首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well documented that women of child-bearing age tend to have lower serum low-density lipoprotein (LDL) concentrations than men. In order to explore the metabolic basis of this sex difference, we have compared the saturable binding of 125I-labeled LDL (d 1.02-1.05 g/ml) at 37 degrees C by liver membranes from healthy male and female Wistar rats of different ages (15-213 days). Woolf plots of saturable binding curves over the concentration range 15-65 micrograms LDL protein/ml were linear and compatible with a single class of binding sites. Maximum binding capacity (Bmax) was not significantly different in male and female animals of 15-19 days of age (respectively, 0.331 +/- 0.018 vs. 0.427 +/- 0.044 micrograms LDL protein/mg membrane protein, mean +/- S.E.). Thereafter, Bmax increased in females, reaching a peak of 0.635 +/- 0.042 micrograms LDL protein/mg membrane protein at 60 days. As no increase in Bmax occurred in males, values were significantly higher (P less than 0.02) in females than in males (by a mean of 61-117%) at all ages after 30 days. During ageing, serum cholesterol concentration changed reciprocally with Bmax in females (Pearson's correlation coefficient, r = -0.761, P less than 0.01) and remained essentially constant in males. The equilibrium dissociation constant for 125I-labelled LDL binding to the hepatic membranes was unaffected by both age and sex. These results provide evidence that the sex difference in the plasma total and LDL cholesterol concentrations is related, at least in part, to a greater mean LDL receptor density in the livers of females.  相似文献   

2.
To evaluate factors regulating the concentrations of plasma low density lipoproteins (LDL), apolipoprotein B metabolism was studied in nine Pima Indians (25 +/- 2 yr, 191 +/- 20% ideal wt) with low LDL cholesterol (77 +/- 7 mg/dl) and apoB (60 +/- 4 mg/dl) and in eight age- and weight-matched Caucasians with similar very low density lipoprotein (VLDL) concentrations, but higher LDL (cholesterol = 104 +/- 18; apoB = 82 +/- 10; P less than 0.05). Subjects received autologous 131I-labeled VLDL and 125I-labeled LDL, and specific activities of VLDL-apoB, intermediate density lipoprotein (IDL)-apoB, and LDL-apoB were analyzed using a multicompartmental model. Synthesis of LDL-apoB was similar (1224 +/- 87 mg/d in Pimas vs 1218 +/- 118 mg/d in Caucasians) but in Pimas the fractional catabolic rate (FCR) for LDL-apoB was higher (0.48 +/- 0.02 vs 0.39 +/- 0.04 d-1, P less than 0.05). In the Pimas, a much higher proportion of VLDL-apoB was catabolized without conversion to LDL (47 +/- 3 vs 30 +/- 5%, P less than 0.01). When all subjects were considered together, LDL-apoB concentrations were negatively correlated with both FCR for LDL-apoB (r = -0.79, P less than 0.0001) and the non-LDL pathway (r = -0.43, P less than 0.05). Also, the direct removal (non-LDL) path was correlated with VLDL-apoB production (r = 0.49, P = 0.03), and the direct removal pathway and FCR for LDL-apoB were correlated (r = 0.49, P = 0.03). In conclusion, plasma LDL appear to be regulated by both the catabolism of LDL and the extent of metabolism of VLDL without conversion to LDL; both of these processes may be mediated by the apoB/E receptor, and appear to increase in response to increasing VLDL production.  相似文献   

3.
An orally bioavailable acyl coenzyme A:cholesterol acyltransferase (ACAT) inhibitor, avasimibe (CI-1011), was used to test the hypothesis that inhibition of cholesterol esterification, in vivo, would reduce hepatic very low density (VLDL) apolipoprotein (apo) B secretion into plasma. ApoB kinetic studies were carried out in 10 control miniature pigs, and in 10 animals treated with avasimibe (10 mg/kg/d, n = 6; 25 mg/kg/d, n = 4). Pigs were fed a diet containing fat (34% of calories) and cholesterol (400 mg/d; 0.1%). Avasimibe decreased the plasma concentrations of total triglyceride, VLDL triglyceride, and VLDL cholesterol by 31;-40% 39-48%, and 31;-35%, respectively. Significant reductions in plasma total cholesterol (35%) and low density lipoprotein (LDL) cholesterol (51%) concentrations were observed only with high dose avasimibe. Autologous 131I-labeled VLDL, 125I-labeled LDL, and [3H]leucine were injected simultaneously into each pig and apoB kinetic data were analyzed using multicompartmental analysis (SAAM II). Avasimibe decreased the VLDL apoB pool size by 40;-43% and the hepatic secretion rate of VLDL apoB by 38;-41%, but did not alter its fractional catabolism. Avasimibe decreased the LDL apoB pool size by 13;-57%, largely due to a dose-dependent 25;-63% in the LDL apoB production rate. Hepatic LDL receptor mRNA abundances were unchanged, consistent with a marginal decrease in LDL apoB FCRs. Hepatic ACAT activity was decreased by 51% (P = 0.050) and 68% (P = 0.087) by low and high dose avasimibe, respectively. The decrease in total apoB secretion correlated with the decrease in hepatic ACAT activity (r = 0.495; P = 0.026).We conclude that inhibition of hepatic ACAT by avasimibe reduces both plasma VLDL and LDL apoB concentrations, primarily by decreasing apoB secretion.  相似文献   

4.
Hyperlipidemia is a prominent feature of the nephrotic syndrome. Lipoprotein abnormalities include increased very low and low density lipoprotein (VLDL and LDL) cholesterol and variable reductions in high density lipoprotein (HDL) cholesterol. We hypothesized that plasma cholesteryl ester transfer protein (CETP), which influences the distribution of cholesteryl esters among the lipoproteins, might contribute to lipoprotein abnormalities in nephrotic syndrome. Plasma CETP, apolipoprotein and lipoprotein concentrations were measured in 14 consecutive untreated and 7 treated nephrotic patients, 5 patients with primary hypertriglyceridemia, and 18 normolipidemic controls. Patients with nephrotic syndrome displayed increased plasma concentrations of apoB, VLDL, and LDL cholesterol. The VLDL was enriched with cholesteryl ester (CE), shown by a CE/triglyceride (TG) ratio approximately twice that in normolipidemic or hypertriglyceridemic controls (P < 0.001). Plasma CETP concentration was increased in patients with untreated nephrotic syndrome compared to controls (3.6 vs. 2.3 mg/l, P < 0.001), and was positively correlated with the CE concentration in VLDL (r = 0.69, P = 0.004) and with plasma apoB concentration (r = 0.68, P = 0.007). Treatment with corticosteroids resulted in normalization of plasma CETP and of the CE/TG ratio in VLDL. An inverse correlation between plasma CETP and HDL cholesterol was observed in hypertriglyceridemic nephrotic syndrome patients (r = -0.67, P = 0.03). The dyslipidemia of nephrotic syndrome includes increased levels of apoB-lipoproteins and VLDL that are unusually enriched in CE and likely to be atherogenic. Increased plasma CETP probably plays a significant role in the enrichment of VLDL with CE, and may also contribute to increased concentrations of apoB-lipoproteins and decreased HDL cholesterol in some patients.  相似文献   

5.
Postprandial plasma lipoprotein changes in human subjects of different ages   总被引:12,自引:0,他引:12  
Plasma lipoprotein changes were monitored for 12 hr after a fat-rich meal (1 g of fat/kg body weight) in 22 subjects (9 males, 13 females, 22-79 yr old). Plasma triglyceride, measured hourly, peaked once in some subjects, but twice or three times in others. The magnitude of postprandial triglyceridemia varied considerably between subjects (range: 650-4082 mg.hr/dl). Males tended to have greater postprandial triglyceridemia than females, and elderly subjects had significantly (P less than 0.05) greater postprandial triglyceridemia than younger subjects. Total plasma cholesterol, measured every three hr, increased significantly (6.0 +/- 2.1%) in 7 subjects, decreased significantly (7.1 +/- 1.2%) in 10 subjects, and remained unchanged in the remainder. Single spin ultracentrifugation and dextran sulfate precipitation procedures were used to quantitate triglyceride and cholesterol in triglyceride-rich lipoproteins (TRL, d less than 1.006 g/ml), low density lipoproteins (LDL), and high density lipoproteins (HDL). Plasma TRL and HDL triglyceride increased after the fat meal, while LDL triglyceride decreased at 3 hr but increased at 9 and 12 hr. TRL cholesterol increased postprandially, while LDL and HDL cholesterol decreased. Phospholipid (PL), free (FC) and esterified (EC) cholesterol measurements were carried out on the plasma and lipoprotein fractions of 8 subjects. Plasma PL increased significantly at 3, 6, and 9 hr after the fat-rich meal, due to increases in TRL and HDL PL. TRL CE increased postprandially, but a greater decrease in LDL and HDL CE caused plasma CE to be decreased. Plasma FC increased, predominantly due to an increase in TRL FC. Plasma concentrations of apolipoprotein A-I and apolipoprotein B both decreased after the fat-rich meal. The magnitude of postprandial triglyceridemia was inversely correlated with HDL cholesterol levels (r = -0.502, P less than 0.05) and positively correlated with age (r = -0.449, P less than 0.05), fasting levels of plasma triglyceride (r = 0.636, P less than 0.01), plasma apoB (r = 0.510, P less than 0.05), TRL triglyceride (r = 0.564, P less than 0.01), TRL cholesterol (r = 0.480, P less than 0.05) and LDL triglyceride (r = 0.566, P less than 0.01). Change in postprandial cholesterolemia was inversely correlated with fasting levels of HDL cholesterol (r = -0.451, P less than 0.05) and plasma apoA-I (r = -0.436, P less than 0.05).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Apolipoprotein B (apoB) of plasma low density lipoproteins (LDL) binds to high affinity receptors on many cell types. A minor subclass of high density lipoproteins (HDL), termed HDL1, which contains apoE but lacks apoB, binds to the same receptor. Bound lipoproteins are engulfed, degraded, and regulate intracellular cholesterol metabolism and receptor activity. The HDL of many patients with liver disease is rich in apoE. We tested the hypothesis that such patient HDL would reduce LDL binding and would themselves regulate cellular cholesterol metabolism. Normal HDL had little effect on binding, uptake, and degradation of 125I-labeled LDL by cultured human skin fibroblasts. Patient HDL (d 1.063-1.21 g/ml) inhibited these processes, and in 15 of the 25 samples studied there was more than 50% inhibition at 125I-labeled LDL and HDL protein concentrations of 10 micrograms/ml and 25 micrograms/ml, respectively. There was a significant negative correlation between the percentage of 125I-labeled LDL bound and the apoE content of the competing HDL (r = -0.54, P less than 0.01). Patient 125I-labeled HDL was also taken up and degraded by the fibroblasts, apparently through the LDL-receptor pathway, stimulated cellular cholesterol esterification, increased cell cholesteryl ester content, and suppressed cholesterol synthesis and receptor activity. We conclude that LDL catabolism by the receptor-mediated pathway may be impaired in liver disease and that patient HDL may deliver cholesterol to cells.  相似文献   

7.
We investigated the metabolism of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) apolipoprotein B (apoB) in seven patients with combined hyperlipidemia (CHL), using 125I-labeled VLDL and 131I-labeled LDL and compartmental modeling, before and during lovastatin treatment. Lovastatin therapy significantly reduced plasma levels of LDL cholesterol (142 vs 93 mg/dl, P less than 0.0005) and apoB (1328 vs 797 micrograms/ml, P less than 0.001). Before treatment, CHL patients had high production rates (PR) of LDL apoB. Three-fourths of this LDL apoB flux was derived from sources other than circulating VLDL and was, therefore, defined as "cold" LDL apoB flux. Compared to baseline, treatment with lovastatin was associated with a significant reduction in the total rate of entry of apoB-containing lipoproteins into plasma in all seven CHL subjects (40.7 vs. 25.7 mg/kg.day, P less than 0.003). This reduction was associated with a fall in total LDL apoB PR and in "cold" LDL apoB PR in six out of seven CHL subjects. VLDL apoB PR fell in five out of seven CHL subjects. Treatment with lovastatin did not significantly alter VLDL apoB conversion to LDL apoB or LDL apoB fractional catabolic rate (FCR) in CHL patients. In three patients with familial hypercholesterolemia who were studied for comparison, lovastatin treatment increased LDL apoB FCR but did not consistently alter LDL apoB PR. We conclude that lovastatin lowers LDL cholesterol and apoB concentrations in CHL patients by reducing the rate of entry of apoB-containing lipoproteins into plasma, either as VLDL or as directly secreted LDL.  相似文献   

8.
Apolipoprotein B (apoB) metabolism was investigated in 20 men with plasma triglyceride 0.66-2.40 mmol/l and plasma cholesterol 3.95-6. 95 mmol/l. Kinetics of VLDL(1) (S(f) 60-400), VLDL(2) (S(f) 20-60), IDL (S(f) 12-20), and LDL (S(f) 0;-12) apoB were analyzed using a trideuterated leucine tracer and a multicompartmental model which allowed input into each fraction. VLDL(1) apoB production varied widely (from 5.4 to 26.6 mg/kg/d) as did VLDL(2) apoB production (from 0.18 to 8.4 mg/kg/d) but the two were not correlated. IDL plus LDL apoB direct production accounted for up to half of total apoB production and was inversely related to plasma triglyceride (r = -0.54, P = 0.009). Percent of direct apoB production into the IDL/LDL density range (r = 0.50, P < 0.02) was positively related to the LDL apoB fractional catabolic rate (FCR). Plasma triglyceride in these subjects was determined principally by VLDL(1) and VLDL(2) apoB fractional transfer rates (FTR), i.e., lipolysis. IDL apoB concentration was regulated mainly by the IDL to LDL FTR (r = -0.71, P < 0.0001). LDL apoB concentration correlated with VLDL(2) apoB production (r = 0.48, P = 0.018) and the LDL FCR (r = -0.77, P < 0. 001) but not with VLDL(1), IDL, or LDL apoB production. Subjects with predominantly small, dense LDL (pattern B) had lower VLDL(1) and VLDL(2) apoB FTRs, higher VLDL(2) apoB production, and a lower LDL apoB FCR than those with large LDL (pattern A). Thus, the metabolic conditions that favored appearance of small, dense LDL were diminished lipolysis of VLDL, resulting in a raised plasma triglyceride above the putative threshold of 1.5 mmol/l, and a prolonged residence time for LDL. This latter condition presumably permitted sufficient time for the processes of lipid exchange and lipolysis to generate small LDL particles.  相似文献   

9.
Studies have shown that dietary fat saturation affects guinea pig plasma low density lipoprotein (LDL) levels by altering both LDL receptor-mediated catabolism and flux rates of LDL (Fernandez et al. 1992. J. Lipid Res. 33: 97-109). The present studies investigated whether saturated fatty acids of varying chain lengths have differential effects on LDL metabolism. Guinea pigs were fed 15% (w/w, 35% calories) fat diets containing either palm kernel oil (PK), 52% lauric acid/18% myristic acid; palm oil (PO), 43% palmitic acid/4% stearic acid; or beef tallow (BT), 23% palmitic acid/14% stearic acid. Plasma LDL cholesterol levels were significantly higher for animals fed the PK diet (P < 0.001) with values of 83 +/- 19 (n = 12), 53 +/- 8 (n = 12) and 44 +/- 16 (n = 10) mg/dl for PK, PO, and BT diets, respectively. The relative percentage composition of LDL was modified by fat type; however, LDL diameters and peak densities were not different between diets, indicating no effect of saturated fatty acid composition on LDL size. ApoB/E receptor-mediated LDL fractional catabolic rates (FCR) were significantly lower in animals fed the PK diet (P < 0.01) and LDL apoB flux rates were reduced (P < 0.01) in animals fed the BT diet. A correlation was found between plasma LDL levels and receptor-mediated LDL catabolism (r = -0.66, P < 0.01). A higher apoB/E receptor number (Bmax), determined by in vitro LDL binding to guinea pig hepatic membranes, was observed for animals fed BT versus PK or PO diets and Bmax values were significantly correlated with plasma LDL levels (r = -0.776, P < 0.001). These results indicate that saturated fatty acids of varying chain length have differential effects on hepatic apoB/E receptor expression and on LDL apoB flux rates which in part account for differences in plasma LDL cholesterol levels of guinea pigs fed these saturated fats.  相似文献   

10.
Whole body sterol balance, hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity, hepatic low-density lipoprotein (LDL) receptor levels and net tissue cholesterol concentrations were determined in guinea pigs fed either a corn oil- or lard-based purified diet for 6-7 weeks. In comparison to the saturated lard diet, the polyunsaturated corn oil diet resulted in a 34% reduction in plasma total cholesterol levels (P less than 0.02) and a 40% lower triacylglycerol level (P less than 0.02). Feeding the corn oil diet altered very-low-density lipoprotein (VLDL) and LDL composition; the percent cholesterol ester in both particles was decreased and the relative percentages of VLDL triacylglycerol and LDL phospholipid increased. The ratio of surface to core components of LDL from corn oil-fed guinea pigs was significantly higher compared to LDL from animals fed lard. Dietary fat quality had no effect on fecal neutral or acidic steroid excretion, net tissue accumulation of cholesterol, whole body cholesterol synthesis or gallbladder bile composition. Consistent with these results was the finding that fat quality did not alter either expressed (non-phosphorylated) or total hepatic HMG-CoA reductase activities. The hepatic concentrations of free and esterified cholesterol were significantly increased in corn oil-fed animals, as were cholesterol concentrations in intestine, adipose tissue, muscle and total carcass. Analysis of receptor-mediated LDL binding to isolated hepatic membranes demonstrated that the polyunsaturated corn-oil based diet caused a 1.9-fold increase in receptor levels (P less than 0.02). The data indicate that the hypocholesterolemic effects of dietary polyunsaturated fat in the guinea pig are not attributable to changes in endogenous cholesterol synthesis or catabolism but rather may result from a redistribution of plasma cholesterol to body tissue due to an increase in tissue LDL receptors.  相似文献   

11.
Human hepatoma HepG2 cells were used to study the effects of cholesterol loading and depletion on apolipoprotein B (apoB) secretion and low-density lipoprotein (LDL) receptor activity. Exposure of HepG2 cells to cholesterol and oleic acid, which elevated intracellular cholesterol levels, stimulated apoB secretion and reduced receptor-mediated uptake of LDL, whereas recombinant complexes of apolipoprotein A-I with dimyristoylphosphatidylcholine, which depleted the cellular cholesterol pool, inhibited apoB secretion and up-regulated LDL receptors. Significant negative correlation (r = -0.92, P less than 0.001) between the levels of apoB secretion and LDL uptake was found. These data suggest that the cholesterol content of the cells may induce concomitant changes in apoB secretion and LDL receptor activity.  相似文献   

12.
The effects of the long-term administration of the dietary fats coconut oil and corn oil at 31% of calories with or without 0.1% (wt/wt) dietary cholesterol on plasma lipoproteins, apolipoproteins (apo), hepatic lipid content, and hepatic apoA-I, apoB, apoE, and low density lipoprotein (LDL) receptor mRNA abundance were examined in 27 cebus monkeys. Relative to the corn oil-fed animals, no significant differences were noted in any of the parameters of the corn oil plus cholesterol-fed group. In animals fed coconut oil without cholesterol, significantly higher (P less than 0.05) plasma total cholesterol (145%), very low density lipoprotein (VLDL) + LDL (201%) and high density lipoprotein (HDL) (123%) cholesterol, apoA-I (103%), apoB (61%), and liver cholesteryl ester (263%) and triglyceride (325%) levels were noted, with no significant differences in mRNA levels relative to the corn oil only group. In animals fed coconut oil plus cholesterol, all plasma parameters were significantly higher (P less than 0.05), as were hepatic triglyceride (563%) and liver apoA-I (123%) and apoB (87%) mRNA levels relative to the corn oil only group, while hepatic LDL receptor mRNA (-29%) levels were significantly lower (P less than 0.05). Correlation coefficient analyses performed on pooled data demonstrated that liver triglyceride content was positively associated (P less than 0.05) with liver apoA-I and apoB mRNA levels and negatively associated (P less than 0.01) with hepatic LDL receptor mRNA levels. Liver free and esterified cholesterol levels were positively correlated (P less than 0.05) with liver apoE mRNA levels and negatively correlated (P less than 0.025) with liver LDL receptor mRNA levels. Interestingly, while a significant correlation (P less than 0.01) was noted between hepatic apoA-I mRNA abundance and plasma apoA-I levels, no such relationship was observed between liver apoB mRNA and plasma apoB levels, suggesting that the hepatic mRNA of apoA-I, but not that of apoB, is a major determinant of the circulating levels of the respective apolipoprotein. Our data indicate that a diet high in saturated fat and cholesterol may increase the accumulation of triglyceride and cholesterol in the liver, each resulting in the suppression of hepatic LDL receptor mRNA levels. We hypothesize that such elevations in hepatic lipid content differentially alter hepatic apoprotein mRNA levels, with triglyceride increasing hepatic mRNA concentrations for apoA-I and B and cholesterol elevating hepatic apoE mRNA abundance.  相似文献   

13.
A sequential immunoaffinity chromatography procedure was developed to isolate from whole normolipidemic human plasma a subpopulation of apoB containing particles (Lp-B) which is virtually free of non apoB protein. The absence of non apoB protein in Lp-B was assessed by enzyme immunoassay against apolipoproteins A-I, A-II, A-IV, E, C-III and (a). Electron microscopy and fractionation of the isolated particles by gel filtration demonstrated that these particles were heterogeneous in size. However, most of them had diameters between 18 and 26 nm. These particles were found to be rich in cholesterol (molar ratio cholesterol/apoB = 2246 +/- 995) poor in triacylglycerol (molar ratio triacylglycerol/apoB = 555 +/- 518) and had a phospholipids/apoB molar ratio of 713 +/- 348. Most of the cholesterol was esterified (66% +/- 5%). Lp-B particles bound to the apoB, E receptor of HeLa cells with a lower affinity than LDL prepared by ultracentrifugation (1.030 kg/l less than d less than 1.053 kg/l). (KD = 18.9 vs 10.5 nmol/l).  相似文献   

14.
125I-labeled low density lipoprotein (LDL) binding to purified plasma membranes prepared from freshly isolated human adipocytes was saturable, specific, and displaceable by unlabeled ligand. The maximum specific binding capacity measured at saturating concentrations of 125I-LDL was 1.95 +/- 1.17 micrograms of LDL bound/mg of membrane protein (mean +/- S.D., n = 16). In contrast to cultured fibroblasts, specific binding of LDL to adipocyte membranes was calcium-independent, was not affected by EDTA or NaCl, and was not destroyed by pronase. Plasma membranes purified directly from homogenized adipose tissue also showed calcium-independent LDL specific binding (0.58 +/- 0.33 micrograms of LDL bound/mg of membrane protein, mean +/- S.D. n = 11). Specific binding, internalization, and degradation of 125I-methylated LDL was demonstrated in isolated adipocytes and competition experiments showed that native and methylated LDL interacted with adipocytes through some common recognition mechanism(s). Compared to native LDL, specific binding of methylated LDL to adipocyte membranes was significantly reduced (43%), indicating that interaction of LDL with adipocyte was dependent in part on the lysine residues of apolipoprotein B. LDL binding to adipocyte plasma membranes was also competitively inhibited by human high density lipoprotein subfractions HDL2 and HDL3. Thus, LDL metabolism in mature adipocytes appears to be regulated by mechanisms distinctly different from a variety of cultured mesenchymal cells. In addition, the ability of adipocytes to bind, internalize, and degrade significant amounts of methylated LDL supports the view that adipose tissue is involved in the metabolism of modified lipoproteins in vivo.  相似文献   

15.
Apolipoprotein B transports cholesterol in plasma as low density lipoprotein (LDL) and targets its delivery to cells by binding to a specific plasma membrane receptor. The cellular consequences of apoB binding to its receptor were investigated to determine whether it suppresses cholesterol biosynthesis and reduces the number of cellular receptors for the apoprotein. Upon preincubation of fibroblasts with lipoprotein-deficient medium alone or supplemented with either LDL or apoB complexed to BSA (apoB-BSA), LDL suppressed cholesterol biosynthesis, but apoB enhanced it. Similarly, fibroblasts preincubated in medium supplemented with LDL bound decreased amounts of either (125)I-labeled LDL or (125)I-labeled apoB-BSA to their receptors, while preincubation with apoB-BSA increased the binding relative to the controls. These latter results occurred in association with a decrease in cellular cholesterol content, indicating that apoB in the medium bound cholesterol and removed it from the cells, thus stimulating both cholesterol synthesis and cellular binding of apoB. Accordingly, fibroblast cholesterol synthesis and the number of functional LDL receptors are not suppressed by the binding of the apoprotein to the receptor, and the known role of apoB remains that of transporting cholesterol in plasma and delivering it to the cell. A possible physiologic role for apoB in depleting cells of cholesterol is presently unknown since apoB is not known to exist free in plasma; however, these findings demonstrate such a functional capability for this apoprotein.-Shireman, R. B., and W. R. Fisher. Apolipoprotein B: its role in the control of fibroblast cholesterol biosynthesis and in the regulation of its own binding to cellular receptors.  相似文献   

16.
The effects of continuously administering both conjugated equine estrogens (CEE) and micronized progesterone (MP) on the concentration, composition, production and catabolism of very low density (VLDL) and low density lipoproteins (LDL) have not previously been reported. The mechanism of the hormonally induced reductions of plasma LDL cholesterol of S(f) 0;-20 (mean 16%, P < 0.005) and LDL apoB (mean 6%, P < 0.025) were investigated by studying the kinetics of VLDL and LDL apolipoprotein (apo) B turnover after injecting autologous (131)I-labeled VLDL and (125)I-labeled LDL into each of the 6 moderately hypercholesterolemic postmenopausal subjects under control conditions and again in the fourth week of a 7-week course of therapy (0.625 mg/d of CEE + 200 mg/d of MP). The combined hormones significantly lowered plasma LDL apoB by increasing the mean fractional catabolic rate of LDL apoB by 20% (0. 32 vs. 0.27 pools/d, P < 0.03). Treatment also induced a significant increase in IDL production (6.3 vs. 3.7 mg/kg/d, P = 0.028). However, this did not result in an increase in LDL production because of an increase in IDL apoB direct catabolism (mean 102%, P = 0.033). VLDL kinetic parameters were unchanged and the concentrations of plasma total triglycerides (TG), VLDL-TG, VLDL-apoB did not rise as often seen with estrogen alone. Plasma HDL-cholesterol rose significantly (P < 0.02). Our major conclusion is that increased fractional catabolism of LDL underlies the LDL-lowering effect of the combined hormones.  相似文献   

17.
High carbohydrate diets are known to increase the concentration of very low density lipoprotein (VLDL) and to lower the concentrations of low density lipoprotein (LDL) and high density lipoprotein (HDL) in plasma. Such diets also alter lipoprotein compositions and metabolism. The aims of the present study were to assess in detail the effects of a virtually fat-free high carbohydrate (CHO) diet (CHO greater than 85% and fat less than 1% of calories) on various aspects of LDL. Thirteen healthy normolipidemic volunteers ate a basal "American" diet and the CHO diet for 7 days each in a forward or reverse sequence. Fasting blood samples were drawn at the ends of each study period and analyzed for lipoprotein lipid and apolipoprotein concentrations. Compositions of LDL particles isolated by ultracentrifugation were characterized chemically, LDL sizes were assessed by nondenaturing gradient electrophoresis on 2-16% gels, and association and degradation of LDL with normal human skin fibroblasts were quantified in cell cultures. Immunoreactivities of apoB in LDL were tested in solid phase competitive binding radioimmunoassays using five monoclonal anti-LDL antibodies that reacted with defined epitopes of apoB-100. The study diet produced consistent decreases of LDL cholesterol and apoB concentrations by 25% and 17%, respectively. LDL compositions were altered. Mean LDL triglycerides increased 3% to 4% of total LDL mass (P less than 0.004), and LDL particle sizes decreased (P less than 0.01). In radioimmunoassays that contained monoclonal antibody B1B3, an antibody that inhibits binding of LDL to the LDL receptor, the mean ED50 value for LDL protein was reduced from 3.75 to 2.66 micrograms (P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Rabbits fed low-fat, cholesterol-free, semi-purified diets containing casein developed a marked hypercholesterolemia compared to rabbits fed a similar diet containing soy protein (plasma cholesterol 281 +/- 31 vs. 86 +/- 9 mg/dl; P less than 0.05). Turnover studies (three per dietary group) were carried out in which homologous 125I-labeled VLDL and 131I-labeled LDL were injected simultaneously into casein- (n = 8) or soy protein- (n = 9) fed rabbits. ApoB-specific activities were determined in VLDL, IDL and LDL isolated from the pooled plasma of two or three rabbits per dietary group. The production rate of VLDL apoB (1.20 +/- 0.3 vs. 1.09 +/- 0.1 mg/h per kg) was similar for the two dietary groups. The fractional catabolic rate of VLDL apoB was lower for the casein group (0.15 +/- 0.03 vs. 0.23 +/- 0.01.h-1; 0.05 less than P less than 0.10). Although the pool size of VLDL apoB was higher in the casein group (8 +/- 2 vs. 5 +/- 0.3 mg/kg), this value did not reach statistical significance. For LDL apoB, the increased pool size in casein-fed rabbits (30 +/- 5 vs. 5 +/- 1 mg/kg; P less than 0.01) was associated with a decreased fractional catabolic rate (0.03 +/- 0.005 vs. 0.08 +/- 0.008.h-1; P less than 0.01) and a 2-fold increase in the production rate of LDL apoB (1 +/- 0.3 vs. 0.4 +/- 0.06 mg/kg per h; 0.05 less than P less than 0.10) compared to rabbits fed soy protein. Analysis of precursor-product relationships between the various lipoprotein fractions showed that casein-fed rabbits synthesized a higher proportion of LDL apoB (95% +/- 2 vs. 67% +/- 2; P less than 0.001) independent of VLDL catabolism. These results support the concept that the hypercholesterolemia in casein-fed rabbits is associated with impaired LDL removal consistent with a down-regulation of LDL receptors. These changes do not occur when the casein is replaced by soy protein.  相似文献   

19.
3-4 days after a single clinical dose of vincristine or vinblastine in rhesus monkeys there was a marked decrease in plasma low-density lipoprotein cholesterol concentrations. There was also a concomitant increase in plasma triacylglycerol concentrations. Plasma lipid levels returned to normal concentrations within 7-10 days after injection. Plasma high-density lipoprotein cholesterol concentrations were unaltered by the drugs. Electron micrographs of the hepatocytes from monkeys treated with vincristine or vinblastine showed an accumulation of glycogen particles and proliferation of smooth endoplasmic reticulum, which was accompanied by an increase in the number of lipoprotein-containing vesicles. These results indicate that vincristine and vinblastine alter plasma cholesterol and triacylglycerol concentrations in part by interfering with hepatic lipid and lipoprotein metabolism. These studies further suggest the possibility that other less cytotoxic alkaloids from Catharanthus species with clinically useful hypocholesterolemic activity may be discovered.  相似文献   

20.
A monoclonal antibody-based direct binding enzyme-linked immunosorbent assay (ELISA) for apoprotein (apo) B-100 has been developed for use as a reference method. The assay uses the two well-characterized monoclonal antibodies, MB24 and MB47. MB47, which recognizes an epitope at the low density lipoprotein (LDL) receptor-binding domain of apoB and is specific for apoB-100, is bound to the microtiter plate as the capture antibody. MB24, which binds an epitope in the amino terminal half of the apoB-100 and identifies both apoB-100 and apoB-48, is conjugated to horseradish peroxidase and is utilized as the indicating antibody. The assay was calibrated with LDL (d 1.030-1.050 g/ml) and the LDL protein was determined by a sodium dodecyl sulfate (SDS) Lowry procedure. The working range of the assay is 0.25-1.25 micrograms/ml. Optimal dilution of whole plasma was found to be 1:2000. In the assay, MB47 bound approximately 97% of the apoB in all low density lipoprotein, and greater than 90% of the apoB in the majority of very low density lipoprotein preparations. Small dense LDL from subjects with familial combined hyperlipidemia (FCHL) and large bouyant LDL from subjects with familial hypercholesterolemia (FH) exhibited binding properties similar to LDL from healthy normolipidemic subjects when tested in the reference ELISA. The intra- and interassay coefficients of variation averaged 2.5% and 6.0%, respectively. Plasma B-100 levels were not influenced by freezing and thawing or storage at 4 degrees C for up to 3 weeks or storage at -70 degrees C for up to 11 months. Excellent agreement was obtained between the reference ELISA and a polyclonal RIA which measures total apoB (r = 0.93, n = 105, mean ELISA B-100 value = 100 mg/dl, mean RIA value = 101 mg/dl, Sy = 9.6). Reference ELISA B-100 values of samples pretreated with bacterial lipase were not significantly increased in most samples with plasma triglyceride levels below 600 mg/dl. To help reduce the large among-laboratories variability of apoB measurements, we recommend that this candidate reference direct binding ELISA be used to assign apoB target values to apoB reference pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号