首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ADP-glucose pyrophosphorylase (AGPase) is one of the major enzymes involved in starch biosynthesis in higher plants. We report here the molecular cloning of two cDNAs encoding so far uncharacterized isoforms (AGP S2 and AGP S3) of the potato enzyme. Sequence analysis shows that the two polypeptides are more homologous to previously identified large subunit polypeptides from potato and other plant species than to small subunit isoforms. This observation suggests that AGP S2 and AGP S3 represent novel large subunit polypeptides. agpS2 is expressed in several tissues of the potato plant, including leaves and tubers. Expression was stronger in sink leaves than in source leaves, indicating developmental regulation. In leaves, agpS2 expression was induced 2- to 3-fold by exogenous sucrose; therefore, agpS2 represents a new sucrose-responsive gene of starch metabolism. Expression of agpS3 was restricted to tubers: no agpS3 expression could be seen in leaves of different developmental stages, or when leaves were incubated in sucrose. Therefore, agpS3 represents the only AGPase gene so far characterized from potato, which is not expressed in leaves. Conversely, all four AGPase isoforms known from potato are expressed in tubers.  相似文献   

2.
PCR amplification of cDNA prepared from poly(A)+ RNA from aerial parts of Arabidopsis thaliana, using degenerate nucleotide primers based on conserved regions between the large and small subunits of ADP-glucose pyrophosphorylase (AGP), yielded four different cDNAs of ca. 550 nucleotides each. Based on derived amino acid sequences, the identities between the clones varied from 49 to 69%. Sequence comparison to previously published cDNAs for AGP from various species and tissues has revealed that three of the amplified cDNAs (ApL1, ApL2 and ApL3) correspond to the large subunit of AGP, and one cDNA (ApS) encodes the small subunit of AGP. Both ApL1 and ApS were subsequently found to be present in a cDNA library made from Arabidopsis leaves. All four PCR products are encoded by single genes, as found by genomic Southern analysis.  相似文献   

3.
4.
The heterotetrameric, allosterically regulated enzyme, adenosine-5'-diphosphoglucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step in starch synthesis. Despite vast differences in allosteric properties and a long evolutionary separation, heterotetramers of potato small subunit and maize large subunit have activity comparable to either parent in an Escherichia coli expression system. In contrast, co-expression of maize small subunit with the potato large subunit produces little activity as judged by in vivo activity stain. To pinpoint the region responsible for differential activity, we expressed chimeric maize/potato small subunits in E. coli. This identified a 55-amino acid motif of the potato small subunit that is critical for glycogen production when expressed with the potato large subunit. Potato and maize small subunit sequences differ at five amino acids in this motif. Replacement experiments revealed that at least four amino acids of maize origin were required to reduce staining. An AGPase composed of a chimeric potato small subunit containing the 55-amino acid maize motif with the potato large subunit exhibited substantially less affinity for the substrates, glucose-1-phosphate and ATP and an increased Ka for the activator, 3-phosphoglyceric acid. Placement of the potato motif into the maize small subunit restored glycogen synthesis with the potato large subunit. Hence, a small polymorphic motif within the small subunit influences both catalytic and allosteric properties by modulating subunit interactions.  相似文献   

5.
Previous studies have indicated that ADP-glucose pyrophosphorylase (ADPGlc PPase) from the cyanobacteriumAnabaena sp. strain PCC 7120 is more similar to higher-plant than to enteric bacterial enzymes in antigenicity and allosteric properties. In this paper, we report the isolation of theAnabaena ADPGlc PPase gene and its expression inEscherichia coli. The gene we isolated from a genomic library utilizes GTG as the start codon and codes for a protein of 48347 Da which is in agreement with the molecular mass determined by SDS-PAGE for theAnabaena enzyme. The deduced amino acid sequence is 63, 54, and 33% identical to the rice endosperm small subunit, maize endosperm large subunit, and theE. coli sequences, respectively. Southern analysis indicated that there is only one copy of this gene in theAnabaena genome. The cloned gene encodes an active ADPGlc PPase when expressed in anE. coli mutant strain AC70R1-504 which lacks endogenous activity of the enzyme. The recombinant enzyme is activated and inhibited primarily by 3-phosphoglycerate and Pi, respectively, as is the nativeAnabaena ADPGlc PPase. Immunological and other biochemical studies further confirmed the recombinant enzyme to be theAnabaena enzyme.  相似文献   

6.
7.
8.
Asp142 in the homotetrameric ADP-glucose pyrophosphorylase (ADP-Glc PPase) enzyme from Escherichia coli was demonstrated to be involved in catalysis of this enzyme [Frueauf, J.B., Ballicora, M.A. and Preiss J. (2001) J. Biol. Chem., 276, 46319-46325]. The residue is highly conserved throughout the family of ADP-Glc PPases, as well as throughout the super-family of sugar-nucleotide pyrophosphorylases. In the heterotetrameric ADP-Glc PPase from potato (Solanum tuberosum L.) tuber, the homologous residue is present in both the small (Asp145) and the large (Asp160) subunits. It has been proposed that the small subunit of plant ADP-Glc PPases is catalytic, while the large subunit is modulatory; however, no catalytic residues have been identified. To investigate the function of these conserved Asp residues in the ADP-Glc PPase from potato tuber, we used site-directed mutagenesis to introduce either an Asn or a Glu. Kinetic analysis in the direction of synthesis or pyrophosphorolysis of ADP-Glc showed a significant decrease (more than four orders of magnitude) in the specific activity of the SD145NLwt, SD145NLD160N, and SD145NLD160E mutants, while the effect was smaller (approximately two orders of magnitude) with the SD145ELwt, SD145ELD160N, and SD145ELD160E mutants. By contrast, mutation of the large subunit alone did not affect the specific activity but did alter the apparent affinity for the activator 3-phosphoglycerate, showing two types of apparent roles for this residue in the different subunits. These results show that mutation of Asp160 of the large subunit does not affect catalysis, thus the large subunit is not catalytic, and that the negative charge of Asp145 in the small subunit is necessary for enzyme catalysis.  相似文献   

9.
10.
Several cDNA clones encoding two different ADP-glucose pyrophosphorylase (AGPase, EC 2.7.7.27) polypeptides denoted VfAGPC and VfAGPP were isolated from a cotyledonary library of Vicia faba L. Both sequences are closely related to AGPase small-subunit sequences from other plants. Whereas mRNA levels of VfAGPP were equally high in developing cotyledons and leaves, the mRNA of VfAGPC was present in considerable amounts only in cotyledons. During development of cotyledons, both mRNAs accumulated until the beginning of the desiccation phase and disappeared afterwards. The increase of AGPase activity in cotyledons during the phase of storage-product synthesis was closely followed by the accumulation of starch. The AGPase activity in crude extracts of cotyledons was insensitive to 3-phosphoglycerate whereas the activity from leaves could be activated more than five-fold. Inorganic phosphate inhibited the enzyme from both tissues but was slightly more effective on the leaf enzyme. There was a correlation at the cellular level between the distribution of VfAGPP and VfAGPC mRNAs and the accumulation of starch, as studied by in-situ hybridisation and by histochemical staining in parallel tissue sections of developing seeds, respectively. During the early phase of seed development (12–15 days after fertilization) VfAGPase mRNA and accumulation of starch were detected transiently in the hypodermal, chlorenchymal and outer parenchymal cell layers of the seed coat but not in the embryo. At 25 days after fertilization both synthesis of VfAGPase mRNA and biosynthesis of starch had started in parenchyma cells of the inner adaxial zone of the cotyledons. During later stages, the expression of VfAGPase and synthesis of starch extended over most of the cotyledons but were absent from peripheral cells of the abaxial zone, provascular and procalyptral cells.Abbreviations AGPase ADP-glucose pyrophosphorylase - DAF days after fertilization - Glc1P glucose-1-phosphate - 3-PGA 3-phosphoglycerate - VfAGPC AGPase subunit of Vicia faba mainly expressed in cotyledons - VfAGPP AGPase subunit of Vicia faba mainly expressed in leaves and cotyledons - pVfAGPC, pVfAGPP plasmids containing VfAGPC and VfAGPP, respectively This work was supported by the Bundesministerium für Forschung und Technologie BCT 0389, Molekular- und Zellbiologie von höheren Pflanzen und Pilzen. U.W acknowledges additional support by the Fonds der chemischen Industrie. We thank Elsa Fessel for excellent technical assistance.  相似文献   

11.
Labelling experiments in which high-specific-activity [U-14C]sucrose or [U-14C]hexoses were injected into potato (Solanum tuberosum L. cv. Desiree) tubers showed that within 1 d of detaching growing tubers from their mother plant, there is an inhibition of starch synthesis, a stimulation of the synthesis of other major cell components, and rapid resynthesis of sucrose. This is accompanied by a general increase in phosphorylated intermediates, an increase in UDP-glucose, and a dramatic decrease of ADP-glucose. No significant decline in the extracted activity of enzymes for sucrose degradation or synthesis, or starch synthesis is seen within 1 d, nor is there a significant decrease in sucrose, amino acids, or fresh weight. Over the next 7 d, soluble carbohydrates decline. This is accompanied by a decline in sucrose-synthase activity, hexose-phosphate levels, and the synthesis of structural cell components. It is argued that a previously unknown mechanism acting at ADP-glucose pyrophosphorylase allows sucrose-starch interconversions to be regulated independently of the use of sucrose for cell growth.  相似文献   

12.
13.
14.
15.
Electrophoretic characterization of adenosine diphosphate glucose pyrophosphorylase from the developing endosperms of nine shrunken-2 and four brittle-2 mutants revealed that (1) all mutants had low but detectable levels of activity, (2) mutation at either locus decreased activity of pyrophosphorylases A and B, and (3) differences in mobility were not found. However, pyrophosphorylase B extracted from several shrunken-2 and brittle-2 mutants differed from normal in extent of urea denaturation, K m (glucose-1-phosphate) or type of glucose-1-phosphate saturation kinetics. Pyrophosphorylase B from sh2-m (association of Dissociation with the sh2 locus) appears to differ from normal in K m (glucose-1-phosphate).This research was supported by the College of Agricultural and Life Sciences and by National Institutes of Health Grant No. 15422.The investigations reported were included in the thesis submitted by L. C. Hannah to the Graduate School, University of Wisconsin, Madison, Wisconsin, in partial fulfillment of requirement for the Ph.D. degree. Laboratory of Genetics Paper No. 1922.  相似文献   

16.
Lack of knowledge of three dimensional structures of small and large subunits of ADP- glucose pyrophosphorylase (AGPase) in wheat has hindered efforts to understand the binding specifities of substrate and catalytic mechanism. Thus, to understand the structure activity relationship, 3D structures were built by homology modelling based on crystal structure of potato tuber ADP-glucose pyrophosphorylase. Selected models were refined by energy minimization and further validated by Procheck and Prosa-web analysis. Ramachandran plot showed that overall main chain and side chain parameters are favourable. Moreover, Z-score of the models from Prosa-web analysis gave the conformation that they are in the range of the template. Interaction analysis depicts the involvement of six amino acids in hydrogen bonding (AGP-SThr422-AGP-LMet138, AGP- SArg420-AGP-LGly47, AGP-SSer259-AGP-LSer306, AGP-SGlu241-AGP-LIle311, AGPSGln113- AGP-LGlu286 and AGP-SGln70-AGP-LLys291). Fifteen amino acids of small subunit were able to make hydrophobic contacts with seventeen amino acids of large subunit. Furthermore, decrease in the solvent accessible surface area in the amino acids involved in interaction were also reported. All the distances were formed in between 2.27 to 3.78Å. The present study focussed on heterodimeric structure of (AGPase). This predicted complex not only enhance our understanding of the interaction mechanism between these subunits (AGP-L and AGP-S) but also enable to further study to obtain better variants of this enzyme for the improvement of the plant yield.  相似文献   

17.
Singh S  Choi SB  Modi MK  Okita TW 《Phytochemistry》2002,59(3):261-268
Four cDNA clones encoding two large subunits and two small subunits of the starch regulatory enzyme ADP-glucose pyrophosphorylase (AGPase) were isolated from a chickpea (Cicer arietinum L.) stem cDNA library. DNA sequence and Southern blot analyses of these clones, designated CagpL1, CagpL2 (large subunits) and CagpS1 and CagpS2 (small subunits), revealed that these isoforms represented different AGPase large and small subunits. RNA expression analysis indicated that CagpL1 was expressed strongly in leaves with reduced expression in the stem. No detectable expression was observed in seeds and roots. CagpL2 was expressed moderately in seeds followed by weak expression in leaves, stems and roots. Similar analysis showed that CagpS1 and CagpS2 displayed a spatial expression pattern similar to that observed for CagpL2 with the exception that CagpS1 showed a much higher expression in seeds than CagpS2. The spatial expression patterns of these different AGPase subunit sequences indicate that different AGPase isoforms are used to control starch biosynthesis in different organs during chickpea development.  相似文献   

18.
cDNA probes encoding the barley endosperm ADP-glucose pyrophosphorylase (AGP) small subunit (bepsF2), large subunit (bepl10), and leaf AGP large subunit (blpl) were hybridized with barley genomic DNA blots to determine copy number and polymorphism. Probes showing polymorphism were mapped on a barley RFLP map. Probes that were not polymorphic were assigned to chromosome arms using wheat-barley telosomic addition lines. The data suggested the presence of a single-copy gene corresponding to each of the cDNA probes. In addition to the major bands, several weaker cross-hybridizing bands indicated the presence of other, related sequences. The weaker bands were specific to each probe and were not due to cross-hybridization with the other probes examined here. The endosperm AGP small subunit (bepsF2) majorband locus was associated with chromosome 1P and designated Aga1. The endosperm AGP large subunit (bepl10) major-band locus was mapped to chromosome 5M and designated Aga7. The endosperm AGP large-subunit minor bands were not mapped. The leaf AGP large-subunit major band was associated with chromosome 7M and designated Aga5. One of the leaf AGP large-subunit minor bands was mapped to chromosome 5P and designated Aga6. A clone for the wheat endosperm AGP large-subunit (pAga7) hybridized to the same barley genomic DNA bands as the corresponding barley probe indicating a high degree of identity between the two probes.  相似文献   

19.
ADP-glucose pyrophosphorylase, a key regulatory enzyme of starch biosynthesis, is composed of a pair of catalytic small subunits (SSs) and a pair of catalytically disabled large subunits (LSs). The N-terminal region of the LS has been known to be essential for the allosteric regulatory properties of the heterotetrameric enzyme. To gain further insight on the role of this region and the LS itself in enzyme function, the six proline residues found in the N-terminal region of the potato tuber AGPase were subjected to scanning mutagenesis. The wildtype and various mutant heterotetramers were expressed using our newly developed host-vector system, purified, and their kinetic parameters assessed. While P(17)L, P(26)L, and P(55)L mutations only moderately affected the kinetic properties, P(52)L and P(66)L gave rise to significant and contrasting changes in allosteric properties: P(66)L enzyme displayed up-regulatory properties toward 3-PGA while the P(52)L enzyme had down-regulatory properties. Unlike the other mutants, however, various mutations at P(44) led to only moderate changes in regulatory properties, but had severely impaired catalytic rates, apparent substrate affinities, and responsiveness to metabolic effectors, indicating Pro-44 or the LS is essential for optimal catalysis and activation of the AGPase heterotetramer. The catalytic importance of the LS is further supported by photoaffinity labeling studies, which revealed that the LS binds ATP at the same efficiency as the SS. These results indicate that the LS, although considered having no catalytic activity, may mimic many of the catalytic events undertaken by the SS and, thereby, influences net catalysis of the heterotetrameric enzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号