首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied the ability of F9 teratocarcinoma cells to arrest in G1/S and G2/M checkpoints following gamma-irradiation. Wild-type p53 protein is rapidly accumulated in F9 cells after gamma-irradiation, however this is not followed by G1/S arrest; there is just a reversible delay of the cell cycle in G2/M. In order to elucidate the reasons of the lack of G1/S arrest in F9 cells we investigated the levels of regulatory cell cycle proteins: G1-cyclins, cyclin dependent kinases and kinase inhibitor p21WAF1/CIP1. We have shown that in spite of p53-dependent activation of p21WAF1/CIP1 promoter, p21WAF1/CIP1 protein is not revealed by different polyclonal and monoclonal antibodies, either by immunoblotting or by immunofluorescent staining. However, when cells are treated with specific proteasome inhibitor lactacystin, p21WAF1/CIP1 protein is revealed. We therefore suggest that p21WAF1/CIP1 protein is subjected to proteasome degradation in F9 cells and probably the lack of G1/S arrest after gamma-irradiation is due to this degradation. Thus, it is the combination of functionally active p53 with low level expression of p21WAF1/CIP1 that causes a short delay of the cell cycle progression in G2/M, rather than the G1-arrest after gamma-irradiation of F9 cells.  相似文献   

2.
3.
目的:构建p21WAF1/CIP1基因小干扰RNA(siRNA)的真核表达载体,观察其对p21WAF1/CIP1表达的影响和细胞周期的变化。方法:合成了针对p21WAF1/CIP1基因的siRNA,将其克隆到siRNA表达载体pSliencer2.1-U6neo上,将重组质粒和带FLAG标签的p21WAF1/CIP1共转染293T人胚肾细胞,通过Westernblot检验RNA干扰(RNAi)敲低外源p21WAF1/CIP1的效果;将重组质粒单独转染293T人胚肾细胞,利用p21WAF1/CIP1抗体检测RNAi敲低内源p21WAF1/CIP1的效果;利用流式细胞仪检测敲低后细胞周期的变化。结果:测序证明构建了p21WAF1/CIP1siRNA真核表达载体;Westernblot和流式细胞分析证明,构建的siRNA能有效降低p21WAF1/CIP1基因的表达,并且使G1期细胞数减少14.03%,S期细胞增多13.45%。结论:构建了p21WAF1/CIP1siRNA的真核表达载体,该siRNA能有效抑制p21WAF1/CIP1基因的表达并部分解除了G1期阻滞。  相似文献   

4.
5.
视黄酸对胃癌细胞周期的调控   总被引:3,自引:0,他引:3  
Retinoic acid can induce growth inhibition and apoptosis, and regulate cell cycle in many types of cancer cell lines. In this study, we investigated the role of all-trans retinoic acid (ATRA) and its mechanism of action in human gastric cancer cell lines. Our results demonstrated that ATRA effectively inhibited growth in three of four gastric cancer cell lines by induction of G0/G1 arrest, and did not induce apoptosis in four gastric cancer cell lines. In RA-sensitive cell lines, ATRA-induced G0/G1 arrest is associated with down regulaton of c-myc and hyperphosphorylated Rb expression, and up regulation of p21WAF1/CIP1 and p53 expression. There were no significant changes in cyclin D1 or CDK4 expression induced by ATRA. Futhermore, expression of these genes were not regulated by ATRA in ATRA-resistant gastric cancer cell line. These results indicate that growth inhibition, rather than apoptosis, is correlated with G0/G1 arrest of these cell lines, more important molecules related cell cycle, including c-myc, p21WAF1/CIP1, p53 and Rb, are involveed in regulation of cell cycle in gastric cancer cells.  相似文献   

6.
High expression of the epidermal growth factor receptor (EGFR) has been implicated in the development of squamous-cell carcinomas of head and neck (SCCHN). ZD1839 ('Iressa') is an orally active, selective EGFR-TKI (EGFR-tyrosine kinase inhibitor) that blocks signal transduction pathways implicated in proliferation and survival of cancer cells, and other host-dependent processes promoting cancer growth. We have demonstrated that ZD1839 induces growth arrest in SCCHN cell lines by inhibiting EGFR-mediated signaling. Cell cycle kinetic analysis demonstrated that ZD1839 induces a delay in cell cycle progression and a G1 arrest together with a partial G2/M block; this was associated with increased expression of both p27(KIP1) and p21(CIP1/WAF1) cyclin-dependent kinase (CDK) inhibitors. The activity of CDK2, the main target of CIP/KIP CDK inhibitors, was reduced in a dose-dependent fashion after 24 h of ZD1839 treatment and this effect correlated to the increased amount of p27(KIP1) and p21(CIP1/WAF1) proteins associated with CDK2-cyclin-E and CDK2-cyclin-A complexes. In addition, ZD1839-induced growth inhibition was significantly reduced in cell transfectants expressing p27(KIP1) or p21(CIP1/WAF1) antisense constructs. Overall, these results as well as the timing of the effect of ZD1839 on G1 arrest and p27(KIP1) and p21(CIP1/WAF1) upregulation, suggest a mechanistic connection between these events.  相似文献   

7.
Members of the cadherin family have been implicated as growth regulators in multiple tumor types. Based on recent studies from our laboratory implicating T-cadherin expression in mouse brain tumorigenesis, we examined the role of T-cadherin in astrocytoma growth regulation. In this report, we show that T-cadherin expression increased during primary astrocyte physiologic growth arrest in response to contact inhibition and serum starvation in vitro, suggesting a function for T-cadherin in astrocyte growth regulation. We further demonstrate that transient and stable reexpression of T-cadherin in deficient C6 glioma cell lines results in growth suppression. In addition, T-cadherin-expressing C6 cell lines demonstrated increased homophilic cell aggregation, increased cell attachment to fibronectin, and decreased cell motility. Cell cycle flow cytometry demonstrated that T-cadherin reexpression resulted in G2 phase arrest, which was confirmed by mitotic index analysis. This growth arrest was p53 independent, as T-cadherin could still mediate growth suppression in p53(-/-) mouse embryonic fibroblasts. T-cadherin-expressing C6 cell lines exhibited increased p21(CIP1/WAF1), but not p27(Kip1), expression. Lastly, T-cadherin-mediated growth arrest was dependent on p21(CIP1/WAF1) expression and was eliminated in p21(CIP1/WAF1)-deficient fibroblasts. Collectively, these observations suggest a novel mechanism of growth regulation for T-cadherin involving p21(CIP1/WAF1) expression and G2 arrest.  相似文献   

8.
Ribosomal proteins not only act as components of the translation apparatus but also regulate cell proliferation and apoptosis. A previous study reported that MRPL41 plays an important role in p53-dependent apoptosis. It also showed that MRPL41 arrests the cell cycle by stabilizing p27(Kip1) in the absence of p53. This study found that MRPL41 mediates the p21(WAF1/CIP1)-mediated G1 arrest in response to serum starvation. The cells were released from serum starvation-induced G1 arrest via the siRNA-mediated blocking of MRPL41 expression. Overall, these results suggest that MRPL41 arrests the cell cycle by increasing the p21(WAF1/CIP1) and p27(Kip1) levels under the growth inhibitory conditions.  相似文献   

9.
10.
Rat-1 cells are used in many studies on transformation, cell cycle, and apoptosis. Whereas UV treatment of Rat-1 cells results in apoptosis, X-ray treatment does not induce either apoptosis or a cell cycle block. X-ray treatment of Rat-1 cells results in both an increase of p53 protein and expression of the p53-inducible gene MDM2 but not the protein or mRNA of the p53-inducible p21(WAF1/CIP1) gene, which in other cells plays an important role in p53-mediated cell cycle block. The lack of p21(WAF1/CIP1) expression appears to be the result of hypermethylation of the p21(WAF1/CIP1) promoter region, as p21(WAF1/CIP1) protein expression could be induced by growth of Rat-1 cells in the presence of 5-aza-2-deoxycytidine. Furthermore, sequence analysis of bisulfite-treated DNA demonstrated extensive methylation of cytosine residues in CpG dinucleotides in a CpG-rich island in the promoter region of the p21(WAF1/CIP1) gene. Stable X-ray-induced p53-dependent p21(WAF1/CIP1) expression and cell cycle block were restored to a Rat-1 clone after transfection with a P1 artificial chromosome (PAC) DNA clone containing a rat genomic copy of the p21(WAF1/CIP1) gene. The absence of expression of the p21(WAF1/CIP1) gene may contribute to the suitability of Rat-1 cells for transformation, cell cycle, and apoptosis studies.  相似文献   

11.
12.
视黄酸对胃癌细胞周期的调控   总被引:1,自引:0,他引:1  
视黄酸(RA)能够抑制许多类型癌细胞生长、诱导细胞凋亡和调节细胞周期。本文研究了全反式视黄酸(ATRA)对人胃癌细胞的作用机理。结果表明,ATRA通过诱导细胞滞留在G_0/G_1期而显著抑制胃癌细胞生长,但ATRA不能诱导胃癌细胞凋亡;ATRA调控细胞周期与c-myc、磷酸化Rb水平的下调和p21~(WAF1/CIP1)、p53水平的上调有关,而cyclinD_1和CDK_4水平没有明显变化。在RA抗性细胞中,ATRA不能调节这些基因表达。结果证实,ATRA对胃癌细胞生长抑制与其诱导细胞滞留在G_0/G_1期有关,而与细胞凋亡的诱导无关,许多重要的、与周期相关的分子,包括cmyc、p21~(WAF1/CIP1、p53和Rb等参与细胞周期的调控。  相似文献   

13.
B-cell chronic lymphocytic leukaemia (B-CLL) originates from B lymphocytes that may differ in the activation level, maturation state or cellular subgroups in peripheral blood. Tumour progression in CLL B cells seems to result in gradual accumulation of the clone of resting B lymphocytes in the early phases (G0/G1) of the cell cycle. The G1 phase is impaired in B-CLL. We investigated the gene expression of five key cell cycle regulators: TP 53, c-Myc, cyclin D2, p21WAF1/CIP1 and p27KIP1, which primarily regulate the G1 phase of the cell cycle, or S-phase entry and ultimately control the proliferation and cell growth as well as their role in B-CLL progression. The study was conducted in peripheral blood CLL lymphocytes of 40 previously untreated patients. Statistical analysis of correlations of TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expressions in B-CLL patients with different Rai stages demonstrated that the progression of disease was accompanied by increases in p53, cyclin D2 and c-Myc mRNA expression. The expression of p27KIP1 was nearly statistically significant whereas that of p21 WAF1/CIP1 showed no such correlation. Moreover, high expression levels of TP53 and c-Myc genes were found to be closely associated with more aggressive forms of the disease requiring earlier therapy.  相似文献   

14.
Specific ligands of the peripheral benzodiazepine receptor (PBR) have been shown to induce both apoptosis and G1/G0 cell cycle arrest in colorectal cancers. The signaling pathways leading to cell cycle arrest are still unknown. Using cDNA array technology, we identified signaling molecules involved in cell cycle arrest induced by the PBR ligands FGIN-1-27 and PK 11195. Differential gene expression was confirmed by semi-quantitative RT-PCR or Western blot analysis of gene products. The PBR ligand-mediated signaling involved the upregulation of the cyclin-dependent kinase inhibitors p21WAF1/CIP1 and p27Kip1, cdc16, and the cell cycle inhibitors gadd45 and gadd153, the downregulation of the cyclins D1 and B1, as well as the inactivation of ERK1/2. The p21-deficient colorectal cancer cell line HCT116 p21-/- was significantly less sensitive to PBR ligands than the parental HCT116 wild-type cells, demonstrating the functional involvement of p21WAF1/CIP1 in PBR ligand-mediated G1 arrest. This study thus revealed PBR ligand-triggered signaling pathways leading to cell cycle arrest. Moreover, we showed the functional implication and interaction of differentially expressed gene products and provided a model of signaling pathways involved in PBR ligand-induced G1 arrest. These results form the basis for future PBR ligand-mediated therapeutic approaches.  相似文献   

15.
Cellular responses following DNA damage are ubiquitous in the biological world. In response to DNA damage, cell cycle checkpoints are activated, which delay cell cycle progression and most likely serve to allow time for repair. One important checkpoint in mammalian cells, activated in the G1 phase of the cell cycle, is dependent on the p53 tumor suppressor gene product. While p53 is responsible for inducing G1 arrest, the product of the MDM2 gene is believed to alleviate the arrest, allowing continuation of the cell cycle after a transient delay. Inasmuch as MDM2 and WAF1/CIP1 are transactivated by p53, while MDM2 binds to and modulates the activity of p53, a "feedback loop" is thus created. This pathway has been highly conserved in mammalian cells, but its presence outside of vertebrates is unknown. By using human MDM2 and WAF1/CIP1 cDNA probes, and monoclonal antibodies to p53 and Mdm2, we demonstrate in insect cell lines evidence for the existence of p53-, MDM2-, and WAF1/CIP1 -like molecules and a p53-regulated pathway following treatment by DNA-damaging agents.  相似文献   

16.
Mononuclear and multinuclear platinum complexes are known to induce distinct types of DNA lesions and exhibit different profiles of antitumor activity, in relation to p53 mutational status. In this study, we investigated the cellular effects of exposure to two platinum compounds (cisplatin and the multinuclear platinum complex BBR 3464), in the osteosarcoma cell line, U2-OS, carrying the wild-type p53 gene and capable of undergoing apoptosis or cell cycle arrest in response to diverse genotoxic stresses. In spite of the ability of both compounds to up-regulate p53 at cytotoxic concentrations, exposure to BBR 3464 resulted in cell cycle arrest but only cisplatin was capable of inducing significant levels of apoptosis and phosphorylation at the Ser15 residue of p53. The cisplatin-induced protein phosphorylation, not detectable in cells treated with BBR 3464, was associated with RPA phosphorylation, a specific up-regulation of Bax and down-regulation of p21(WAF1). Cells treated with BBR 3464 displayed a different cellular response with evidence of cytostasis associated with a high induction of p21(WAF1). The regulation of p21(WAF1) after cisplatin or BBR 3464 exposure required a p53 signal, as documented using stable transfectants expressing a dominant-negative form of p53 (175(his)). Taken together, these results indicate that cellular response to different genotoxic lesions (i.e. apoptosis or growth arrest) is associated with a specific recognition of DNA damage and a different p53-mediated signaling pathway. Multinuclear platinum complexes could be regarded as useful tools for investigating the p53-mediated process of cell cycle arrest in response to DNA damage.  相似文献   

17.
We have previously found that bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-beta family, induces cell-cycle arrest in the G1 phase and apoptotic cell death of HS-72 mouse hybridoma cells. In this study, we show that BMP-2 did not alter expression of cyclin D, cyclin E, cyclin-dependent kinase 2 (CDK2), CDK4, p27KIP1, p16INK4a, or p15INK4b, but enhanced expression of p21(CIP1/WAF1). Accumulation of p21(CIP1/WAF1) resulted in increased binding of p21(CIP1/WAF1) to CDK4 and concomitantly caused a profound decrease in the in vitro retinoblastoma protein (Rb) kinase activity of CDK4. Furthermore, the ectopic expression of human papilloma virus type-16 E7, an inhibitor of p21(CIP1/WAF1) and Rb, reverted G1 arrest induced by BMP-2. Expression of E6/E7, without increasing the p53 level, blocked inhibition of Rb phosphorylation and G1 arrest, but did not attenuate cell death in BMP-treated HS-72 cells. Taken together, these results suggest that inhibition of Rb phosphorylation by p21(CIP1/WAF1) is responsible for BMP-2-mediated G1 arrest and that BMP-2-induction of apoptosis might be independent of Rb hypophosphorylation.  相似文献   

18.
We investigated the role of wild-type (wt)-p53 as an inducer of apoptotic cell death in human hepatoma cell lines. Following the retrovirus-mediated transduction of the wt-p53 gene, Hep3B cells lacking the endogenous p53 expression began to die through apoptosis in 4 h. They showed a maximal apoptotic death at 12 h, whereas HepG2 cells expressing endogenous p53 did not. However, the transduction of the wt-p53 gene elicited growth suppression of both Hep3B and HepG2 cells. P21(WAF1/CIP1), a p53-inducible cell cycle inhibitor, was induced, not only in Hep3B cells undergoing apoptosis, but also in HepG2 cells. The kinetics of the p21(WAF1/CIP1) induction, DNA fragmentation, and growth suppression of the Hep3B cells showed that DNA fragmentation and growth suppression progressed rapidly following p21(WAF1/CIP1) accumulation. N-acetyl-cysteine or glutathione, potent antioxidants, strongly inhibited the DNA fragmentation, but did not reduce the elevated level of p21(WAF1/CIP1). These findings suggested that p21(WAF1/CIP1) was not a critical mediator for the execution of p53-mediated apoptosis, although it contributed to the growth inhibition of cells undergoing apoptosis. Furthermore, p53-mediated apoptosis could be repressed by antioxidants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号