首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ricin is a heterodimeric plant protein that is potently toxic to mammalian cells. Toxicity results from the catalytic depurination of eukaryotic ribosomes by ricin toxin A chain (RTA) that follows toxin endocytosis to, and translocation across, the endoplasmic reticulum membrane. To ultimately identify proteins required for these later steps in the entry process, it will be useful to express the catalytic subunit within the endoplasmic reticulum of yeast cells in a manner that initially permits cell growth. A subsequent switch in conditions to provoke innate toxin action would permit only those strains containing defects in genes normally essential for toxin retro-translocation, refolding or degradation to survive. As a route to such a screen, several RTA mutants with reduced catalytic activity have previously been isolated. Here we report the use of Saccharomyces cerevisiae to isolate temperature-dependent mutants of endoplasmic reticulum-targeted RTA. Two such toxin mutants with opposing phenotypes were isolated. One mutant RTA (RTAF108L/L151P) allowed the yeast cells that express it to grow at 37 degrees C, whereas the same cells did not grow at 23 degrees C. Both mutations were required for temperature-dependent growth. The second toxin mutant (RTAE177D) allowed cells to grow at 23 degrees C but not at 37 degrees C. Interestingly, RTAE177D has been previously reported to have reduced catalytic activity, but this is the first demonstration of a temperature-sensitive phenotype. To provide a more detailed characterization of these mutants we have investigated their N-glycosylation, stability, catalytic activity and, where appropriate, a three-dimensional structure. The potential utility of these mutants is discussed.  相似文献   

2.
A collection of yeast strains surviving with mutant 5S RNA has been constructed. The mutant strains presented alterations of the nucleolar structure, with less granular component, and a delocalization of the 25S rRNA throughout the nucleoplasm. The 5S RNA mutations affected helix I and resulted in decreased amounts of stable 5S RNA and of the ribosomal 60S subunits. The shortage of 60S subunits was due to a specific defect in the processing of the 27SB precursor RNA that gives rise to the mature 25S and 5.8S rRNA. The processing rate of the 27SB pre-rRNA was specifically delayed, whereas the 27SA and 20S pre-rRNA were processed at a normal rate. The defect was partially corrected by increasing the amount of mutant 5S RNA. We propose that the 5S RNA is recruited by the pre-60S particle and that its recruitment is necessary for the efficient processing of the 27SB RNA precursor. Such a mechanism could ensure that all newly formed mature 60S subunits contain stoichiometric amounts of the three rRNA components.  相似文献   

3.
The ribosomes from four temperature-sensitive mutants of Escherichia coli have been examined for defects in cell-free protein synthesis. The mutants examined had alterations in ribosomal proteins S10, S15, or L22 (two strains). Ribosomes from each mutant showed a reduced activity in the translation of phage MS2 RNA at 44 degrees C and were more rapidly inactivated by heating at this temperature compared to control ribosomes. Ribosomal subunits from three of the mutants demonstrated a partial or complete inability to reassociate at 44 degrees C. 70-S ribosomes from two strains showed a reducton in messenger RNA binding. tRNA binding to the 30 S subunit was reduced in the strains with altered 30-S proteins and binding to the 50 S subunit was affected in the mutants with a change in 50 S protein L22. The relation between ribosomal protein structure and function in protein synthesis in these mutants is discussed.  相似文献   

4.
The RimM protein in Escherichia coli is associated with free 30S ribosomal subunits but not with 70S ribosomes and is important for efficient maturation of the 30S subunits. A mutant lacking RimM shows a sevenfold-reduced growth rate and a reduced translational efficiency. Here we show that a double alanine-for-tyrosine substitution in RimM prevents it from associating with the 30S subunits and reduces the growth rate of E. coli approximately threefold. Several faster-growing derivatives of the rimM amino acid substitution mutant were found that contain suppressor mutations which increased the amount of the RimM protein by two different mechanisms. Most of the suppressor mutations destabilized a secondary structure in the rimM mRNA, which previously was shown to decrease the synthesis of RimM by preventing the access of the ribosomes to the translation initiation region on the rimM mRNA. Three other independently isolated suppressor mutations created a fusion between rpsP, encoding the ribosomal protein S16, and rimM on the chromosome as a result of mutations in the rpsP stop codon preceding rimM. A severalfold-higher amount of the produced hybrid S16-RimM protein in the suppressor strains than of the native-sized RimM in the original substitution mutant seems to explain the suppression. The S16-RimM protein but not any native-size ribosomal protein S16 was found both in free 30S ribosomal subunits and in translationally active 70S ribosomes of the suppressor strains. This suggests that the hybrid protein can substitute for S16, which is an essential protein probably because of its role in ribosome assembly. Thus, the S16-RimM hybrid protein seems capable of carrying out the important functions that native S16 and RimM have in ribosome biogenesis.  相似文献   

5.
We have studied the effects of protein mutations on the higher order structure of 16 S rRNA in Escherichia coli ribosomes, using a set of structure-sensitive chemical probes. Ten mutant strains were studied, which contained alterations in ribosomal proteins S4 and S12, including double mutants containing both altered S4 and S12. Two ribosomal ambiguity (ram) S4 mutant strains, four streptomycin resistant (SmR) S12 mutant strains, one streptomycin pseudodependent (SmP) S12 mutant strain, one streptomycin dependent (SmD) S12 mutant strain and two streptomycin independent (Sm1) double mutants (containing both-SmD and ram mutations) were probed and compared to an isogenic wild-type strain. In ribosomes from strains containing S4 ram mutations, nucleotides A8 and A26 become more reactive to dimethyl sulfate (DMS) at their N-1 positions. In ribosomes from strains bearing the SmD allele, A908, A909, A1413 and G1487 are significantly less reactive to chemical probes. These same effects are observed when the S4 and S12 mutations are present simultaneously in the double mutants. An interesting correlation is found between the reactivity of A908 and the miscoding potential of SmR, SmD, SmP and wild-type ribosomes; the reactivity of A908 increases as the translational error frequency of the ribosomes increases. In the case of ram ribosomes, the reactivity of A908 resembles that of wild-type, unless tRNA is bound, in which case it becomes hyper-reactive. Similarly, streptomycin has little effect on A908 in wild-type ribosomes unless tRNA is bound, in which case its reactivity increases to resemble that of ram ribosomes with bound tRNA. Finally, interaction of streptomycin with SmP and SmD ribosomes causes the reactivity of A908 to increase to near-wild-type levels. A simple model is proposed, in which the reactivity of A908 reflects the position of an equilibrium between two conformational states of the 30 S subunit, one of which is DMS-reactive, and the other DMS-unreactive. In this model, the balance between these two states would be influenced by proteins S4 and S12. Mutations in S12 generally cause a shift toward the unreactive conformer, and in the case of SmD and SmP ribosomes, this shift can be suppressed phenotypically by streptomycin, ram mutations in protein S4 cause a shift toward the reactive conformer, but only when tRNA is bound. This suggests that the opposing effects of these two classes of mutations influence the proof-reading process by somewhat different mechanisms.  相似文献   

6.
The regulatory mutations in Saccharomyces cerevisiae designated cargA + Oh, cargB + Oh, and durOh are alterations in the control regions of the respective structural genes. The alteration causing the cargA + Oh mutation has been shown to be an insertion of a Ty1 element in the 5' noncoding region of the CAR1 ( cargA ) locus. All three mutations cause overproduction of their corresponding gene products and belong to the ROAM family of mutations (Regulated Overproducing Allele responding to Mating signals) in yeast. The amount of overproduction in ROAM mutants is determined, at least in part, by signals that control mating functions in yeast. We report the identification of two genetic loci that regulate Oh mutant gene expression but that do not affect mating ability. These loci are defined by the recessive roc mutations ( ROAM mutation control) that reduce the amount of overproduction caused by the cargA + Oh, cargB + Oh, and durOh mutations. RNAs homologous to CAR1 ( cargA ), DUR1 ,2 and Ty1 DNA probes were analyzed by the Northern hybridization technique. In comparison with wild-type strains, cargA + Oh and durOh mutant strains grown on ammonia medium contain increased amounts of CAR1 and DUR1 ,2 RNA. This RNA overproduction is diminished in MATa/MAT alpha diploid strains as well as in haploid strains that also carry the ste7 mutation which prevents mating or that carry either of the roc1 or roc2 mutant alleles. The amount of RNA homologous to Ty1 DNA is also reduced in ste7 , roc1 , and roc2 mutant strains. This reduction is not observed in a strain with the ste5 mutation, which prevents mating but has no effect on overproduction of ROAM mutant gene products.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The functionally important 3' domain of the ribosomal 16S RNA was altered by in vitro DNA manipulations of a plasmid-encoded 16S RNA gene. By in vitro DNA manipulations two double mutants were constructed in which C1399 was converted to A and G1401 was changed to either U or C and a single point mutant was made wherein G1416 was changed to U. Only one of the mutated rRNA genes could be cloned in a plasmid under the control of the natural rrnB promoters (U1416) whereas all three mutations were cloned in a plasmid under the control of the lambda PL promoter. In a strain coding for the temperature-sensitive lambda repressor cI857 the mutant RNAs could be expressed conditionally. We could show that all three mutant rRNAs were efficiently incorporated into 30S ribosomes. However, all three mutants inhibited the formation of stable 70S particles to various degrees. The amounts of mutated rRNAs were quantified by primer extension analysis which enabled us to assess the proportion of the mutated ribosomes which are actively engaged in in vivo protein biosynthesis. While ribosomes carrying the U1416 mutation in the 16S RNA were active in vivo a strong selection against ribosomes with the A1399/U1401 mutation in the 16S RNA from the polysome fraction is apparent. Ribosomes with 16S RNA bearing the A1399/C1401 mutation did not show a measurable protein biosynthesis activity in vivo. The growth rate of cells harbouring the different mutations reflected the in vivo translation capacities of the mutant ribosomes. The results underline the importance of the highly conserved nucleotides in the 3' domain of the 16S RNA for ribosomal function.  相似文献   

8.
The ribosomal 5S RNA gene from E. coli was altered by oligonucleotide-directed mutagenesis at positions A66 and U103. The mutant genes were cloned into an expression vector and selectively transcribed in an UV-sensitive E. coli strain using a modified maxicell system. The mutant 5S RNA genes were found to be transcribed and processed normally. The 5S RNA molecules were assembled into 50S ribosomal subunits. Under in vitro conditions the stability of the mutant 70S ribosomes seemed, however, to be reduced, since they dissociated into their subunits more easily than those of the wild type. The isolated mutated 5S RNAs with base changes in the ribosomal protein binding sites for L18 and L25, together with a point mutant at G41 (G to C), constructed earlier, were tested for their capacity to bind the 5S RNA binding proteins L5, L18 and L25. The following effects were observed: The base change A66 to C within the L18 binding site did not affect the binding of the ribosomal protein L18 but enhanced the stability of the L25-5S RNA complex considerably. The base changes U103 to G and G41 to C slightly reduced the binding of L5 and L25 whereas the binding of L18 to the mutant 5S RNAs was not altered. In addition 70S ribosomes with the single point mutations in their 5S RNAs were tested in their tRNA binding capacity. Mutants containing a C41 in their 5S RNA showed a reduction in the poly(U)-dependent Phe-tRNA binding, whereas the mutations to C66 and G 103 lead to completely inactive ribosomes in the same assay. Based on previous results a spatial model of the 5S RNA molecule is presented which is consistent with the findings reported in this paper.  相似文献   

9.
The vesicular stomatitis virus (VSV) matrix (M) protein plays a major role in the virus-induced inhibition of host gene expression. It has been proposed that the inhibition of host gene expression by M protein is responsible for suppressing activation of host interferon gene expression. Most wild-type (wt) strains of VSV induce little if any interferon gene expression. Interferon-inducing mutants of VSV have been isolated previously, many of which contain mutations in their M proteins. However, it was not known whether these M protein mutations were responsible for the interferon-inducing phenotype of these viruses. Alternatively, mutations in other genes besides the M gene may enhance the ability of VSV to induce interferons. These hypotheses were tested by transfecting cells with mRNA expressing wt and mutant M proteins in the absence of other viral components and determining their ability to inhibit interferon gene expression. The M protein mutations were the M51R mutation originally found in the tsO82 and T1026R1 mutant viruses, the double substitution V221F and S226R found in the TP3 mutant virus, and the triple substitution E213A, V221F, and S226R found in the TP2 mutant virus. wt M proteins suppressed expression of luciferase from the simian virus 40 promoter and from the beta interferon (IFN-beta) promoter, while M proteins of interferon-inducing viruses were unable to inhibit luciferase expression from either promoter. The M genes of the interferon-inducing mutants of VSV were incorporated into the wt background of a recombinant VSV infectious cDNA clone. The resulting recombinant viruses were tested for their ability to activate interferon gene expression and for their ability to inhibit host RNA and protein synthesis. Each of the recombinant viruses containing M protein mutations induced expression of a luciferase reporter gene driven by the IFN-beta promoter and induced production of interferon bioactivity more effectively than viruses containing wt M proteins. Furthermore, the M protein mutant viruses were defective in their ability to inhibit both host RNA synthesis and host protein synthesis. These data support the idea that wt M protein suppresses interferon gene expression through the general inhibition of host RNA and protein synthesis.  相似文献   

10.
11.
Replacement of the protein L11 binding domain within Escherichia coli 23S ribosomal RNA (rRNA) by the equivalent region from yeast 26S rRNA appeared to have no effect on the growth rate of E.coli cells harbouring a plasmid carrying the mutated rrnB operon. The hybrid rRNA was correctly processed and assembled into ribosomes, which accumulated normally in polyribosomes. Of the total ribosomal population, < 25% contained wild-type, chromosomally encoded rRNA; the remainder were mutant. The hybrid ribosomes supported GTP hydrolysis dependent upon E.coli elongation factor G, although at a somewhat reduced rate compared with wild-type particles, and were sensitive to the antibiotic, thiostrepton, a potent inhibitor of ribosomal GTPase activity that binds to 23S rRNA within the L11 binding domain. That thiostrepton could indeed bind to the mutant ribosomes, although at a reduced level relative to that seen with wild-type ribosomes, was confirmed in a non-equilibrium assay. The rationale for the ability of the hybrid ribosomes to bind the antibiotic, given that yeast ribosomes do not, was provided when yeast rRNA was shown by equilibrium dialysis to bind thiostrepton only 10-fold less tightly than did E.coli rRNA. The extreme conservation of secondary, but not primary, structure in this region between E.coli and yeast rRNAs allows the hybrid ribosomes to function competently in protein synthesis and also preserves the interaction with thiostrepton.  相似文献   

12.
Eukaryotic ribosomes have a large number of proteins but the exact nature of their contribution to the structure and to the function of the particle is not known. Of the 78 proteins in yeast ribosomes, six have zinc finger motifs of the C2-C2 variety. Both genes encoding the essential yeast ribosomal protein YL37a, which has such a zinc finger motif, were disrupteXXPd. The double deletion, which is lethal, can be rescued with a plasmid-encoded copy of a YL37a gene. Mutations were constructed in a plasmid-encoded copy of YL37a; the mutations caused the cysteine residues in the motif (at positions 39, 42, 57 and 60) to be replaced, one at a time, with serine. The cysteine residue at position 39, the first of the four in the motif, is essential for the function of YL37a, since a C39S mutation did not complement the null phenotype. However, plasmids encoding variants with C42S, C57S, or C60S mutations in the zinc finger motif were able to rescue the null mutant. YL37a binds zinc, but none of the mutant proteins, C39S, C42S, C57S, or C60S, was able to bind the metal. Thus, all four cysteine residues are essential for the binding of zinc; only one, C39, is essential for the function of the ribosomal protein.  相似文献   

13.
Ricin toxin A-chain (RTA), a ribosome-inactivating protein from seeds of the castor bean plant (Ricinus communis), inactivates eukaryotic ribosomes by hydrolyzing the N-glycosidic bond of a single adenosine residue in a highly conserved loop of 28S rRNA, but does not act on prokaryotic ribosomes. We investigated the interaction of rat liver 80S ribosomes with RTA using an optical biosensor based on surface plasmon resonance (BIAcore instrument), which allows real-time recording of the interaction. RTA was coupled to the dextran gel matrix on the sensor chip surface through a single thiol group that is not involved in the enzymatic action. The interaction of rat ribosomes with RTA, which was greatly affected by the Mg(2+) concentration and ionic strength, was usually measured at 5 mM Mg(2+), 50 mM KCl, and pH 7.5. The modes of interaction of intact and RTA-depurinated rat liver ribosomes with the immobilized RTA were virtually the same, while no considerable interaction was observed for Escherichia coli ribosomes. The interaction was not influenced by the presence of 5 mM adenine, which is higher than the reported dissociation constant (1 mM) for the adenine-RTA complex. These results demonstrate that binding of the target adenine with the active site of RTA does not contribute much to the total interaction of ribosomes and RTA. Global analyses of association and dissociation data with several binding models, taking account of mass transport, allowed us to conclude that the data were unable to fit a simple 1:1 binding model, but were best described by a model including a conformational change involved in high affinity complex formation.  相似文献   

14.
Like ricin, Escherichia coli Shiga-like toxin I (SLT-I) inactivates eukaryotic ribosomes by catalytically depurinating adenosine 4324 in 28S rRNA. Although the primary structure of the enzymatic portion of the molecule (Slt-IA) is known to contain regions of significant homology to the ricin A chain (RTA), and although certain residues have been implicated in catalysis, the crystal structure of Slt-IA has not been solved nor has the geometry of its active site been well defined. In order to derive a more complete understanding of the nature of the Slt-IA active site, we placed the slt-IA gene under control of an inducible promoter in Saccharomyces cerevisiae. Induction of the cloned element was lethal to the host. This lethality was the basis for selection of an attenuated mutant of Slt-IA changed at tyrosine 77, a locus not previously linked to the active site. As well, it permitted evaluation of the toxicity of a number of mutant Slt-IA cassettes that we constructed in vitro. Putative active-site residues implicated in this fashion and in other studies were mapped to an energy-minimized computer model of Slt-IA that had been generated on the basis of the known crystal structure of RTA. A cleft was identified on one face of the protein in which all implicated residues clustered, irrespective of their distances from one another in the primary structure of the molecule. Many of the chemical features anticipated in the active site of an RNA N-glycosidase are indeed present on the amino acid side chains occupying the cleft.  相似文献   

15.
The yeast KEX1 gene product has homology to yeast carboxypeptidase Y. A mutant replacing serine at the putative active site of the KEX1 protein abolished activity in vivo. A probable site of processing by the KEX1 product is the C-terminus of the alpha-subunit of killer toxin, where toxin is followed in the precursor by 2 basic residues. Processing involves endoproteolysis following these basic residues and trimming of their C-terminal by a carboxypeptidase. Consistent with the KEX1 product being this carboxypeptidase is its role in alpha-factor pheromone production. In wild-type yeast, KEX1 is not essential for alpha-factor production, as the final pheromone repeat needs no C-terminal processing. However, in a mutant in which alpha-factor production requires a carboxypeptidase, pheromone production is KEX1-dependent.  相似文献   

16.
A DNA sequence encoding the A chain of ricin toxin (RTA) from the castor bean plant, Ricinus communis, was placed under GAL1 promoter control and transformed into Saccharomyces cerevisiae. Induction of expression of RTA was lethal. This lethality was the basis for a selection of mutations in RTA which inactivated the toxin. A number of mutant alleles which encoded cross-reactive material were sequenced. Eight of the first nine mutant RTAs studied showed single-amino-acid changes involving residues located in the proposed active-site cleft.  相似文献   

17.
Previously, we showed that strains which have been deleted for the 21K gene (hereafter called yfjA), of the trmD operon, encoding a 21-kDa protein (21K protein) have an approximately fivefold-reduced growth rate in rich medium. Here we show that such mutants show an up to sevenfold reduced growth rate in minimal medium, a twofold-lower cell yield-to-carbon source concentration ratio, and a reduced polypeptide chain growth rate of beta-galactosidase. Suppressor mutations that increased the growth rate and translational efficiency of a delta yfjA mutant were localized to the 3' part of rpsM, encoding ribosomal protein S13. The 21K protein was shown to have affinity for free 30S ribosomal subunits but not for 70S ribosomes. Further, the 21K protein seems to contain a KH domain and a KOW motif, both suggested to be involved in binding of RNA. These findings suggest that the 21K protein is essential for a proper function of the ribosome and is involved in the maturation of the ribosomal 30S subunits or in translation initiation.  相似文献   

18.
19.
Ribosomes and ribosomal proteins from wild-type and a yellow mutant of Chlamydomonas reinhardii were analyzed and compared by two-dimensional gel electrophoresis. The mixothrophically grown yellow-76 mutant differs from wild-type cells in lowered chlorophyll content and photosynthetic activity per chlorophyll unit. The latter is connected with the decreased activity of the ribulose-I,5-diphosphate-carboxylase enzyme. Analytical ultracentrifugation of cell extracts shows a normal amount of free 70S ribosomes and 50S subunit in the mutant cells. Two-dimensional gel electrophoresis shows considerable alterations in the protein composition of the 70S ribosomes of the mutant. Two proteins are absent from the electrophoretograms of the yellow-76 mutant, and seven proteins are present in reduced amounts. The genetical analysis shows a Mendelian pattern of inheritance, indicating that protein alterations presumably are localized in nuclear DNA.Abbreviation MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

20.
Summary The shift of recessive suppressor mutant of yeast Saccharomyces cerevisiae from permissive to restrictive conditions is accompanied by polysome decay and accumulation of 80 S ribosomes (Smirnov et al., 1976). In this paper some properties of 80 S ribosomes are studied. It is demonstrated that polysome decay under non-permissive conditions is not the consequence of the impairement of RNA synthesis. More than 70% of 80 S ribosomes accumulated under non-permissive conditions contain bound peptidyl-tRNAs localized in P-ribosomal site. tRNA moiety of bound peptidyl-tRNA is able to accept all 20 natural amino acids after chemical deacylation. Therefore it is not a specific isoacceptor species but rather total tRNA that is bound to ribosomes. The polypeptide residues of these peptidyl-tRNAs are heterogeneous in size. Their molecular weights are comparable with the molecular weights of the completed polypeptides. Some of the 80 S ribosomes accumulated under non-permissive conditions contain poly-A RNA. In conclusion, possible mechanism of the impairement of translation under non-permissive conditions in recessive suppressor strain is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号