首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The present investigation deals with some of the organizational and histochemical aspects of the embryo sac ofScilla sibirica. Both the synergids and egg cell are invested by PAS-positive complete walls. The filiform apparatus comprises an elaborate system of fibrillar projections, showing extensive ramifications. The micropylar region of the embryo sac wall from where the filiform apparatus originates is composed of three distinct layers. On a histochemical basis it may be surmised that, unlike the egg cell, the synergids are metabolically very active. Two kinds of wall ingrowths (i) massive and highly branched very much akin to the filiform apparatus, and (ii) small tuberculate wall projections, are unique to the antipodal cells of S.sibirica. Small tuberculate projections have also been observed along the wall of the central cell adjacent to the nutrient-rich nucellar cells. The antipodals and the central cell show the presence of starch grains and abundant total proteins. All the cell types in the embryo sac ofS. sibirica are structurally so organized as to meet the requirements of its nutrition during pre- and postfertilization development. The presence of abundant PAS-positive granular substance in the cells of nucellar epidermis probably establishes a gradient which assists in the pollen tube growth.  相似文献   

2.
Ultrastructure of the embryo sac lacking antipodals in prefertilization stages in Arabidopsis thaliana has been examined 2 hr before and 5 hr after manual cross pollination. The cytoplasm of both synergids before fertilization is rich in ribosomes, mitochondria, and rough endoplasmic reticulum, and also contains several microbodies and spherosomes. The filiform apparatus includes electron-dense material and a fibrous part. Many cortical microtubules appear in the filiform apparatus area. One of the two synergids degenerates before fertilization. The synergids, the egg cell, and central cell have a rich cytoskeleton of microtubules; only the synergids appear to contain microfilaments. At the chalazal end, the antipodals are initially present but degenerate by the time of pollination in most embryo sacs in the starchless line studied. The embryo sac is completely surrounded by a wall containing an electron-dense layer, separating it from the nucellus, including the chalazal end. When the antipodals have degenerated, the electron-dense layer disappears at the chalazal end only, and the wall between the central cell and the nucellus is homogeneous. Between the central cell and nucellar cells no plasmodesmata are found. The membranes of both antipodal cells at the chalazal end of the embryo sac appear sinuous, like those of transfer cells. The central cell has plastids preferentially distributed around the nucleus, but the other organelles are randomly distributed. The central cell in the embryo sac and the adjacent chalazal nucellar cells show a transfer-cell function in the embryo sac after the antipodals degenerate.  相似文献   

3.
The microtubular and actin cytoskeletons have been investigated during megagametogenesis in Arabidopsis thaliana using immunofluorescence labelling of isolated coenocytic and mature embryo sacs. We found both actin and microtubules (MTs) to occur in abundance throughout megagametogenesis and in all constituent cells of the mature embryo sac. During many stages, the patterns of distribution of these cytoskeletal elements are congruent and may prove to be co-aligned. Many changes in the arrays of MTs and microfilaments take place and indicate varying roles of the cytoskeleton in the different stages and cell types of megagametogenesis. Two major populations of MTs recur throughout embryo sac formation: (1) Elaborate nuclear-based networks are found during the two-nucleate and four-nucleate developmental stages as well as in the egg cell. These arrays may function in positioning the nuclei. (2) Cytoplasmic MTs in longitudinal orientation in the two-nucleate embryo sac, synergids and part of the egg cell, or in a reticulate pattern in the four-nucleate embryo sac, egg and central cell probably participate in organization of the cytoplasm. Synergid MTs converge at the filiform apparatus. Preprophase bands of MTs are absent throughout megagametogenesis but phragmoplast arrays occur during cellularization of the embryo sac. Well developed arrays of cortical MTs are restricted to the antipodal cells. A large concentration of MTs in the part of the egg cell adjacent to the synergids is well placed for being involved with sperm cell movement within the degenerative synergid. On the basis of the morphology of the cytoskeleton, we concur with views that the shape of megagametophyte is largely determined by the surrounding tissues, including the integumentary tapetum.  相似文献   

4.
Amaranthus hypochondriacus embryo sac development was investigatedbefore and after fertilization. During the early stages of development,the young embryo sac displays three antipodal cells at the chalazalpole that degenerate very early in the maturation process, beforethe synergids and egg cell are completely differentiated. Themature embryo sac is composed only of the female germ unit.The synergid cells organize a filiform apparatus accompaniedby the presence of mitochondria and dictyosomes with numerousvesicles. The involvement of the synergids in transport andsecretory functions related to pollen tube attraction and guidance,are discussed. The egg cell is located at the micropylar polenear the synergids and displays exposed plasma membranes atthe chalazal pole. The fertilized egg cell does not exhibitmarked changes after fertilization except for the closure ofthe cell wall. The central cell is the largest cell of thisvery long embryo sac. The fused nucleus is close to the eggapparatus before fertilization and displays a remarkable chalazalmigration after gamete delivery. The ultrastructure of the centralcell cytoplasm and the numerous wall ingrowths around this cellsuggest an important role in nutrient transportation. Aftergamete delivery, the embryo sac displays electron dense bodiesthat aggregate within the intercellular space between the synergids,egg cell and central cell. These bodies, that appear in theembryo sac of several plants, are probably involved in gametedelivery for double fertilization. The possibility of biparentalinheritance of mitochondria in this plant is also discussed.Copyright 1999 Annals of Botany Company Amaranthus hypochondriacus, grain amaranth, embryo sac, fertilization.  相似文献   

5.
在野外居群调查的启示下,本文以组件观点对柳叶野豌豆复合种和歪头菜幼苗亚单位的时序变化与开花关系进行了分析。结果发现在柳叶野豌豆复合种栽培居群中存在打破物种间形体结构特征的个体,即在复叶由一对小叶组成的植株就已开花而进入生殖时期。另外,在歪头菜的野生居群中发现由三或四枚小叶组成复叶的个体,因此,我们推测这种形体结构的变化可能暗示着柳叶野豌豆复合种和歪头菜有着共同的祖先。  相似文献   

6.
Megasporogenesis and embryo sac development in Stellaria media were investigated using cytochemical methods for the demonstration of nucleic acids, proteins, and polysaccharides. RNA concentrations were high in the archesporial cells, low in the megaspore mother cell, and increased again to high concentrations with the formation of the megaspore and 2-, 4-, and early 8-nucleate embryo sac. RNA levels were also high in the egg and primary endosperm nucleus but low in the synergid and antipodal cells. Nucleolar size and vacuolation were indicative of RNA synthetic activity. Protein concentrations were parallel in concentration and distribution to those observed for RNA. Polysaccharides were conspicuously absent from all stages except the synergids and nucellar cells. Feulgen-stained DNA was demonstrable in the antipodal cells, megaspore mother cell, and megaspore cell, but was not visible in the 2-, 4-, or early 8-nucleate embryo sac. Feulgen staining was also absent from the egg and primary endosperm nucleus but was visible in the synergids and antipodals. Histones were difficult to visualize anywhere except in the egg cytoplasm and the nuclei of the antipodals.  相似文献   

7.
Summary. The mature apomictic embryo sac of Chondrilla juncea is highly vacuolated and demonstrates a polarization similar to that of the amphimictic gametophyte. The microtubule cytoskeleton of this embryo sac is uncharacteristic and relatively weak. The microtubules are positioned along cell walls and resemble cortical microtubules of somatic cells. They do not form the parallel, brushlike structures observed around the filiform apparatus of synergids in the amphimictic embryo sac. In the apomictic embryo sac, the microtubules of both the egg cell and the central cell develop a cortical-like structure, which is entirely different from the radial arrangement observed around the nuclei in the amphimictic embryo sac. Correspondence and reprints: Department of Plant Cytology and Embryology, Jagiellonian University, Grodzka 52, 31-044 Kraków, Poland.  相似文献   

8.
Fertilization and variation of protein and starch grains in Pulsatilla chinensis (Bung) Regel have been studied at light microscopic level with histochemical test. Based upon the observations, the main conclusions are summarized as follows: The mature pollen grains are two-celled in which the generative cell shows the stronger protein staining than the vegetative cell. And vegetative cells are full of starch garins. When the pollen tube enters into the embryo sac, one synergid is destroyed, or in a few cases synergids are intact. Occasionally two synergids are disorganized as pollen tube penetrates. However, most of the remaining syuergids break down during fertilization, only in a few cases it remains till early stage of embryo development. The contents discharged by the pollen tube consist of two sperms, which stain intensely blue with protein dyes, a great amount of protein and starch grains. Mature female gametophyte (embryo sac) consists of an egg apparatus, central cell, which has a huge secondary nucleus, and antipodal apparatus which retain in course of fertilization. A few of embryo sac contain two sets of egg apparatus, a central cell with two huge secondary nuclei and two sets of antipodal apparatus. In some nucleoli of the central cell the comb-like structure pattern may be detected clearly. There are 1–2 small nucleoli in some egg cells and central cells. All the cells in embryo sac show protein positive reaction. According to the different shades of the color in cells, its may be arranged in the following order: antipodal cells, synergids, central cell and egg cell. Only a few small starch grains are present near nuclei of central cell and egg cell before fertilization, but no starch grains remain in most of the central cell, the synergids and antipodal cells. The fertilization is of the premitotic type. The fusion of the sexual nuclei progresses in the following order: 1, sperms approach and lie on the egg nucleus and secondary nucleus; 2, sperm chromatin sinks themselves into female nucleus, and male nucleolus emerges with the sperm chromosome; and 3, male nucleoli fuse with the nucleoli of egg nucleus and central cell nucleus, and finally forming the zygote and the primary endosperm cells respectively. Nevertheless, as it is well known, the fertilization completes in central cell obviously earlier than that in egg cell. Though it has been explained in cereals and cotton, in Pulsatilla chinensis the main reason is that nucleolar fusion of the male and female nucleoli in egg nucleus is slower than that in secondary nucleus. And the dormancy of the primary endosperm nucleus is shorter than that of the zygote. In the process of fertilization, histochemical changes are considerably obvious in the following three parts: 1, from the begining of fusion of male and female nuclei to form zygote and primary endosperm cell, Protein staining around female nucleus appears to increase gradually; 2, no starch grains are detected in embryo sac. Though only starch grains are carried in by pollen tube, they are completely exhausted during this period; and 3, near completion of fertilization starch grains appear again in zygote, however, not yet in primary endosperm nucleus till its dividing for the first time. The present study reveals that antipodal cells and synergids seem to play a significant role in nutrition of the embryo sac during the fertilization.  相似文献   

9.
采用半薄切片技术和组织化学染色法对宁夏枸杞大孢子发生和雌配子体发育过程中的细胞结构变化及营养物质积累特征进行了观察。结果表明,(1)宁夏枸杞为中轴胎座,多室子房,倒生胚珠,单珠被,薄珠心类型。(2)位于珠心表皮下的孢原细胞可直接发育为大孢子母细胞,减数分裂后形成直线型大孢子四分体,合点端第一个大孢子发育为功能大孢子,胚囊发育类型为蓼型,具有珠被绒毡层。(3)初形成的胚囊外周组织中没有营养物质积累,成熟胚囊时期出现了大量的淀粉粒且呈珠孔端明显多于合点端的极性分布特征。(4)助细胞的珠孔端具有明显的丝状器结构,呈PAS正反应表现出多糖性质,成熟胚囊具有承珠盘结构。  相似文献   

10.
There is little information on the fate of embryo sacs in plantovules if pollination is prevented. In this study embryo sacsfrom watermelon were observed over a 13 day period followingflowering with (a) normal pollination, (b) non-pollination and(c) induction of parthenocarpic fruit development with naphthaleneacetic acid. Following pollination, and prior to fertilizationapproximately 2 days later, the embryo sacs completed developmentand consisted of two synergids with prominent filiform apparatus,an egg cell, a central cell with two polar nuclei and threeantipodal cells. Sperm nuclei were observed within the embryosac at 2 days and by 4 days the endosperm was proliferating.In the non-pollination treatment the embryo sac was still intactafter 4 days although the antipodal nuclei were becoming hardto distinguish. By 7 days only the two synergids and the eggcell were still well defined, the polar nuclei appeared in somepreparations to be fused, and the antipodals had degenerated.By 10 days the embryo sac was a structure-less watery mass.In parthenocarpic fruit the fate of the embryo sac was similarto that in non-pollinated fruit except that final breakdownwas delayed past 10 days. Maturity of the majority of embryo sacs in an ovary appearedto be contemporaneous with penetration of the pollen tube, andon the basis of the anatomical results it seems possible thatembryo sacs could be fertilized up to 2 days beyond the normaltime. Citrullus lanatus, watermelon, embryo sac, anatomy, pollination, parthenocarpy  相似文献   

11.
The structural and histochemical changes of the egg apparatus in the polyembryonic rice (Oryza sativa L.), ApⅢ with the highest frequence of additional embryos among the polyembryonic rice investigated, before and after fertilization were studied and compared with those of normal and other polyembryonic rices in a similar developmental period. A total of 2 932 ovules were observed and each of them contained only asingle embryo sac with a set of egg apparatus. Among 1 655 embryo sacs, there were 1 643 embryo sacs (99.27%) with one normal egg apparatus in each embryo sac, and only 12 embryo sacs (0.73%) from the remainder with 4 celled egg apparatus, i.e. two eggs and two synergids. Neither the numerous poly egg apparatus and egg like cells, nor the double set of embryo sacs each containing one egg apparatus and other abnormal egg apparatus in single ovary, which were reported by earlier investigators to have high frequency of embryo production in SB 1 and ApⅣ, were observed. The egg cell was located at the subterminal site of the micropylar end of embryo sac. The cytoplasm of egg cell was rich in protein materials and poly saccharide grains, which did not disappear until the division of zygote. The prominent nucleus was closely surrounded by protein and polysaccharide grains, which did not disappear until the division of zygote. No cytological difference was found between egg cells from the normal and abnormal egg apparatus. The two synergids were fully developed and situated at the upper most part of the micropylar end of the mature embryo sac. In most embryo sacs, the synergids were flask shaped with longer necks, and a widened cap shaped top, in close contact with the micropyle. The synergids had a well developed filiform apparatus. The characteristic appearance of the filiform apparatus as well as the cap neck region of synergids before and after pollen tube penetration were easily distinguishable from the egg cell. The structure, the stainability with Coomassie Brilliant Blue and PAS reaction, the process of accumulation, distribution and disapperance of the cytoplasmic protein materials and polysaccharide grains of the two synergids, the persistent and rarely the receptive synergids before and after pollen tube penetration, were closely similar to those of egg cell of the same developmental stage. In comparison with normal and other polyembryonic rice reported, the size of nucleus and nucleolus and their stainability also strongly resembled those of egg cell. Based on the results observed, the main conclusions are summarized as follows: (1) the additional embryos very frequently developed in the young and mature seed of polyembryonic rice ApⅢ were produced by one or two synergids of normal egg apparatus, rarely by 4 celled egg apparatus; (2) during fertilization, the synergids, in addition to the natural specific function of introducing pollen tube and transferring sperms to egg cell and central cell, could be closely associated with the potentiality to breed one or two additional embryos; and (3) as compared with that of normal or other polyembryonic rice it is firstly disclosed that in a few embryo sacs of ApⅢ, the cytoplasmic and nuclear structure, the active anabolism and catabolism of protein and polysaccharide materials and the delayed disorganization at the mid basal region of the receptive and persistent synergid still remained unchanged before the division of zygote. Such salient features could be the predisposition for the origin of additional embryos in ApⅢ.  相似文献   

12.
Three fluorescein isothiocyanate (FITC)-conjugated lectins, Canavalia ensiformis agglutinin (Con A), Triticum vulgaris agglutinin (WGA) and Phaseolus vulgaris erythroagglutinin (PHA-E), were used as probes to localize sugar moieties of glycoconjugates on the cell surface of isolated maize sperm, egg, central, antipodal cells, synergids, and in vitro- and in vivo-fertilized zygotes. Fluorescence signals on the surface of the cells were due to specific binding. Calcium was necessary for WGA and PHA-E binding and enhanced Con A labeling. Differences in glycoconjugate composition of the membranes of gametes and other embryo sac component cells were found. FITC-Con A strongly labeled egg and central cells, but labeled sperm only weakly. FITC-WGA binding sites were detected on egg, but not sperm cells. Con A and WGA binding sites were equally distributed around egg and central cell protoplasts. FITC-PHA-E binding sites were not found on sperm and egg cells before fertilization. Binding sites of these lectins were located on synergids, especially on their filiform apparatus. Interestingly, WGA binding to egg cells was enhanced after fertilization, whereas PHA-E binding to egg cell membranes could only be detected after fertilization. These results suggest the occurrence of fertilization-induced changes in glycoconjugate composition of the maize egg cell membrane. An increase in the number of WGA and PHA-E binding sites was also observed on newly formed cell walls of cultured two-celled embryos derived from in vitro-produced zygotes.  相似文献   

13.
The ultracytochemical localization of ATPase activity was determined employing the method of lead precipitation in the ovules of sunflower (Helianthus annuus L.). No ATPase activity is observed in the egg and synergids except some at the filiform apparatus. Much ATPase activity is localized on the plasma membrane and wall of the central cell. In the antipodal cells, ATPase activity is also found on the plasma membranes, but only a little in their walls. In the integumentary tapetum, besides the plasma membranes, most of the nuclei are rich in ATPase. Between the integumentary tapetum and uncontinuous cuticle surrounding the embryo sac, there is a gap where a lot of ATPase are found. These ATPases are continuously linked with those in the central cell wall throuth the intervals of the cuticle. At the sites of the wall ingrowths of the central celT, abundant vesicles and other structures with high ATPase activity aggregate noticeably in the gap region. According to the ATPase distribution in the ovules, we propose that the whole surface of embryo sac functions in absorbing nutrients directly from the apoplast outside the cuticle, especially via the wall-membrane apparatus of 'he central cell.  相似文献   

14.
The structure of embryo sac before and after fertilization, embryo and endosperm development and transfer cell distribution in Phaseolus radiatus were investigated using light and transmission electron microscopy. The synergids with distinct filiform apparatus have a chalazal vacuole, numerous mitochondria and ribosomes. A cell wall exists only around the micropylar half of the synergids. The egg cell has a chalazally located nucleus, a large micropylar vacuole and several small vacuoles. Mitochondria and plasrids with starch grains are abundant. No cell wall is present at its chalazal end. There are no plasma membranes between the egg and central cell in several places. The zygote has a complete cell wall, abundant mitochondria and plastids containing starch grains. Both degenerated and persistent synergids migh.t serve as a nutrient supplement to proembryo. The wall ingrowths occur in the central cell, basal cell, inner integumentary cells, suspensor cells and endosperm cells. These transfer cells may contribute to embryo nutrition at different developmental stages of embryo.  相似文献   

15.
大叶杨配囊及胚珠的形成和发育   总被引:3,自引:0,他引:3  
本文应用细胞化学方法研究了大叶杨胚珠、胚囊的形成和发育过程中核酸、蛋白质及不溶性多糖的分布和消长。大孢子母细胞、大孢子四分体及功能大孢子中含较少不溶性多糖,但却含丰富的RNA和蛋白质。功能大孢子经分裂发育成八核的蓼型胚囊。四核胚囊开始积累细胞质多糖,成熟胚囊中除反足细胞外充满淀粉粒。反足细胞形成后不久即退化。助细胞具多糖性质的丝状器,受精前两个助细胞退化。卵细胞核对Feulgen反应呈负反应。二极核受精前由胚囊中部移向卵器,与卵器接触后融合形成次生核。发育早期的胚珠为厚珠心,双珠被。晚期,内珠被退化,故成熟胚珠为单珠被。四核胚囊时期,珠孔端珠心组织退化,胚囊伸向珠孔形成胚囊喙。合点端珠心组织含丰富的蛋白质和核酸,这一性质与绒毡层性质相似,可能涉及胚囊的营养运输。胚囊的营养来源于子房和胎座细胞内贮存的淀粉粒。  相似文献   

16.
Isolation of fixed and fresh embryo sacs has been reported. However,the isolation of protoplasts of embryo sac elements is reported here for the first time.The protoplasts of egg cell, synergids, central cell and antipodal cells have been isolated with the retaining of their viability. Though this is a preliminary work, it indicatesthe potentiality of isolation of naked female gametes of angiosperms, which may beused in genetic manipulation and plant biotechnology. Nicotiana tabacum was grown in the greenhouse of the Department of Biology,Peking University. From opened and unpollinated flowers, the ovaries were removedand sterilized with 70% alcohol. The ovules were dissected out from those ovaries andfollowed by incubation (4–8 hrs. 28℃) in anenzyme solution containing 2% driselase, 0.65 M mannitol and 0.25% potassium dextran sulfate. Ovules from 3 4 ovariescould be incubated with 1 ml of enzyme solution in a 3 cm petri dish. All these manipulations and the following procedures were carried out under sterile conditions. Afterincubation, ovules were washed 3 times with a washing solution of 0.65 M mannitol.The isolated embryo, sacs and their protoplasts were obtained by gently squashing digested ovules in a small volume of washing solution on a slide. When the fresh ovules were incubated 3–3.5 hrs in the enzyme solution, the embryosacs may be successfully isolated in an intact manner, either for mature or immatureembryo sacs. The isolated embryo sac looked plump, viable and very distinct in itsstructure. If the isolated embryo sacs were incubated in 0.01% fluorescein diacetate(FDA) used as a test for the viability of the embryo sac, and observed under fluorescein microscope, the cytoplasm of all embryo sac elements, including egg cell, synergids,central cell and antipodal cells, showed strong fluorescence. It is proved that these iso-lated embryo sacs are still viable. When the incubation of ovules was prolonged as to 8 hrs in certain cases, theboundary wall of the embryo sac may be partially digested and the protoplasts of embryo sac elements came out from micropylar or chalazal end after squashing. The difference of the protoplasts derived from different embryo sac elements could be recognized by their relative size and other characteristics. The egg protoplast is smallerthan that of the synergid. However, the protoplasts of antipodal cells were. obviouslysmaller than that of egg. But the central cell protoplast was the largest among theseprotoplasts and possessed two polar nuclei and a very large central vacuole. All theseisolated protoplasts of embryo sac elements were also proved viable with FDA method. The importance of isolated protoplasts of embryo sac elements is discussed withrespect to genetic manipulations.  相似文献   

17.
The development of the ovule, megaspore and megagametophyte in Saxifraga fortunei var. partita (Makino) Nakai was observed. The ovule is anatropous, bitegmic, and crassinucellate. Both integuments originate from the epidermis. The archesporium is considered to be multicellular. The primary sporogenous cell functions as the megaspore mother cell which forms a T-shaped tetrad. The chalazal member of the megaspore tetrad is functional and develops into a Polygonum-type embryo sac. In the pyriform synergids the filiform apparatus is observed, but any hook or indentations could not be recognized. The antipodal cells are detectable until the Helobial endosperm undergoes several nuclear divisions. Secondary multiplication of the nuclei or the cells of the antipodals could not be observed.  相似文献   

18.
水稻胚囊超微结构的研究   总被引:8,自引:2,他引:8  
水稻(Oryza sativa L.)胚囊成熟时,卵细胞的合点端无细胞壁,核居细胞中部,细胞器集中在核周围,液泡分散于细胞周边区域。助细胞珠孔端有丝状器,合点端无壁,核位于细胞中部贴壁处,细胞器主要分布在珠孔端,液泡主要分布在合点端。开花前不久,一个助细胞退化。中央细胞为大液泡所占,两个极核靠近卵器而部分融合,细胞器集中在极核周围和靠近卵器处,与珠心相接的胚囊壁上有发达的内突。反足细胞多个形成群体,其增殖主要依靠无丝分裂与壁的自由生长,反足细胞含丰富活跃的细胞器,与珠心相接的壁上有发达的内突。开花后6小时双受精已完成,合子和两个助细胞合点端均形成完整壁。合子中开始形成多聚核糖体、液泡减小。退化助细胞含花粉管释放的物质,其合点端迴抱合子。极核已分裂成数个胚乳游离核,中央细胞中细胞器呈活化状态。反足细胞仍在继续增殖。讨论了卵细胞的极性、助细胞的退化、卵器与中央细胞间界壁的变化、反足细胞的分裂特点等问题。  相似文献   

19.
水稻胚囊壁的形成与发育观察   总被引:3,自引:0,他引:3  
通过透射电镜对水稻(Oryza sativa L.)功能大孢子形成开始至胚囊成熟期间胚囊壁的形成与发育进行观察,结果表明:水稻胚囊壁是在原有功能大孢子壁的基础上,通过与其周围退化珠心细胞留下的壁相叠合,使壁加厚。功能大孢子近合点端壁存在胞间连丝,其中个别胞间连丝可保留到八核胚囊。胚囊壁上内突最早于四核胚囊近珠孔端发生。八核胚囊形成后,内突的发育在胚囊不同的细胞中表现不同,其中以中央细胞最具特点,表现为先在中央细胞与珠心相接的近珠孔端和近合点端两个区域的胚囊壁上形成,以后近珠孔端胚囊壁上的内突大量增加,而近合点端的却增加不明显,中部胚囊壁上的内突出现的时间相对较晚。到胚囊成熟时,近珠孔端胚囊壁上内突的分布密度最大,中部次之,近合点端的最小,三个区域上内突的形态各异。反足细胞与珠心相接的胚囊壁上内突的形成时间较早,但以后的发育却相对缓慢,数量增加不明显。2个助细胞交界处胚囊壁上的丝状器在胚囊未明显膨大时已形成。卵细胞除在与助细胞交界处的壁外,其它部位不形成明显的内突结构。  相似文献   

20.
以甜菜无融合生殖单体附加系M14(Beta vulgaris, 2n=18+1)为实验材料, 利用电子显微镜技术对成熟胚囊及其超微结构进行研究。结果表明: M14成熟胚囊包括1个卵细胞、2个退化的助细胞、1个具有次生核的中央细胞和3-6个反足细胞。其卵细胞具有3种不同的形态: (1)极性正常的卵细胞, 细胞核位于合点端, 细胞质含有大量核糖体、线粒体、内质网等细胞器; (2)细胞核位于细胞中央; (3)细胞核位于珠孔端, 且后2种形态细胞器的种类与数量少。大多数胚囊中的2个助细胞在开花前已退化。中央细胞的次生核位于反足细胞附近; 未经受精自发分裂前的卵细胞与中央细胞的细胞核大、核仁明显, 细胞器的种类与数量多, 呈现旺盛代谢活动特征, 成为二倍体孢子无融合生殖过程中, 卵细胞与次生核自发分裂的细胞学标志。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号