首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
The uterine uptake of amino acids was studied in 10 pregnant sheep with gestational ages of 114-146 days. After recovery from surgery, arterial and uterine venous samples were drawn simultaneously via indwelling catheters and analysed for amino acid and oxygen content. In seven ewes, amino acid concentrations were measured by a chromatographic technique. In four ewes, glutamate and glutamine arterio-venous differences across the uterine and umbilical circulations were measured by an enzymatic method. The uptake of neutral and basic amino acids was 66 mumol/mmol O2 and 17.3 mumol/mmol O2, respectively. Comparison of uterine and umbilical uptake shows that the bulk of the neutral and basic amino acids taken up by the pregnant uterus are transferred to the fetus. there was no significant uptake of acidic amino acids (i.e. glutamate, aspartate and taurine). glutamate was delivered from the fetus to the placenta but excretion of glutamate into the uterine circulation was negligible. Glutamine and asparagine were delivered to the fetus in amount which were two to three times larger than the placental uptake of glutamate and aspartate. Therefore placental conversion of exogenous glutamate and aspartate to glutamine and asparagine cannot account entirely for the fetal uptake of these amino acids.  相似文献   

2.
Sunlight photolysis of the amino acids glutamate and aspartate were carried out on 0.1 M aqueous solutions at pH=7.0. The non-volatile products were identified by GC-MS analysis of derived methyl esters. The major product from glutamic acid was succinic acid, and, analogously, aspartic acid photolyzed to malonic acid. The photochemical oxidative decarboxylation of glutamate parallels its metabolism in modern cells and may provide an evolutionary link between simple amino acids and reactions of the citric acid cycle.  相似文献   

3.
This paper investigates the influence of the carbon (C) and nitrogen (N) status on the amino acid profile in tobacco source leaves. Treatments used included growing plants at different light intensities, using an antisense RBCS (small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase) construct to inhibit Rubisco activity, growing plants on 12 or 0.5 mM nitrate, comparing wild-types with genotypes that have small and large decreases in nitrate reductase (NIA) activity, and sampling plants at different times during the diurnal cycle. This combination of experiments provides information on how amino acid levels respond to several inputs including the C and N status, nitrate, excess light and light-dark transitions. The data set was analysed using principal component analysis, regression analysis and by normalizing the level of each individual amino acid on the total amino acid pool. Most amino acids show a downward trend when the C or the N status is decreased, and rise during day and fall at night during the diurnal cycle. However, individual amino acids often showed deviating responses. Furthermore, no evidence was found for feedback inhibition of minor amino acid synthesis, either within or between pathways, when 18 individual amino acids were supplied to detached leaves. Results indicate that regulation of amino acid metabolism, for example by the C and N status, leads to qualitatively similar responses of many amino acids, but homeostatic mechanisms involving feedback inhibition within or between individual amino acid biosynthesis pathways are not stringent. All of the above inputs affect the level of phenylalanine, an amino acid that is also the substrate for an important sector of secondary metabolism. The levels of glutamate were remarkably constant, indicating that unknown mechanisms stabilize the concentration of this key central amino acid. Analyses of metabolite levels and feeding experiments indicated that 2-oxoglutarate plays an important role in regulating glutamate levels. Glutamate was the most effective inhibitor of NIA activity when 18 individual amino acids were supplied to detached leaves. Feeding glutamate, and other downstream amino acids, led to an increase of glutamine, indicating glutamate exerts feedback regulation on ammonium metabolism.  相似文献   

4.
The effect of the glutamate antagonist alpha-amino-4-phosphonobutyrate (APBA) on the release of endogenous amino acids from sensorimotor cortical synaptosomes of rats with a cortical cobalt focus and from non-epileptic rats was studied: (1) The release of endogenous glutamate, aspartate, and gamma-aminobutyric acid (GABA) from synaptosomal preparations of cobalt-induced epileptogenic tissues was increased compared with the release from the contralateral (sensorimotor) region or the sensorimotor cortex of normal animals. The intrasynaptosomal content of these amino acids was reduced in proportion to the amount released. The levels of other amino acids were unaffected or showed much smaller changes. (2) APBA (0.5-1 mM) decreased significantly the spontaneous release of aspartate and glutamate from the epileptic foci without affecting GABA or any other amino acid. (3) APBA produced no effect whatsoever on the release of any amino acid from synaptosomal preparations of nonepileptic focus.  相似文献   

5.
This study tested the hypothesis that the excitatory amino acid transmitters glutamate and/or aspartate are associated with the periaqueductal gray (PAG)-raphe magnus (NRM) projection. Retrograde neuroanatomical tracing procedures utilizing the tracers WGA-HRP or D-[3H]-aspartate were combined with immunocytochemical localization of glutamate or aspartate to determine if glutamate and/or aspartate immunostained neurons projected to the NRM. Both glutamate- and aspartate-immunoreactive cells in the PAG were found to project to the NRM. Double labeling immunocytochemichemical procedures indicated that glutamate and aspartate are co-localized in many PAG neurons, suggesting the following possibilities: (a) one of these two amino acids may serve as a precursor to the other; (b) both amino acids may be co-released from the same PAG neuron; or (c) both amino acids are present in high levels in the perikarya for metabolic purposes. At the EM level, both glutamate- and aspartate-immunoreactive terminals were identified in the NRM, strengthening the concept that both amino acids participate in synaptic transmission in this medullary nucleus. To determine if glutamate and aspartate are in fact released from PAG-NRM axons, the PAG was stimulated chemically with homocysteic acid (HCA) and amino acids were collected from the NRM using a microdialysis probe. Microinjection of HCA, but not vehicle, into the PAG resulted in the release of both glutamate and aspartate in the nucleus raphe magnus. These data suggest that both glutamate and aspartate are released from PAG fibers terminating in the NRM and provide strong support for the hypothesis that excitatory amino acids play a neurotransmitter role in the PAG-NRM pathway.  相似文献   

6.
Amino acids in bovine oviductal and uterine fluids were measured and compared with those in modified simplex optimized medium (KSOM) supplemented with either fetal calf serum or Minimum Essential Medium amino acids in addition to bovine serum albumin, fetal calf serum or polyvinyl alcohol. Concentrations of cysteine, threonine, tryptophan, alanine, aspartate, glycine, glutamate, proline, beta-alanine, and citrulline were higher in oviductal fluids than in KSOM-based culture media. Nonessential and essential amino acids were present in ratios of 5:1 and 2:1 in oviductal and uterine fluids, respectively. Concentrations of alanine (3.7 mM), glycine (14.1 mM) and glutamate (5.5 mM) were high in oviductal fluids, comprising 73% of the free amino acid pool. Of the amino acids measured in uterine fluids, alanine (3.1 mM), glycine (12.0 mM), glutamate (4.2 mM), and serine (2.7 mM) were highest in concentration, and the first three comprised 43% of the free amino acid pool. In conclusion, amino acid concentrations in the bovine reproductive tract were substantially higher than those in embryo culture media. Certain amino acids, particularly alanine, glutamate, glycine and taurine, are present in strikingly high concentrations in both oviductal and uterine fluids, suggesting that they might play important roles in early embryo development. The particular pattern of amino acid concentrations may be an important factor to be considered for the improvement of embryo culture media.  相似文献   

7.
The cotyledons of castor bean (Ricinus communis L.) act as absorption organs for amino acids, which are supplied to the medium. The analysis of the sieve-tube sap, which exudes from the cut hypocotyl, demonstrated the ability of the cotyledons to load particular amino acids into the phloem and to reject the loading of others. The sieve-tube sap of cotyledons, which were embedded in the endosperm, contained 150 mM amino acids, with 50 mM glutamine as the major amino acid, and 10–15 mM each of valine, isoleucine, lysine and arginine. Removal of the endosperm led to a drastic decline in the amino-acid content of sieve-tube sap down to 16 mM. Addition of single amino acid species to the medium increased the amino acid concentration in the sieve-tube sap in specific manner: glutamine caused the largest increase (up to 140 mM in exudate), glutamate and alanine smaller increases (up to 60 mM), and arginine the smallest. In addition, the amino acid composition of the sieve-tube sap changed, for instance, glutamine or alanine readily appeared in the sieve-tube sap upon incubation in glutamine or alanine, respectively, whereas glutamate was hardly discernible even in the case of incubation with glutamate; arginine was loaded into the sieve tubes only reluctantly. In general, glutamine and alanine accumulated four- to tenfold in the sieve tubes. The uptake of amino acids and of sucrose into the sieve tubes was interdependent: the loading of sucrose strongly reduced the amino acid concentration in the sieve-tube exudate and loading of amino acids decreased the sucrose concentration. Comparison of the concentrations of various amino acids on their way from the endosperm via the cotyledon-endosperm interface, through the cotyledons and into the sieve tubes showed that glutamine, valine, isoleucine and lysine are accumulated on this pathway, whereas glutamate and arginine are more concentrated in the cotyledons than in the sieve tubes. Obviously the phloem-loading system has a transport specificity different from that of the amino acid uptake system of the cotyledon in general and it strongly discriminates between amino acids within the cotyledons.  相似文献   

8.
Glutamatergic neurotransmission entails a tonic loss of glutamate from nerve endings into the synapse. Replacement of neuronal glutamate is essential in order to avoid depletion of the internal pool. In brain this occurs primarily via the glutamate-glutamine cycle, which invokes astrocytic synthesis of glutamine and hydrolysis of this amino acid via neuronal phosphate-dependent glutaminase. This cycle maintains constancy of internal pools, but it does not provide a mechanism for inevitable losses of glutamate N from brain. Import of glutamine or glutamate from blood does not occur to any appreciable extent. However, the branched-chain amino acids (BCAA) cross the blood–brain barrier swiftly. The brain possesses abundant branched-chain amino acid transaminase activity which replenishes brain glutamate and also generates branched-chain ketoacids. It seems probable that the branched-chain amino acids and ketoacids participate in a “glutamate-BCAA cycle” which involves shuttling of branched-chain amino acids and ketoacids between astrocytes and neurons. This mechanism not only supports the synthesis of glutamate, it also may constitute a mechanism by which high (and potentially toxic) concentrations of glutamate can be avoided by the re-amination of branched-chain ketoacids.  相似文献   

9.
The apoplast of developing soybean (Glycine max cv Hodgson) embryos and seed coats was analyzed for sucrose, amino acids, ureides, nitrate, and ammonia. The apoplast concentration of amino acids and nitrate peaked during the most rapid stage of seed filling and declined sharply as the seed attained its maximum dry weight. Amino acids and nitrate accounted for 80 to 95% of the total nitrogen, with allantoin and allantoic acid either absent or present in only very small amounts. Aspartate, asparagine, glutamate, glutamine, serine, alanine, and γ-aminobutyric acid were the major amino acids, accounting for over 70% of the total amino acids present. There was a nearly quantitative conversion of glutamine to glutamate between the seed coat and embryo, most likely resulting from the activity of glutamate synthase found to be present in the seed coat tissue. This processing of glutamine suggests a partly symplastic route for solutes moving from the site of phloem unloading in the seed coat to the embryo.  相似文献   

10.
Concentrations of 11 amino acids, including the neurotransmitters GABA, glutamate, aspartate, glycine and taurine, were determined in 12 brain regions of female rats during different stages of the estrous cycle. In addition, amino acids and sex hormone levels were determined in plasma. All sample collections were done in the forenoon between 9 and 11 a.m. Most regional amino acid levels measured did not change signficantly during estrous cycle, but significant alterations were found for GABA and glutamate in hypothalamus. Both amino acids were slightly decreased in hypothalamus during proestrus, which might reflect an alteration of GABA turnover in response to the high estrogen levels during this stage. A decreased glutamate level during proestrus was also found in thalamus, while both glutamate and GABA did not vary throughout estrous cycle in any of the other examined regions, including substantia nigra, amygdala, striatum, cortex and hippocampus. When diestrus was subdivided according to progesterone levels, high levels of this hormone seemed to be associated with effects on metabolism of certain amino acids, including glycine in substantia nigra, alanine in thalamus and threonine in pons/medulla. However, the few changes in regional amino acid concentrations found during the estrous cycle were so small that the functional significance of these changes cannot be ascertained without further determination of the cellular or subcellular compartments of brain tissue involved.  相似文献   

11.
Monosodium glutamate (MSG) ingestion is known to increase plasma glutamate concentration, and MSG infusion stimulates insulin secretion. We investigated the impact of MSG ingestion on both the plasma and intramuscular amino acid pools. Nine postprandial adults ingested MSG (150 mg/kg) and rested for 105 min. Venous blood was sampled preingestion and then every 15 min; vastus lateralis muscle biopsies were taken preingestion and at 45, 75, and 105 min postingestion. Venous plasma glutamate and aspartate concentrations increased (P 相似文献   

12.
High-performance liquid chromatography with fluorescence detection was used to assay the release of putative amino acid transmitters from the Limulus neuromuscular preparation. Motor axon stimulation increased the concentrations of aspartate, glutamate and eight other amino acids in fluid bathing the neuromuscular preparation. Pentobarbital, which attenuates the excitatory postsynaptic potential of Limulus muscle, was used to block both synaptic activation of muscle fibers and any amino acid release that may have resulted from this activation. Stimulus-induced release of glutamate and five other amino acids was blocked by pentobarbital, while release of aspartate and three other amino acids was unaffected; a result which suggests that the latter group of amino acids was released presynaptically. Aspartate is the only physiologically active compound in this group. Consideration is given both to the difficulties involved in interpreting sites of amino acid release and to the problem of using pentobarbital as a presumed postsynaptic antagonist. The evidence concerning the relative merits of either aspartate or glutamate as the natural excitatory transmitter at the Limulus neuromuscular junction is discussed.  相似文献   

13.
Glyoxylate transamination in intact leaf peroxisomes   总被引:2,自引:0,他引:2       下载免费PDF全文
Intact spinach (Spinacia oleracea L.) leaf peroxisomes were supplied with glycolate and one to three of the amino acids serine, glutamate, and alanine, and the amount of the respective α-keto acids formed in glyoxylate transamination was assayed. At 1 millimolar glycolate and 1 millimolar each of the three amino acids in combination, the transamination reaction reached saturation; reduction of either glycolate or amino acid concentration decreased the activity. The relative serine, glutamate, and alanine transamination at equal amino acid concentrations was roughly 40, 30, and 30%, respectively. The three amino acids exhibited mutual inhibition to one another in transamination due to the competition for the supply of glyoxylate. In addition to this competition for glyoxylate, competitive inhibition at the active site of enzymes occurred between glutamate and alanine, but not between serine and glutamate or alanine. Alteration of the relative concentrations of the three amino acids changed their relative transamination. Similar work was performed with intact oat (Avena sativa L.) leaf peroxisomes. At 1 millimolar of each of the three amino acids in combination, the relative serine, glutamate, and alanine transamination was roughly 60, 23, and 17%, respectively. Similarly, alteration of the relative concentration of the three amino acids changed their relative transamination. The contents of the three amino acids in leaf extracts were analyzed, and the relative contribution of the three amino acids in glycine production in photorespiration was assessed and discussed.  相似文献   

14.
Intact vacuoles are released from spheroplasts of Saccharomyces cerevisiae by means of a gentle mechanical disintegration method. They are purified by centrifugation in isotonic density gradients (flotation and subsequent sedimentation), and analyzed for their soluble amino acid content. The results indicate that about 60% of the total amino acid pool of spheroplasts is contained in the vacuoles. This may be an underestimate, as it presupposes no loss of amino acids from the vacuoles during the purification procedure. The amino acid concentration in the vecuoles is calculated to be approximately 5 times that in the cytoplasm if the total volumes of the two compartments are used for the calculation. The vacuolar amino acid pool is rich in basic amino acids, and in citrulline and glutamine, but contains a remarkably small amount of glutamate. Radioactive labeling experiments with spheroplasts indicate that the vacuolar amino acids are separated from the metabolically active pools located in the cytoplasm. This is particularly evident for the basic amino acids and glutamine; in contrast, the neutral amino acids and glutamate appear to exchange more rapidly between the cytoplasmic and the vacuolar compartments of the cells.  相似文献   

15.
In Gouda and Cheddar type cheeses the amino acid conversion to aroma compounds, which is a major process for aroma formation, is essentially due to lactic acid bacteria (LAB). In order to evaluate the respective role of starter and nonstarter LAB and their interactions in cheese flavor formation, we compared the catabolism of phenylalanine, leucine, and methionine by single strains and strain mixtures of Lactococcus lactis subsp. cremoris NCDO763 and three mesophilic lactobacilli. Amino acid catabolism was studied in vitro at pH 5.5, by using radiolabeled amino acids as tracers. In the presence of alpha-ketoglutarate, which is essential for amino acid transamination, the lactobacillus strains degraded less amino acids than L. lactis subsp. cremoris NCDO763, and produced mainly nonaromatic metabolites. L. lactis subsp. cremoris NCDO763 produced mainly the carboxylic acids, which are important compounds for cheese aroma. However, in the reaction mixture containing glutamate, only two lactobacillus strains degraded amino acids significantly. This was due to their glutamate dehydrogenase (GDH) activity, which produced alpha-ketoglutarate from glutamate. The combination of each of the GDH-positive lactobacilli with L. lactis subsp. cremoris NCDO763 had a beneficial effect on the aroma formation. Lactobacilli initiated the conversion of amino acids by transforming them mainly to keto and hydroxy acids, which subsequently were converted to carboxylic acids by the Lactococcus strain. Therefore, we think that such cooperation between starter L. lactis and GDH-positive lactobacilli can stimulate flavor development in cheese.  相似文献   

16.
Glutamate and aspartate showed the highest rate of catabolism in oxygenated isolated rat heart with the formation of glutamine, asparagine and alanine. Under anoxia, the catabolism of branch chained amino acids and that of lysine, proline, arginine and methionine was inhibited. However, glutamate and aspartate catabolized at a higher rate as compared with oxygenation. Alanine was the product of their excessive degradation. During oxygenation, 70% of ammonia were produced via deamination of amino acids. Under anaerobic conditions the participation of amino acids in ammoniagenesis decreased to 4%; the principal source of ammonia was the adenine nucleotide pool. The total pool of the tricarboxylic acid cycle intermediates increased 2.5-fold due to accumulation of succinate. The data obtained suggest that the constant influx of intermediates into the cycle from amino acids is supported by coupled transamination of glutamate and aspartate. This leads to the formation of ATP and GTP in the tricarboxylic acid cycle during blocking of aerobic energy production.  相似文献   

17.
When mixed rumen microorganisms were incubated in media containing the amino acid source Trypticase, both monensin and carbon monoxide (a hydrogenase inhibitor) decreased methane formation and amino acid fermentation. Both of the methane inhibitors caused a significant increase in the ratio of intracellular NADH to NAD. Studies with cell extracts of rumen bacteria and protozoa indicated that the ratio of NADH to NAD had a marked effect on the deamination of reduced amino acids, in particular branched-chain amino acids. Deamination was inhibited by the addition of NADH and was stimulated by methylene blue, an agent that oxidizes NADH. Neutral and oxidized amino acids were unaffected by NADH. The addition of small amounts of 2-oxoglutarate greatly enhanced the deamination of branched-chain amino acids and indicated that transamination via glutamate dehydrogenase was important. Formation of ammonia from glutamate was likewise inhibited by NADH. These experiments indicated that reducing-equivalent disposal and intracellular NADH/NAD ratio were important effectors of branched-chain amino acid fermentation.  相似文献   

18.
When mixed rumen microorganisms were incubated in media containing the amino acid source Trypticase, both monensin and carbon monoxide (a hydrogenase inhibitor) decreased methane formation and amino acid fermentation. Both of the methane inhibitors caused a significant increase in the ratio of intracellular NADH to NAD. Studies with cell extracts of rumen bacteria and protozoa indicated that the ratio of NADH to NAD had a marked effect on the deamination of reduced amino acids, in particular branched-chain amino acids. Deamination was inhibited by the addition of NADH and was stimulated by methylene blue, an agent that oxidizes NADH. Neutral and oxidized amino acids were unaffected by NADH. The addition of small amounts of 2-oxoglutarate greatly enhanced the deamination of branched-chain amino acids and indicated that transamination via glutamate dehydrogenase was important. Formation of ammonia from glutamate was likewise inhibited by NADH. These experiments indicated that reducing-equivalent disposal and intracellular NADH/NAD ratio were important effectors of branched-chain amino acid fermentation.  相似文献   

19.
The first step of amino acid degradation in lactococci is a transamination, which requires an alpha-keto acid as the amino group acceptor. We have previously shown that the level of available alpha-keto acid in semihard cheese is the first limiting factor for conversion of amino acids to aroma compounds, since aroma formation is greatly enhanced by adding alpha-ketoglutarate to cheese curd. In this study we introduced a heterologous catabolic glutamate dehydrogenase (GDH) gene into Lactococcus lactis so that this organism could produce alpha-ketoglutarate from glutamate, which is present at high levels in cheese. Then we evaluated the impact of GDH activity on amino acid conversion in in vitro tests and in a cheese model by using radiolabeled amino acids as tracers. The GDH-producing lactococcal strain degraded amino acids without added alpha-ketoglutarate to the same extent that the wild-type strain degraded amino acids with added alpha-ketoglutarate. Interestingly, the GDH-producing lactococcal strain produced a higher proportion of carboxylic acids, which are major aroma compounds. Our results demonstrated that a GDH-producing lactococcal strain could be used instead of adding alpha-ketoglutarate to improve aroma development in cheese.  相似文献   

20.
Altered plasma and cerebrospinal fluid amino acid levels may be associated with human epilepsy. We studied three groups of patients, those with a generalized epileptic syndrome, juvenile myoclonic epilepsy, patients with refractory localization-related epilepsies, and patients with acute seizures (within 24 h). Plasma levels of amino acids were studied in all patient groups, as were those in the cerebrospinal fluid (CSF) of patients with acute seizures. After acute seizures, the amino acid changes in the CSF were limited to a reduction in the level of taurine, whereas the levels of most amino acids in plasma were decreased. On the other hand, levels of the excitatory amino acids glutamate and aspartate were increased. The most notable finding in the juvenile myoclonic epilepsy patients was an increase in glutamate level in the plasma. Our study supports the conception of an altered metabolism of glutamate in generalized epilepsies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号