首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The periplasmic nitrate reductase (NAP) from the sulphate reducing bacterium Desulfovibrio desulfuricans ATCC 27774 is induced by growth on nitrate and catalyses the reduction of nitrate to nitrite for respiration. NAP is a molybdenum-containing enzyme with one bis-molybdopterin guanine dinucleotide (MGD) cofactor and one [4Fe-4S] cluster in a single polypeptide chain of 723 amino acid residues. To date, there is no crystal structure of a nitrate reductase. RESULTS: The first crystal structure of a dissimilatory (respiratory) nitrate reductase was determined at 1.9 A resolution by multiwavelength anomalous diffraction (MAD) methods. The structure is folded into four domains with an alpha/beta-type topology and all four domains are involved in cofactor binding. The [4Fe-4S] centre is located near the periphery of the molecule, whereas the MGD cofactor extends across the interior of the molecule interacting with residues from all four domains. The molybdenum atom is located at the bottom of a 15 A deep crevice, and is positioned 12 A from the [4Fe-4S] cluster. The structure of NAP reveals the details of the catalytic molybdenum site, which is coordinated to two MGD cofactors, Cys140, and a water/hydroxo ligand. A facile electron-transfer pathway through bonds connects the molybdenum and the [4Fe-4S] cluster. CONCLUSIONS: The polypeptide fold of NAP and the arrangement of the cofactors is related to that of Escherichia coli formate dehydrogenase (FDH) and distantly resembles dimethylsulphoxide reductase. The close structural homology of NAP and FDH shows how small changes in the vicinity of the molybdenum catalytic site are sufficient for the substrate specificity.  相似文献   

2.
The crystal structure of a synthetic analogue of valinomycin, cyclo[-(D-Val-L-Hyi-L-Val-D-Hyi)2-] (octa-meso-valinomycin) (I) (C40H68N4O12.1.5.C4H8O2, M(r) = 937.01 + 88.10), has been determined. Crystals grown from dioxane are monoclinic, space group P2(1)/a, with cell parameters a = 21.487 (8), b = 16.836 (5), c = 16.089 (4) A, beta = 111.70 (4), and Z = 4. The atomic coordinates for nonhydrogen atoms were refined in the anisotropic thermal motion approximation. H atom positions were included in the structure factor calculations at their geometrically expected positions. Values of the standard and weighted R factors after refinement are 0.11 and 0.13, respectively. The conformation of the depsipeptide crystallized from dioxane is different from that crystallized from chloroform (II). The molecule adopts a rectangular shape with two type IV beta-turns containing a hydrogen bond and possesses pseudorotational symmetry. The side chains are located on the molecular periphery. The orientation of the carbonyl groups of the molecule is not conducive for efficient metal-ion coordination and in the observed conformation cannot behave as an ionophore. In the crystal the molecules form infinite chains parallel to the c axis, and are stabilized by two intermolecular hydrogen bonds that are shorter and have better geometry than the intramolecular hydrogen bonds. A phi/psi plot for dodecadepsipeptides with a (DLLD)3 sequence has well-defined areas for Val and Hyi residues only in cases when the crystals have been grown from nonpolar or medium-polar solvents. The phi/psi plot for octadepsipeptides crystallized from chloroform (II) shows this behavior also.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The isotropic mobility of separate regions of the intact molecule of immunoglobulin M (IgM) and its Fab and (Fc)5 fragments was studied using spin-labeling of carbohydrate (2,2,6,6-tetramethyl-4-aminopiperidine-1-oxyl) and peptide (2,2,5,5-tetramethyl-3-dichlorotriazinylaminopyrrolidine-1-oxyl) moieties. The spin-labeled oligosaccharide groups (OGs) in the Fab region are shown to have much more amplitude of anisotropic motion than those in the (Fc)5 region. The spin label in the latter is evidently attached in the C mu 3 domain to one of its OGs which is probably stabilized by ionic contacts between terminal N-acetylneuraminic acid residue and the peptide moiety of the IgM molecule. When the amount of the glycosidase-cleaved carbohydrate does not exceed 10-15%, most OGs affected are of the Fab region. Upon profound splitting (greater than or equal to 50%) the OGs of the (Fc)5 region are also affected; that results evidently in loosening the ionic contacts between the shortened OGs and the peptide moiety of IgM, and consequently in increasing mobility of the former. The structure of the (Fc)5 region of IgM is labile; after detaching this moiety from the intact IgM molecule, its structure is stabilized, but one of its domains (C mu 3) becomes more mobile than it is in the intact IgM molecule; at the same time the amplitude of anisotropic motion of OG bound here is decreased. In the latter case, this decrease depends on the sequence of spin-labeling and fragmentation. The most probable cause of stabilization of the (Fc)5 fragment is the heating of IgM solution to 56 degree C during fragmentation with trypsin. At this temperature the tau value for the (Fc)5 fragment is unusually low, equaling 23 ns. The spin-labeling in the peptide part of IgM occurs mostly in the Fab region which is a rather rigid moiety as expected.  相似文献   

4.
The crystal structure of a synthetic depsipeptide ionophore hexadecaisoleucinomycin, cyclo [-(D-Ile-L-Lac-L-Ile-D-Hyi)4-] (C80H136N8O24), has been determined by single crystal x-ray diffraction techniques. The crystals are orthorhombic, space group P2(1)2(1)2(1), number of molecules per unit cell z = 4, and cell parameters a = 11,195, b = 17.853, c = 54.835 A. The values of the standard (R) and weighted (Rw) discrepancy factors after refinement are 0.122 and 0.135, respectively. The structure is characterized by an elongated bracelet form with a twofold axis of pseudosymmetry. It is stabilized by eight intramolecular 4----1 hydrogen bonds between the amide C = O and N - H groups. The ester carbonyls are directed toward the inside of the molecule, their oxygen atoms forming an ellipsoidal internal cavity. The side chains are located on the molecular periphery. The conformational states of hexadecaisoleucinomycin in solution are discussed in the light of the data obtained.  相似文献   

5.
Various workers in their studies of the binding of haptens to IgM have observed that at low hapten concentration IgM has an apparent valence of five or near five, while at high hapten concentration IgM has a valence of ten. A possible explanation for this is that there is an interaction between binding sites on the same F(ab')2 region of the IgM molecule. In this paper the theory for such an interaction is presented and an expression for the apparent valence is derived. It is shown that the apparent valence depends on both the interaction between binding sites on the IgM molecule and on the width of the affinity distribution which characterizes the antiserum. A broad affinity distribution can give an apparent valence of five even when there is no interaction between sites, i.e., even when the ten binding sites on the IgM molecule are identical and independent. The general properties of a Scatchard plot are also discussed. When there is no interaction between sites it is shown that the average affinity and the variance of the affinity distribution can be obtained from a Scatchard plot. To illustrate the theory, an antiserum with affinities characterized by a normal distribution is considered and a simple method is presented for determining alpha, the parameter which measures the width of the normal distribution.  相似文献   

6.
The crystal structure of strontium galactarate mono-hydrate, Sr2+ x C6H8O8(2-) x H2O, Mr = 313.76, monoclinic, P2(1)/c, a = 10.268(2), b = 10.333(2), c = 10.194(2) A, beta = 117.87(3) degrees, lambda(Mo K alpha) = 0.71073 A, Z = 4, Dx = 2.180 Mg m(-3), V = 956.1(3) A3, mu = 5.676 mm(-1), F(000) = 624, T = 293(2) K, R = 0.0260 for 1690 observed reflections and 145 parameters refined, has been determined. The galactarate ion is centro-symmetrical in the crystal structure, although it contains independent half-ions. The Sr2+ ion is nine-coordinated (tricapped trigonal prism) with five Sr-O bonds from carboxylic groups, and four from hydroxyl groups. The water molecule does not take part in the coordination. Six hydrogen bonds are formed, three of them related to the water molecule. The spectroscopic evidence shows that the carboxylic acid dimers of the free acid dissociate. The asymmetric stretching vibrations of the anionic COO groups in the salt are observed at 1609 and 1548, and 1581 cm(-1), assigned to a mono-dentate and a tetra-dentate coordination, respectively. The symmetric stretching vibration is located at 1397 cm(-1). The hydroxyl groups of the galactarate skeleton take part in the metal-oxygen interaction, and the hydrogen-bonding network is rearranged upon sugar metalation.  相似文献   

7.
The enzymatic degradation of single crystals of mannan I with the catalytic core domain of a beta-mannanase (EC 3.2.1.78 or Man5A) from Trichoderma reesei was investigated by transmission electron microscopy and electron diffraction. The enzyme attack took place at the edge of the crystals and progressed towards their centres. Quite remarkably the crystalline integrity of the crystals was preserved almost to the end of the digestion process. This behaviour is consistent with an endo-mechanism, where the enzyme interacts with the accessible mannan chains located at the crystal periphery and cleaves one mannan molecule at a time. The endo mode of digestion of the crystals was confirmed by an analysis of the soluble degradation products.  相似文献   

8.
The reactions between purified anti-poly A. poly U and-poly I. poly C. antibodies (IgG and IgM), and synthetic and natural polynucleotides were visualized at the molecular level. This was achieved by the use of fine tungsten bidirectional shadowing of molecules adsorbed onto thin carbon films, combined with dark field electron microscopic observation. A progression was observed from monogamous multivalency (binding of a single multifunctional antigen molecule with several combining sites of the same antibody molecule simultaneously) (Crothers and Metzger, 1972, Immunochemistry, 9, 341-357), to aggregation. Different types of figures were observed, among which loops formed by the coiling of the antigen around a single IgM molecule were very frequently seen. The tendency of IgG antibodies to bind cooperatively to certain antigens was also noted. In contrast, cross-links were seldom encountered. The cross-reactivity of different polynucleotides was also assessed by a quantitative analysis. The length of antigen associated to an antibody molecule (either IgG or IgM) was also measured.  相似文献   

9.
A receptor for IgM was demonstrated on the surface of human B lymphocytes by using a rosette technique with ox erythrocytes coated with rabbit IgM antibody (EAM). Lymphocytes forming rosettes with EAM did not bind sheep red cells, had membrane Ia-like antigens and, in some instances, surface immunoglobulin. The specificity of EAM rosettes was confirmed by inhibition experiments with purified human Ig. IgM but not IgG molecules inhibited the rosette reaction. In addition, inhibition of EAM rosettes with IgM fragments showed that the receptor has affinity for a part of the molecule located in the Fc portion. By analogy with the receptors previously found on certain human T cells, receptors for IgM were not detected on freshly isolated B cells, but were expressed after overnight culture in IgM-free media. Studies on different human lymphoid tissues showed that IgM receptors are expressed on a limited percentage of both circulating and noncirculating B cells. In addition to normal B cells, the malignant B cells of a majority of cases of chronic lymphocytic leukemia expressed the receptors for IgM.  相似文献   

10.
The crystal structure of the complex between the quinoprotein methylamine dehydrogenase (MADH) and the type I blue copper protein amicyanin, both from Paracoccus denitrificans, has been determined at 2.5-A resolution using molecular replacement. The search model was MADH from Thiobacillus versutus. The amicyanin could be located in an averaged electron density difference map and the model improved by refinement and model building procedures. Nine beta-strands are observed within the amicyanin molecule. The copper atom is located between three antiparallel strands and is about 2.5 A below the protein surface. The major intermolecular interactions occur between amicyanin and the light subunit of MADH where the interface is largely hydrophobic. The copper atom of amicyanin and the redox cofactor of MADH are about 9.4 A apart. One of the copper ligands, His 95, lies between the two redox centers and may facilitate electron transfer between them.  相似文献   

11.
The crystal structure of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) has been determined at 2.8 A resolution using multiple isomorphous replacement techniques. There are two molecules in the crystallographic asymmetric unit, which are related by an approximate non-crystallographic 2-fold axis. The overall structure is highly compact and globular with a predominantly hydrophobic core. The main structural feature of rhGM-CSF is a four alpha-helix bundle, which represents approximately 42% of the structure. The helices are arranged in a left-handed antiparallel bundle with two overhand connections. Within the connections is a two-stranded antiparallel beta-sheet. The tertiary structure of rhGM-CSF has a topology similar to that of porcine growth factor and interferon-beta. Most of the proposed critical regions for receptor binding are located on a continuous surface at one end of the molecule that includes the C terminus.  相似文献   

12.
The irreversible conformational change of the immunoglobulin M (IgM) molecule (Waldenstr?m disease) at pH approximately 3 was studied by means of spin-labels introduced in the carbohydrate (2,2,6,6,-tetramethyl-4-aminopiperidine-1-oxyl) and peptide (2,2,5,5,-tetramethyl-3-(dichloro-symm.-triazinylamino)-pyrrolidine-1-oxyl) moieties of the molecule. A marked rise of structure density of IgM especially in the (Fc)5-region and some minor local conformational changes in the Fab-regions were found. Comparison of our findings with the published data shows that Fab-regions of the principal immunoglobulins are rigid structures. Steric hindrance for Fab-regions increases markedly in the row Fab--F(ab')2--IgG--IgA--IgM restricting their spatial mobility. Monomeric Fc-regions of IgM are evidently flexible and one of the domains is especially mobile. It is supposed that oligosaccharide groups of IgM are of two types which differ in their spatial mobility. It was found by ammonium sulfate precipitation of IgM spin-labeled at the peptide moiety that the relative mobility of amino acid residues coupled with spin-label is strongly restricted.  相似文献   

13.
M Rizzi  C Nessi  A Mattevi  A Coda  M Bolognesi    A Galizzi 《The EMBO journal》1996,15(19):5125-5134
NAD+ synthetase catalyzes the last step in the biosynthesis of nicotinamide adenine dinucleotide. The three-dimensional structure of NH3-dependent NAD+ synthetase from Bacillus subtilis, in its free form and in complex with ATP, has been solved by X-ray crystallography (at 2.6 and 2.0 angstroms resolution, respectively) using a combination of multiple isomorphous replacement and density modification techniques. The enzyme consists of a tight homodimer with alpha/beta subunit topology. The catalytic site is located at the parallel beta-sheet topological switch point, where one AMP molecule, one pyrophosphate and one Mg2+ ion are observed. Residue Ser46, part of the neighboring 'P-loop', is hydrogen bonded to the pyrophosphate group, and may play a role in promoting the adenylation of deamido-NAD+ during the first step of the catalyzed reaction. The deamido-NAD+ binding site, located at the subunit interface, is occupied by one ATP molecule, pointing towards the catalytic center. A conserved structural fingerprint of the catalytic site, comprising Ser46, is very reminiscent of a related protein region observed in glutamine-dependent GMP synthetase, supporting the hypothesis that NAD+ synthetase belongs to the newly discovered family of 'N-type' ATP pyrophosphatases.  相似文献   

14.
A major heat-shock protein defined by a monoclonal antibody.   总被引:9,自引:1,他引:8       下载免费PDF全文
A monoclonal antibody reacts with a polypeptide of 68 000 mol. wt. (p68) that accumulates to high levels during heat shock. The intracellular distribution of this antigen in normal and heat-shocked cells has been studied. It is a major component of non-stressed cells, where it is located predominantly in the cytoplasm, but also occurs in the nucleus. The nuclear accumulation is growth regulated, in that exponentially growing cells have strong nuclear immunofluorescence and confluent cells little. It is concentrated at the leading edge of motile fibroblasts and co-distributes with actin-containing microfilaments. Heat shock causes cytoplasmic and nuclear accumulation and there is new deposition in the periphery of cells. In normal cells the antigen in the nucleus is located in the nuclear lamina and matrix which increases during heat shock. The distribution of this molecule and the structures with which it interacts suggests that it is important in mediating the effects of heat shock.  相似文献   

15.
IgM is secreted in two functional polymeric forms. Secreted IgM was originally thought to be exclusively a pentameric molecule containing J (joining) chain, but many B cells also secrete hexameric IgM lacking J chain. Hexameric IgM may play an important role in the immune system, since it is up to 20 times more active than pentameric IgM in initiating the complement cascade. The predominant polymeric form of IgM secreted by B cell lines, either pentameric or hexameric, correlates with the concentration of J chain present during polymerization, and cells that express high levels of J chain secrete mostly IgM pentamers. The B cell lymphoma WEHI-231 does not express J chain, and the majority of its secreted IgM is polymerized as hexamers. When a J chain-encoding cDNA was expressed in these cells, the secreted IgM was found to be almost exclusively pentameric. However, although the expression of J chain dramatically altered the phenotype of the IgM secreted by these cells, it had little effect on their secretory rate. We conclude that J chain regulates the structure and function of the IgM polymers secreted by B cells, but it is not necessary for either IgM polymerization or secretion.  相似文献   

16.
The crystal structure of the 2:1 complex of cyclomaltohexaose (alpha-cyclodextrin, alpha-CD) with isosorbide dinitrate was determined by single-crystal X-ray analysis. In the crystal with the space group C2, two cyclomaltohexaose molecules form a head-to-head dimer with the secondary hydroxy-group sides facing each other. The dimer unit is stacked along the crystallographic c-axis to form a channel-type structure. The isosorbide dinitrate molecule is encapsulated in the cylindrical cavity of the cyclomaltohexaose dimer. The dimeric structure exhibits pseudo twofold symmetry, and the guest molecule is disordered on the local symmetry axis. The isosorbide moiety is located at the center of the dimer cavity, and the nitrate groups penetrate into the cyclomaltohexaose rings. The guest molecule modulates the dimer structure to attain the most stable accommodation into the cavity. The cyclomaltohexaose molecules are laterally shifted away from each other to create the cavity fitted to the shape of the guest molecule. As the result, the intermolecular hydrogen bonds between secondary hydroxy-groups are not fully formed, but the dimeric structure is stabilized by the interaction with the guest molecule.  相似文献   

17.
The crystal structure of Aspergillus niger pH 2.5 acid phosphatase (EC 3.1.3.2) has been determined at 2.4 A resolution. In the crystal, two dimers form a tetramer in which the active sites are easily accessible to substrates. The main contacts in the dimer come from the N termini, each lying on the surface of the neighbouring molecule. The monomer consists of two domains, with the active site located at their interface. The active site has a highly conserved catalytic center and a charge distribution, which explains the highly acidic pH optimum and the broad substrate specificity of the enzyme.  相似文献   

18.
A point mutation (I53A) in the core of Escherichia coli RNase H* is known to destabilize both the native conformation (DeltaG(UN)) and the kinetic intermediate (DeltaG(UI)) by 2 kcal/mole. Here, we have used native-state hydrogen deuterium exchange to ask how this destabilization is propagated throughout the molecule. Stability parameters were obtained for individual residues in I53A and compared with those from the wild-type protein. A destabilization of 2 kcal/mole was observed in residues in the core but was not detected in the periphery of the molecule. These results are consistent with the localized destabilization of the core observed in the early intermediate of the kinetic folding pathway, supporting the resemblance of this kinetic intermediate to the partially unfolded form detected in the native state at equilibrium. A thermodynamic cycle also shows no interaction between Ile 53 and a residue in the periphery. There is, however, an increase in the number of denaturant-independent exchange events in the periphery of I53A, showing that effects of the point mutation are communicated to regions outside the core, although perhaps not through changes in stability. In sum, this work shows that localized regions within a protein can be destabilized independently. Furthermore, it implies a correspondence between the kinetic intermediate and the equilibrium PUF, as the magnitude and localization of the destabilization are the same in both.  相似文献   

19.
Two crystal forms (P6(3) and R3) of human annexin V have been crystallographically refined at 2.3 A and 2.0 A resolution to R-values of 0.184 and 0.174, respectively, applying very tight stereochemical restraints with deviations from ideal geometry of 0.01 A and 2 degrees. The three independent molecules (2 in P6(3), 1 in R3) are similar, with deviations in C alpha positions of 0.6 A. The polypeptide chain of 320 amino acid residues is folded into a planar cyclic arrangement of four repeats. The repeats have similar structures of five alpha-helical segments wound into a right-handed compact superhelix. Three calcium ion sites in repeats I, II and IV and two lanthanum ion sites in repeat I have been found in the R3 crystals. They are located at the convex face of the molecule opposite the N terminus. Repeat III has a different conformation at this site and no calcium bound. The calcium sites are similar to the phospholipase A2 calcium-binding site, suggesting analogy also in phospholipid interaction. The center of the molecule is formed by a channel of polar charged residues, which also harbors a chain of ordered water molecules conserved in the different crystal forms. Comparison with amino acid sequences of other annexins shows a high degree of similarity between them. Long insertions are found only at the N termini. Most conserved are the residues forming the metal-binding sites and the polar channel. Annexins V and VII form voltage-gated calcium ion channels when bound to membranes in vitro. We suggest that annexins bind with their convex face to membranes, causing local disorder and permeability of the phospholipid bilayers. Annexins are Janus-faced proteins that face phospholipid and water and mediate calcium transport.  相似文献   

20.
The Raman spectra of human IgG, IgM, and rabbit IgG in lyophilized form and solution are reported. The spectral results indicate that the predominant structure in these immunoglobulin proteins is the antiparallel β-sheet. The Raman spectra have also been obtained of rabbit anti-ovalbumin, and this antibody molecule precipitated with its respective antigen. The spectra reflect a conformational change on binding of antibody with antigen. The conformational change occurs in the direction of disordering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号