in length composed principally of alpha helices, and is a novel fold. The structure provides a first view of the Exo70 protein family and provides a framework to study the molecular function of this exocyst component.  相似文献   

14.
During membrane trafficking, vesicular carriers are transported and tethered to their cognate acceptor compartments before soluble N-ethylmaleimide–sensitive factor attachment protein (SNARE)-mediated membrane fusion. The exocyst complex was believed to target and tether post-Golgi secretory vesicles to the plasma membrane during exocytosis. However, no definitive experimental evidence is available to support this notion. We developed an ectopic targeting assay in yeast in which each of the eight exocyst subunits was expressed on the surface of mitochondria. We find that most of the exocyst subunits were able to recruit the other members of the complex there, and mistargeting of the exocyst led to secretion defects in cells. On the other hand, only the ectopically located Sec3p subunit is capable of recruiting secretory vesicles to mitochondria. Our assay also suggests that both cytosolic diffusion and cytoskeleton-based transport mediate the recruitment of exocyst subunits and secretory vesicles during exocytosis. In addition, the Rab GTPase Sec4p and its guanine nucleotide exchange factor Sec2p regulate the assembly of the exocyst complex. Our study helps to establish the role of the exocyst subunits in tethering and allows the investigation of the mechanisms that regulate vesicle tethering during exocytosis.  相似文献   

15.
The exocyst is a large complex that is required for tethering vesicles at the final stages of the exocytic pathway in all eukaryotes. Here we present the structures of the Exo70p subunit of this complex and of the C-terminal domains of Exo84p, at 2.0-A and 2.85-A resolution, respectively. Exo70p forms a 160-A-long rod with a novel fold composed of contiguous alpha-helical bundles. The Exo84p C terminus also forms a long rod (80 A), which unexpectedly has the same fold as the Exo70p N terminus. Our structural results and our experimental observations concerning the interaction between Exo70p and other exocyst subunits or Rho3p GTPase are consistent with an architecture wherein exocyst subunits are composed of mostly helical modules strung together into long rods.  相似文献   

16.
Activation of the rab GTPase, Sec4p, by its exchange factor, Sec2p, is needed for polarized transport of secretory vesicles to exocytic sites and for exocytosis. A small region in the C-terminal half of Sec2p regulates its localization. Loss of this region results in temperature-sensitive growth and the depolarized accumulation of secretory vesicles. Here, we show that Sec2p associates with the exocyst, an octameric effector of Sec4p involved in tethering secretory vesicles to the plasma membrane. Specifically, the exocyst subunit Sec15p directly interacts with Sec2p. This interaction normally occurs on secretory vesicles and serves to couple nucleotide exchange on Sec4p to the recruitment of the Sec4p effector. The mislocalization of Sec2p mutants correlates with dramatically enhanced binding to the exocyst complex. We propose that Sec2p is normally released from the exocyst after vesicle tethering so that it can recycle onto a new round of vesicles. The mislocalization of Sec2p mutants results from a failure to be released from Sec15p, blocking this recycling pathway.  相似文献   

17.
The Sec6/8 complex, also known as the exocyst complex, is an octameric protein complex that has been implicated in tethering of secretory vesicles to specific regions on the plasma membrane. Two subunits of the Sec6/8 complex, Exo84 and Sec5, have recently been shown to be effector targets for active Ral GTPases. However, the mechanism by which Ral proteins regulate the Sec6/8 activities remains unclear. Here, we present the crystal structure of the Ral-binding domain of Exo84 in complex with active RalA. The structure reveals that the Exo84 Ral-binding domain adopts a pleckstrin homology domain fold, and that RalA interacts with Exo84 via an extended interface that includes both switch regions. Key residues of Exo84 and RalA were found that determine the specificity of the complex interactions; these interactions were confirmed by mutagenesis binding studies. Structural and biochemical data show that Exo84 and Sec5 competitively bind to active RalA. Taken together, these results further strengthen the proposed role of RalA-regulated assembly of the Sec6/8 complex.  相似文献   

18.
Ral GTPases have been implicated in the regulation of a variety of dynamic cellular processes including proliferation, oncogenic transformation, actin-cytoskeletal dynamics, endocytosis, and exocytosis. Recently the Sec6/8 complex, or exocyst, a multisubunit complex facilitating post-Golgi targeting of distinct subclasses of secretory vesicles, has been identified as a bona fide Ral effector complex. Ral GTPases regulate exocyst-dependent vesicle trafficking and are required for exocyst complex assembly. Sec5, a membrane-associated exocyst subunit, has been identified as a direct target of activated Ral; however, the mechanism by which Ral can modulate exocyst assembly is unknown. Here we report that an additional component of the exocyst, Exo84, is a direct target of activated Ral. We provide evidence that mammalian exocyst components are present as distinct subcomplexes on vesicles and the plasma membrane and that Ral GTPases regulate the assembly interface of a full octameric exocyst complex through interaction with Sec5 and Exo84.  相似文献   

19.
Vesicles in eukaryotic cells transport cargo between functionally distinct membrane-bound organelles and the plasma membrane for growth and secretion. Trafficking and fusion of vesicles to specific target sites are highly regulated processes that are not well understood at the molecular level. At the plasma membrane, tethering and fusion of secretory vesicles require the exocyst complex. As a step toward elucidation of the molecular architecture and biochemical function(s) of the exocyst complex, we expressed and purified the exocyst subunit Sec6p and demonstrated that it is a predominantly helical protein. Biophysical characterization of purified Sec6p by gel filtration and analytical ultracentrifugation experiments revealed that Sec6p is a dimer. Limited proteolysis defined an independently folded C-terminal domain (residues 300-805) that equilibrated between a dimer and monomer in solution. Removal of residues 300-410 from this construct yielded a well-folded, monomeric domain. These results demonstrate that residues 300-410 are necessary for dimerization, and the presence of the N-terminal region (1-299) increases dimer stability. Moreover, we found that the dimer of Sec6p binds to the plasma membrane t-SNARE Sec9p and inhibits the interaction between Sec9p and its partner t-SNARE Sso1p. This direct interaction between the exocyst complex and the t-SNARE implicates the exocyst in SNARE complex regulation.  相似文献   

20.
Invadopodia are actin-rich membrane protrusions formed by tumor cells that degrade the extracellular matrix for invasion. Invadopodia formation involves membrane protrusions driven by Arp2/3-mediated actin polymerization and secretion of matrix metalloproteinases (MMPs) at the focal degrading sites. The exocyst mediates the tethering of post-Golgi secretory vesicles at the plasma membrane for exocytosis and has recently been implicated in regulating actin dynamics during cell migration. Here, we report that the exocyst plays a pivotal role in invadopodial activity. With RNAi knockdown of the exocyst component Exo70 or Sec8, MDA-MB-231 cells expressing constitutively active c-Src failed to form invadopodia. On the other hand, overexpression of Exo70 promoted invadopodia formation. Disrupting the exocyst function by siEXO70 or siSEC8 treatment or by expression of a dominant negative fragment of Exo70 inhibited the secretion of MMPs. We have also found that the exocyst interacts with the Arp2/3 complex in cells with high invasion potential; blocking the exocyst-Arp2/3 interaction inhibited Arp2/3-mediated actin polymerization and invadopodia formation. Together, our results suggest that the exocyst plays important roles in cell invasion by mediating the secretion of MMPs at focal degrading sites and regulating Arp2/3-mediated actin dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号