首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Postaxial Polydactyly (PAP) is characterized by fifth digit duplication in hands and/or feet. Two types of PAP including PAP-A, representing the development of well-formed extra digit, and PAP-B, representing the presence of rudimentary fifth digit, have been described. Both isolated and syndromic forms of PAP have been reported. Isolated forms of PAP usually segregate as an autosomal dominant trait and to date four loci have been identified. In the present study, we have described mapping of the first locus of autosomal recessive PAP type A on chromosome 13q13.3–13q21.2 in a consanguineous Pakistani family. Using polymorphic microsatellite markers, the disease locus was mapped to a 17.87-cM (21.13 Mb) region flanked by markers D13S1288 and D13S632, on chromosome 13q13.3–13q21.2. A maximum multipoint LOD score of 3.84 was obtained with several markers along the disease interval. DNA sequence analysis of exons and splice-junction sites of ten candidate genes (CHM-I, TSC22D1, FOXO1, DIAPH3, CCDC122, CKAP2, SUGT1, RANKL, LPAR6, C13ORF31) did not reveal potentially causal variants.  相似文献   

2.
Congenital cataract is a clinically and genetically highly heterogeneous eye disorder, with autosomal dominant inheritance being most common. We investigated a large seven-generation family with 74 individuals affected by autosomal dominant congenital cataract (ADCC). The phenotype in this family can be described as "central pouchlike" cataract with sutural opacities, and it differs from the other mapped cataracts. We performed linkage analysis with microsatellite markers in this family and excluded the known candidate genes. A genomewide search revealed linkage to markers on chromosome 15, with a maximum two-point LOD score of 5.98 at straight theta=0 with marker D15S117. Multipoint analysis also gave a maximum LOD score of 5.98 at D15S117. Multipoint and haplotype analysis narrowed the cataract locus to a 10-cM region between markers D15S209 and D15S1036, closely linked to marker D15S117 in q21-q22 region of chromosome 15. This is the first report of a gene for a clinically new type of ADCC at 15q21-22 locus.  相似文献   

3.
Autosomal dominant distal myopathy: linkage to chromosome 14.   总被引:2,自引:1,他引:1       下载免费PDF全文
We have studied a family segregating a form of autosomal dominant distal myopathy (MIM 160500) and containing nine living affected individuals. The myopathy in this family is closest in clinical phenotype to that first described by Gowers in 1902. A search for linkage was conducted using microsatellite, VNTR, and RFLP markers. In total, 92 markers on all 22 autosomes were run. Positive linkage was obtained with 14 of 15 markers tested on chromosome 14, with little indication of linkage elsewhere in the genome. Maximum two-point LOD scores of 2.60 at recombination fraction .00 were obtained for the markers MYH7 and D14S64--the family structure precludes a two-point LOD score > or = 3. Recombinations with D14S72 and D14S49 indicate that this distal myopathy locus, MPD1, should lie between these markers. A multipoint analysis assuming 100% penetrance and using the markers D14S72, D14S50, MYH7, D14S64, D14S54, and D14S49 gave a LOD score of exactly 3 at MYH7. Analysis at a penetrance of 80% gave a LOD score of 2.8 at this marker. This probable localization of a gene for distal myopathy, MPD1, on chromosome 14 should allow other investigators studying distal myopathy families to test this region for linkage in other types of the disease, to confirm linkage or to demonstrate the likely genetic heterogeneity.  相似文献   

4.
Spinal muscular atrophy (SMA) is a common autosomal recessive disorder resulting in loss of motor neurons. We have performed linkage analysis on a panel of families using nine markers that are closely linked to the SMA gene. The highest lod score was obtained with the marker D5S351 (Zmax = 10.04 at = 0 excluding two unlinked families, and Zmax = 8.77 at = 0.007 with all families). One type III family did not show linkage to the 5q13 markers, and in one type I consanguineous family the affected individual did not show homozygosity except for the marker D5S435. Three recombinants were identified with the closest centromeric marker, D5S435, which position the gene telomeric of this marker. These recombinants will facilitate finer mapping of the location of the SMA gene. Lastly, two families provide strong evidence for a remarkable variability in presentation of the SMA phenotype, with the age at onset in one family varying from 17 months to 13 years.  相似文献   

5.
We present our experience with cross-hybridization of D15Z1, used in combination with D15S10, D15S11 or SNRPN, in 109 clinical cases referred for Angelman syndrome (AS), Prader-Willi syndrome (PWS), for autism to rule out duplication of 15q11.2, or to identify structural chromosome abnormalities thought to involve chromosome 15. Nine cases with normal karyotypes studied with at least one of these probe mixtures showed an extra signal with D15Z1 on a chromosome 14. One case showed absence of the D15Z1 signal from 15p and one case showed an extra signal with D15Z1 on both chromosome 14s. Sixteen cases from this series had structural abnormalities, which included ten cases with supernumerary markers, three of which had a D15Z1 signal on a chromosome 14. The remaining cases did not have an extra signal on chromosome 14, but included rearrangements between Y and 15, 15 and 19, and a r(15), all with breakpoints in 15p11.1 or p11.2. Of the three cases with a supernumerary marker and an extra D15Z1 signal on a chromosome 14, one was a maternally derived marker, while the variant 14 was paternal in origin. The other two markers were de novo. The high frequency of variant 14 in cases with supernumerary markers (30%) was not significant by Chi-square analysis compared to the overall frequency in 109 cases of 11.9%. The overall frequency is consistent with a previous report by Stergianou et al. (1993). We can now add that a false-negative result may occur slightly less than 1% of the time. The chance that both chromosome 14 homologs will be positive for D15Z1 is theoretically about 1 in 300. If associated with an abnormal phenotype, the possibility of uniparental disomy should be ruled out.  相似文献   

6.
Autosomal dominant cerebellar ataxia type III (ADCA III) is a relatively benign, late-onset, slowly progressive neurological disorder characterized by an uncomplicated cerebellar syndrome. Three loci have been identified: a moderately expanded CAG trinucleotide repeat in the SCA 6 gene, the SCA 5 locus on chromosome 11, and a third locus on chromosome 22 (SCA 10). We have identified two British families in which affected individuals do not have the SCA 6 expansion and in which the disease is not linked to SCA 5 or SCA 10. Both families exhibit the typical phenotype of ADCA III. Using a genomewide searching strategy in one of these families, we have linked the disease phenotype to marker D15S1039. Construction of haplotypes has defined a 7.6-cM interval between the flanking markers D15S146 and D15S1016, thereby assigning another ADCA III locus to the proximal long-arm of chromosome 15 (SCA 11). We excluded linkage of the disease phenotype to this region in the second family. These results indicate the presence of two additional ADCA III loci and more clearly define the genetic heterogeneity of ADCA III.  相似文献   

7.
Lysinuric protein intolerance (LPI) is an autosomal recessive disease characterized by defective transport of cationic amino acids and by hyperammonemia. Linkage analysis in 20 Finnish LPI families assigned the LPI gene locus to the proximal long arm of chromosome 14. Recombinations placed the locus between framework markers D14S72 and MYH7, a 10-cM interval in which the markers D14S742, D14S50, D14S283, and TCRA showed no recombinations with the phenotype. The phenotype was in highly significant linkage disequilibrium with markers D14S50, D14S283, and TCRA. The strongest allelic association obtained with marker TCRA, resulting in a P(excess) value of .98, suggests that the LPI gene locus lies in close proximity to this marker, probably within a distance of < 100 kb.  相似文献   

8.
Our previous linkage analysis suggested that the DNA segment D7S122 is located between MET and D7S8, the two genetic markers that are thought to flank the cystic fibrosis locus (CF). Subsequent chromosome walking experiments revealed that D7S122 in within close distance to another randomly isolated DNA marker, D7S340. To determine the physical relationship among D7S122, D7S340, MET, and D7S8, we have constructed a long-range restriction map of the region containing these four DNA segments, by using DNA from a human/hamster somatic hybrid cell line 4AF-KO15 (containing a single human chromosome 7) and a series of rare-cutting restriction enzymes. The combined results of complete, partial, and double digestion analyses confirm that D7S122 and D7S340 are located between MET and D7S8. The order of these markers is MET-D7S340-D7S122-D7S8, with distance intervals of approximately 500, 10, and 980 kbp, respectively. Together with family analysis, this information will be useful for eventual identification of the CF gene.  相似文献   

9.
Generalized epilepsy with febrile seizures plus (GEFS+) is a recently recognized but relatively common form of inherited childhood-onset epilepsy with heterogeneous epilepsy phenotypes. We genotyped 41 family members, including 21 affected individuals, to localize the gene causing epilepsy in a large family segregating an autosomal dominant form of GEFS+. A genomewide search examining 197 markers identified linkage of GEFS+ to chromosome 2, on the basis of an initial positive LOD score for marker D2S294 (Z=4.4, recombination fraction [straight theta] = 0). A total of 24 markers were tested on chromosome 2q, to define the smallest candidate region for GEFS+. The highest two-point LOD score (Zmax=5.29; straight theta=0) was obtained with marker D2S324. Critical recombination events mapped the GEFS+ gene to a 29-cM region flanked by markers D2S156 and D2S311, with the idiopathic generalized epilepsy locus thereby assigned to chromosome 2q23-q31. The existence of the heterogeneous epilepsy phenotypes in this kindred suggests that seizure predisposition determined by the GEFS+ gene on chromosome 2q could be modified by other genes and/or by environmental factors, to produce the different seizure types observed.  相似文献   

10.
The genetic contribution to common forms of osteoarthritis (OA) is well established but poorly understood. We performed a genome scan, using 302 markers for loci predisposing to distal interphalangeal joint (DIP) OA. To minimize genetic heterogeneity in our study sample, we identified siblings with a severe, radiologically defined phenotype from the nationwide registers of Finland. In the initial genome scan, linkage analysis in 27 sibships gave a pairwise LOD score (Z) >1.00 with nine of the screening markers. In the second stage, additional markers and family members were genotyped in these chromosomal regions. On 2q12-q13, IL1R1 resulted in Z=2.34 at recombination fraction (theta) 0, allowing a dominant mode of inheritance. Association analysis of markers D2S2264, IL1R1, D2S373, and D2S1789 jointly provided some evidence for a shared haplotype among the affected individuals (P value of.012). Also, multipoint nonparametric linkage analysis yielded a P value of.0001 near the locus IL1R1 and P=.0007 approximately 20 cM telomeric near marker D2S1399, which, in two-point analysis, gave Z=1.48 (straight theta=. 02). This chromosomal region on 2q harbors the interleukin 1 gene cluster and, thus, represents a good candidate region for inflammatory and autoimmune disorders. Three additional chromosomal regions-4q26-q27, 7p15-p21, and Xcen-also provided some evidence for linkage, and further analyses would be justified to clarify their potential involvement in the genetic predisposition to DIP OA.  相似文献   

11.
Recent reports implicate chromosomal regions linked to inter-individual variation in plasma triglycerides. We conducted genome-wide scans to replicate these linkages and/or identify other loci influencing plasma triglycerides in the NHLBI Family Heart Study (FHS). Data were obtained for 501 three-generational families. Genotyping was done by the Utah Molecular Genetics Laboratory and NHLBI Mammalian Genotyping Service; markers from both were placed on one genetic map. Analysis was done using multipoint variance components linkage. Fasting plasma triglycerides were log-transformed and age-, sex-, and field center-adjusted; suggestive linkage evidence was found on chromosome 8 (LOD=2.80 at 89 cM, marker D8S1141). Further adjustment for waist girth, BMI, diabetes, hypertension, and lipid-lowering drugs suggested linkage regions on chromosomes 6 (LOD=2.29 at 79 cM, marker D6S295) and 15 (LOD=1.85 at 43 cM, marker D15S659). Since HDL is correlated with triglycerides and because it was linked to this region on chromosome 15 in FHS, we created a composite triglyceride–HDL phenotype. The combined phenotype LOD score was 3.0 at the same marker on chromosome 15. Chromosome 15 likely harbors a susceptibility locus with an influence on triglycerides and HDL. Regions on chromosomes 6 and 8 may also contain loci contributing to inter-individual variation in plasma triglycerides.  相似文献   

12.
The neuronal ceroid lipofuscinoses (NCL; Batten disease) are a collection of autosomal recessive disorders characterized by the accumulation of autofluorescent lipopigments in the neurons and other cell types. Clinically, these disorders are characterized by progressive encephalopathy, loss of vision, and seizures. CLN3, the gene responsible for juvenile NCL, has been mapped to a 15-cM region flanked by the marker loci D16S148 and D16S150 on human chromosome 16. CLN2, the gene causing the late-infantile form of NCL (LNCL), is not yet mapped. We have used highly informative dinucleotide repeat markers mapping between D16S148 and D16S150 to refine the localization of CLN3 and to test for linkage to CLN2. We find significant linkage disequilibrium between CLN3 and the dinucleotide repeat marker loci D16S288 (chi 2(7) = 46.5, P < .005), D16S298 (chi 2(6) = 36.6, P < .005), and D16S299 (chi 2(7) = 73.8, P < .005), and also a novel RFLP marker at the D16S272 locus (chi 2(1) = 5.7, P = .02). These markers all map to 16p12.1. The D16S298/D16S299 haplotype "5/4" is highly overrepresented, accounting for 54% of CLN3 chromosomes as compared with 8% of control chromosomes (chi 2 = 117, df = 1, P < .001). Examination of the haplotypes suggests that the CLN3 locus can be narrowed to the region immediately surrounding these markers in 16p12.1. Analysis of D16S299 in our LNCL pedigrees supports our previous finding that CLN3 and CLN2 are different genetic loci. This study also indicates that dinucleotide repeat markers play a valuable role in disequilibrium studies.  相似文献   

13.
Six extended dyslexic families with at least four affected individuals were genotyped with markers in three chromosomal regions: 6p23-p21.3, 15pter-qter, and 16pter-qter. Five theoretically derived phenotypes were used in the linkage analyses: (1) phonological awareness; (2) phonological decoding; (3) rapid automatized naming; (4) single-word reading; and (5) discrepancy between intelligence and reading performance, an empirically derived, commonly used phenotype. Two-point and multipoint allele-sharing analyses of chromosome 6 markers revealed significant evidence (P < 10(-6)) for linkage of the phonological awareness phenotype to five adjacent markers (D6S109, D6S461, D6S299, D6S464, and D6S306). The least compelling results were obtained with single-word reading. In contrast, with chromosome 15 markers, a LOD score of 3.15 was obtained for marker D15S143 at theta = 0.0 with single-word reading. Multipoint analyses with markers adjacent to D15S143 (D15S126, D15S132, D15S214, and D15S128) were positive, but none reached acceptable significance levels. Chromosome 15 analyses with the phonological awareness phenotype were negative. Parametric and nonparametric linkage analyses with chromosome 16 markers were negative. The most intriguing aspect of the current findings is that two very distinct reading-related phenotypes, reflecting different levels in the hierarchy of reading-related skills, each contributing to different processes, appear to be linked to two different chromosomal regions.  相似文献   

14.
Hereditary sensory neuropathy type I (HSN I) is a group of dominantly inherited degenerative disorders of peripheral nerve in which sensory features are more prominent than motor involvement. We have described a new form of HSN I that is associated with cough and gastroesophageal reflux. To map the chromosomal location of the gene causing the disorder, a 10-cM genome screen was undertaken in a large Australian family. Two-point analysis showed linkage to chromosome 3p22-p24 (Zmax=3.51 at recombination fraction (theta) 0.0 for marker D3S2338). A second family with a similar phenotype shares a different disease haplotype but segregates at the same locus. Extended haplotype analysis has refined the region to a 3.42-cM interval, flanked by markers D3S2336 and D3S1266.  相似文献   

15.
Autosomal dominant brachydactyly type B (BDB) is characterized by nail aplasia with rudimentary or absent distal and middle phalanges. We describe two unrelated families with BDB. One family is English; the other family is Canadian but of English ancestry. We assigned the BDB locus in the Canadian family to an 18-cM interval on 9q, using linkage analysis (LOD score 3.5 at recombination fraction [theta] 0, for marker D9S938). Markers across this interval also cosegregated with the BDB phenotype in the English family (LOD score 2.1 at straight theta=0, for marker D9S277). Within this defined interval is a smaller (7.5-cM) region that contains 10 contiguous markers whose disease-associated haplotype is shared by the two families. This latter result suggests a common founder among families of English descent that are affected with BDB.  相似文献   

16.
Chordoma is a rare tumor originating from notochordal remnants that is usually diagnosed during midlife. We performed a genomewide analysis for linkage in a family with 10 individuals affected by chordoma. The maximum two-point LOD score based on only the affected individuals was 2.21, at recombination fraction 0, at marker D7S2195 on chromosome 7q. Combined analysis of additional members of this family (11 affected individuals) and of two unrelated families (one with 2 affected individuals and the other with 3 affected individuals), with 20 markers on 7q, showed a maximum two-point LOD score of 4.05 at marker D7S500. Multipoint analysis based on only the affected individuals gave a maximum LOD score of 4.78, with an approximate 2-LOD support interval from marker D7S512 to marker D7S684. Haplotype analysis of the three families showed a minimal disease-gene region from D7S512 to D7S684, a distance of 11.1 cM and approximately 7.1 Mb. No loss of heterozygosity was found at markers D7S1804, D7S1824, and D7S2195 in four tumor samples from affected family members. These results map a locus for familial chordoma to 7q33. Further analysis of this region, to identify this gene, is ongoing.  相似文献   

17.
Chromosome 21 markers were tested for linkage to familial Alzheimer disease (FAD) in 48 kindreds. These families had multiple cases of Alzheimer disease (AD) in 2 or more generations with family age-at-onset means (M) ranging from 41 to 83 years. Included in this group are seven Volga German families which are thought to be genetically homogeneous with respect to FAD. Autopsy documentation of AD was available for 32 families. Linkage to the 21 q11-q21 region was tested using D21S16, D21S13, D21S110, D21S1/S11, and the APP gene as genetic markers. When linkage results for all the families were summed, the LOD scores for these markers were consistently negative and the entire region was formally excluded. Linkage results were also summed for the following family groups; late-onset (M greater than 60), early-onset (M less than or equal to 60), Volga Germans (M = 56), and early-onset non-Volga Germans (M less than or equal to 60). For the first three groups, LOD scores were negative for this region. For the early-onset non-Volga German group (six families), small positive LOD scores of Zmax = 0.78 (recombination fraction theta = .15), Zmax = 0.27 (theta = .15), and Zmax = 0.64 (theta = .0), were observed for D21S13, D21S16, and D21S110, respectively. The remainder of the long arm of chromosome 21 was tested for linkage to FAD using seven markers spanning the q22 region. Results for these markers were also predominantly negative. Thus it is highly unlikely that a chromosome 21 gene is responsible for late-onset FAD and at least some forms of early-onset FAD represented by the Volga German kindreds.  相似文献   

18.
Oculodentodigital dysplasia (ODDD) is an autosomal dominant condition with high penetrance and variable expressivity. The anomalies of the craniofacial region, eyes, teeth, and limbs indicate abnormal morphogenesis during early fetal development. Neurologic abnormalities occur later in life and appear to be secondary to white matter degeneration and basal ganglia changes. In familial cases, the dysmorphic and/or neurodegenerative components of the phenotype can be more severe and/or present at a younger age in subsequent generations, suggesting genetic anticipation. These clinical features suggest that the ODDD gene is pleiotropic with important functions throughout pre- and postnatal development. We have performed two-point linkage analysis with seven ODDD families and 19 microsatellite markers on chromosome 6q spanning a genetic distance of approximately 11 cM in males and 20 cM in females. We have refined the location of the ODDD gene between DNA markers D6S266/D6S261 (centromeric) and D6S1639 (telomeric), an interval of 1.01 (male) to 2.87 (female) cM. The strongest linkage was to DNA marker D6S433 (Zmax = 8.96, thetamax = 0.001). Families show significant linkage to chromosome 6q22-q23 and no evidence for genetic heterogeneity.  相似文献   

19.
Van der Woude syndrome (VWS) is an autosomal dominant craniofacial disorder characterized by lip pits, clefting of the primary or secondary palate, and hypodontia. The gene has been localized, by RFLP-based linkage studies, to region 1q32-41 between D1S65-REN and D1S65-TGFB2. In this study we report the linkage analysis of 15 VWS families, using 18 microsatellite markers. Multipoint linkage analysis places the gene, with significant odds of 2,344:1, in a 4.1-cM interval flanked by D1S245 and D1S414. Two-point linkage analysis demonstrates close linkage of VWS with D1S205 (lod score [Z] = 24.41 at theta = .00) and with D1S491 (Z = 21.23 at theta = .00). The results revise the previous assignment of the VWS locus and show in an integrated map of the region 1q32-42 that the VWS gene resides more distally than previously suggested. When information about heterozygosity of the closely linked marker D1S491 in the affected members of the VWS family with a microdeletion is taken into account, the VWS critical region can be further narrowed, to the 3.6-cM interval between D1S491 and D1S414.  相似文献   

20.
We recently described an autosomal dominant inclusion-body myopathy characterized by congenital joint contractures, external ophthalmoplegia, and predominantly proximal muscle weakness. A whole-genome scan, performed with 161 polymorphic markers and with DNA from 40 members of one family, indicated strong linkage for markers on chromosome 17p. After analyses with additional markers in the region and with DNA from eight additional family members, a maximum LOD score (Zmax) was detected for marker D17S1303 (Zmax=7.38; recombination fraction (theta)=0). Haplotype analyses showed that the locus (Genome Database locus name: IBM3) is flanked distally by marker D17S945 and proximally by marker D17S969. The positions of cytogenetically localized flanking markers suggest that the location of the IBM3 gene is in chromosome region 17p13.1. Radiation hybrid mapping showed that IBM3 is located in a 2-Mb chromosomal region and that the myosin heavy-chain (MHC) gene cluster, consisting of at least six genes, co-localizes to the same region. This localization raises the possibility that one of the MHC genes clustered in this region may be involved in this disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号