首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of temperature and soil type on interstrain competition of Bradyrhizobium japonicum and on nodulation and nitrogen accumulation in five soybean varieties belonging to four maturity groups were investigated at three sites devoid of soybean rhizobia along an elevational transect in Hawaii. Competition patterns of the three B. japonicum strains were unaffected by soil type or soil temperature. Strain USDA 110 was the best competitor, occupying on the average 81 and 64% of the nodules in the field and greenhouse experiments, respectively. Strain USDA 138 was the least successful in the field (4%), although it formed 34% of the nodules in the greenhouse. Nodule occupancy by B. japonicum strains was found to be related to soybean maturity group. Strain USDA 110 formed 61, 71, 88, 88, and 98% of the nodules in the field on Clay (00), Clark (IV), D68-0099 (VI), N77-4262 (VI), and Hardee (VIII), respectively. Strain USDA 136b formed few nodules on Hardee, an Rj2 soybean variety incompatible with that strain, in both experiments. Nodule number and weight at the 1,050-m site were reduced to 41 and 27%, respectively, of those at the 320-m site because of the decrease in temperature. Nodule number increased with increasing maturity group number at each site; however, there was not a corresponding increase in nodule weight. Nitrogen accumulation decreased from 246 mg of N per plant at the lowest elevation site to 26 mg of N per plant at the highest elevation. While soil type and temperature had no effect on strain competition, temperature had a profound influence on nodule parameters and plant growth.  相似文献   

2.
Bacteroids of Rhizobium japonicum 61A76 were isolated from nodules of field-grown soybean plants by sucrose density gradient fractionation. The major cytochromes, aa3, b, c, and possibly o were present in the bacteroids throughout the active nitrogen-fixing life of the nodule. This is in contrast with previous reports using other R. japonicum strains in which cyotchromes aa3 and o were not found.  相似文献   

3.
Experiments were conducted to determine whether symbiotic bacteroids of Bradyrhizobium japonicum produce exopolysaccharide within soybean (Glycine max [L.] Merr. cv `Lee 74') nodules. B. japonicum strains RT2, a derivative of USDA 110 with resistance to streptomycin and rifampicin, and RT176-1, a mutant deficient in exopolysaccharide synthesis, were used. Although aerobically cultured RT2 produced 1550 micrograms of exopolysaccharide per 1010 cells, root nodules formed by RT2 contained only 55.7 micrograms of polysaccharide per 1010 bacteroids, indicating that little exopolysaccharide synthesis occurred within the nodules. The polysaccharide level of RT2 nodules was about equal to that of nodules containing the exopolysaccharide mutant RT176-1 (61.0 micrograms per 1010 bacteroids). Gas chromatographic analysis showed that the sugar composition of polysaccharide from nodules of RT2 or RT176-1 was almost the same as that of polysaccharide from unnodulated root tissue, but differed strikingly from that of rhizobial exopolysaccharide from aerobic cultures. Thus, the host plant and not the bacteroids was probably the source of most or all of the polysaccharide in the nodule extracts. Also, bacteroids from nodules failed to bind soybean lectin, confirming the absence of an exopolysaccharide capsule.  相似文献   

4.
The symbiotic effectiveness and nodulation competitiveness of Rhizobium leguminosarum bv. trifolii soil isolates were evaluated under nonsoil greenhouse conditions. The isolates which we used represented both major and minor nodule-occupying chromosomal types (electrophoretic types [ETs]) recovered from field-grown subclover (Trifolium subterraneum L.). Isolates representing four ETs (ETs 2, 3, 7, and 8) that were highly successful field nodule occupants fixed between 2- and 10-fold less nitrogen and produced lower herbage dry weights and first-harvest herbage protein concentrations than isolates that were minor nodule occupants of field-grown plants. Despite their equivalent levels of abundance in nodules on field-grown subclover plants, ET 2 and 3 isolates exhibited different competitive nodulation potentials under nonsoil greenhouse conditions. ET 3 isolates generally occupied more subclover nodules than isolates belonging to other ETs when the isolates were mixed in 1:1 inoculant ratios and inoculated onto seedlings. In contrast, ET 2 isolates were less successful at nodulating under these conditions. In many cases, ET 2 isolates required a numerical advantage of at least 6:1 to 11:1 to occupy significantly more nodules than their competitors. We identified highly effective isolates that were as competitive as the ET 3 isolates despite representing serotypes that were rarely recovered from nodules of field-grown plants. When one of the suboptimally effective isolates (ET2-1) competed with an effective and competitive isolate (ET31-5) at several different inoculant ratios, the percentages of nodules occupied by the former increased as its numerical advantage increased. Although subclover yields declined as nodule occupancy by ET2-1 increased, surprisingly, this occurred at inoculant ratios at which large percentages of nodules were still occupied by ET31-5.  相似文献   

5.
In the American Midwest, superior N2-fixing inoculant strains of Bradyrhizobium japonicum consistently fail to produce the majority of nodules on the roots of field-grown soybean. Poor nodulation by inoculant strains is partly due to their inability to stay abreast of the expanding soybean root system in numbers sufficient for them to be competitive with indigenous bradyrhizobia. However, certain strains are noncompetitive even when numerical dominance is not a factor. In this study, we tested the hypothesis that the nodule occupancy achieved by strains is related to their nodule-forming efficiency. The nodulation characteristics and competitiveness of nine strains of B. japonicum were compared at both 20 and 30°C. The root tip marking technique was used, with the nodule-forming efficiency of each strain estimated from the average position of the uppermost nodule and the number of nodules formed above the root tip mark. The competitiveness of the nine strains relative to B. japonicum USDA 110 was determined by using immunofluorescence to identify nodule occupants. The strains differed significantly in competitiveness with USDA 110 and in nodulation characteristics, strains that were poor competitors usually proving to be inferior in both the average position of the uppermost root nodule and the number of nodules formed above the root tip mark. Thus, competitiveness was correlated with both the average position of the uppermost nodule (r = 0.5; P = 0.036) and the number of nodules formed above the root tip mark (r = 0.64; P = 0.005), while the position of the uppermost nodule was also correlated to the percentage of plants nodulated above the root tip mark (r = 0.81; P < 0.001) and the percentage of plants nodulated on the taproot (r = 0.67; P = 0.002).  相似文献   

6.
Efficiency of nodule initiation in cowpea and soybean   总被引:2,自引:0,他引:2       下载免费PDF全文
When serial dilutions of a suspension of Bradyrhizobium japonicum strain 138 were inoculated onto both soybean and cowpea roots, the formation of nodules in the initially susceptible region of the roots of both hosts was found to be linearly dependent on the log of the inoculum dosage until an optimum dosage was reached. Approximately 30- to 100-fold higher dosages were required to elicit half-maximal nodulation on cowpea than on soybean in the initially susceptible zone of the root. However, at optimal dosages, about six times as many nodules formed in this region on cowpea roots than on soybean roots. There was no appreciable difference in the apparent rate of nodule initiation on these two hosts nor in the number of inoculum bacteria in contact with the root. These results are consistent with the possibility that cowpea roots have a substantially higher threshold of response to symbiotic signals from the bacteria than do soybean roots. Storage of B. japonicum cells in distilled water for several weeks did not affect their viability or efficiency of nodule initiation on soybean. However, the nodulation efficiency of these same cells on cowpea diminished markedly over a 2 week period. These differential effects of water storage indicate that at least some aspects of signal production by the bacteria during nodule initiation are different on the two hosts. Mutants of B. japonicum 138 defective in synthesis of soybean lectin binding polysaccharide were defective in their efficiency of nodule initiation on soybean but not on cowpea. These results also suggest that B. japonicum may produce different substances to initiate nodules on these two hosts.  相似文献   

7.
Formation of the heme precursor δ-aminolevulinic acid (ALA) was studied in soybean root nodules elicited by Bradyrhizobium japonicum. Glutamate-dependent ALA formation activity by soybean (Glycine max) in nodules was maximal at pH 6.5 to 7.0 and at 55 to 60°C. A low level of the plant activity was detected in uninfected roots and was 50-fold greater in nodules from 17-day-old plants; this apparent stimulation correlated with increases in both plant and bacterial hemes in nodules compared with the respective asymbiotic cells. The glutamate-dependent ALA formation activity was greatest in nodules from 17-day-old plants and decreased by about one-half in those from 38-day-old plants. Unlike the eukaryotic ALA formation activity, B. japonicum ALA synthase activity was not significantly different in nodules than in cultured cells, and the symbiotic activity was independent of nodule age. The lack of symbiotic induction of B. japonicum ALA synthase indicates either that ALA formation is not rate-limiting, or that ALA synthase is not the only source of ALA for bacterial heme synthesis in nodules. Plant cytosol from nodules catalyzed the formation of radiolabeled ALA from U-[14C]glutamate and 3,4-[3H]glutamate but not from 1-[14C]glutamate, and thus, operation of the C5 pathway could not be confirmed.  相似文献   

8.
The utilization of gels, which are used for fluid drilling of seeds, as carriers of Bradyrhizobium japonicum for soybean (Glycine max (L.) Merr.) inoculation was studied. Gels of various chemical composition (magnesium silicate, potassium acrylate-acrylamide, grafted starch, and hydroxyethyl cellulose) were used, although the hydroxyethyl cellulose gels were more extensively investigated. Gel inocula were prepared by mixing gel powder with liquid cultures of B. japonicum (2% [wt/vol]). The population of B. japonicum USDA 110 did not change in each gel type during 8 days of incubation at 28°C. These fluid gels were prepared with late-exponential-growth-phase cells that were washed and suspended in physiological saline. Mid-exponential-growth-phase B. japonicum USDA 110, 123, and 138 grew in cellulose gels prepared with yeast extract-mannitol broth as well as or better than in yeast extract-mannitol broth alone for the first 10 days at 28°C. Populations in these cellulose gels after 35 days were as large as when the gels had originally been prepared, and survival occurred for at least 70 days. Soybeans grown in sand in the greenhouse had greater nodule numbers, nodule weights, and top weights with gel inoculants compared with a peat inoculant. In soil containing 103 indigenous B. japonicum per g of soil, inoculation resulted in increased soybean nodule numbers, nodule weights, and top weights, but only nodule numbers were greater with gel than with peat inoculation. The gel-treated seeds carried 102 to 103 more bacteria per seed (107 to 108) than did the peat-treated seeds.  相似文献   

9.
Cells of Bradyrhizobium japonicum were grown in media containing either 1.0 mM or 0.5 μM phosphorus. In growth pouch experiments, infection of the primary root of soybean (Glycine max (L.) Merr.) by B. japonicum USDA 31, 110, and 142 was significantly delayed when P-limited cells were applied to the root. In a greenhouse experiment, B. japonicum USDA 31, 110, 122, and 142 grown with sufficient and limiting P were used to inoculate soybeans which were grown with either 5 μM or 1 mM P nutrient solution. P-limited cells of USDA 31 and 110 formed significantly fewer nodules than did P-sufficient cells, but P-limited cells of USDA 122 and 142 formed more nodules than P-sufficient cells. The increase in nodule number by P-limited cells of USDA 142 resulted in significant increases in both nodule mass and shoot total N. In plants grown with 1 mM P, inoculation with P-limited cells of USDA 110 resulted in lower total and specific nitrogenase activities than did inoculation with P-sufficient cells. Nodule numbers, shoot dry weights, and total N and P were all higher in plants grown with 1 mM P, and plants inoculated with USDA 31 grew poorly relative to plants receiving strains USDA 110, 122, and 142. Although the effects of soybean P nutrition were more obvious than those of B. japonicum P nutrition, we feel that it is important to develop an awareness of the behavior of the bacterial symbiont under conditions of nutrient limitation similar to those found in many soils.  相似文献   

10.
Rhizosphere response was studied as a factor in competition among indigenous Rhizobium japonicum serogroups for the nodulation of soybeans under field conditions. R. japonicum serogroups 110, 123, and 138 were found to coexist in a Waukegan field soil where they were determined to be the major nodulating rhizobia in soybean nodules. Competitive relationships among the three serogroups in that soil and in rhizospheres were examined during two growing seasons with several host cultivars with and without inoculation and with a nonlegume. Enumeration of each of the three competitors was carried out on inner rhizosphere and nonrhizosphere soil by immunofluorescence with serogroup-specific fluorescent antibodies. Rhizobia present in early- and late-season nodules were identified by fluorescent antibody analysis. Populations of each serogroup increased gradually in host rhizospheres, not exceeding 106/g of rhizosphere soil during the first few weeks after planting, whereas numbers in fallow soil remained at initial levels (104 to 105/g). The rhizosphere effects were minor in host plants during this period of nodule initiation and were about the same for all three serogroups. Although serogroup 123 gave no evidence of dominance in early host rhizospheres, it clearly dominated in nodule composition, occupying 60 to 100% of the nodules. High densities of all three serogroups were observed in host rhizospheres during flowering. Rhizosphere populations, especially of serogroup 123, were still high during pod fill and seed maturation. The rhizosphere responses of the R. japonicum serogroups were much greater with the soybean cultivars than with oats, but even in host rhizospheres the R. japonicum populations were greatly outnumbered by other bacteria. The success of serogroup 123 in achieving nodulation does not appear to be due to superior colonization of the host rhizosphere.  相似文献   

11.
Three strains of Bradyrhizobium japonicum, I17, 110, and 61A76, were evaluated for their ability to form nodules on field-grown soybeans in soil with a highly competitive indigenous B. japonicum population. The predominant indigenous strain, 0336, in the field site used was unlike the more common isolates from Midwestern soils which belong to the 123 or 138 serogroups. This strain persisted in the soil for at least 30 years without any soybean crops. The three inoculant strains differed in their ability to compete with indigenous strains for nodule formation. Four different inoculation treatments were tested in three adjacent fields. When the amount of inoculum was increased, a higher proportion of nodules contained the inoculant strain. The most competitive inoculant strain was I17, a recent field isolate. Strain 61A76 was better than 110. There was no difference in recovery of the inoculant strains on the Hodgson or Corsoy soybean cultivars, nor was there a difference in recovery of the inoculant strains during the growing season. The vertical distribution of nodules containing the inoculant strains was affected by the method of adding the inoculant to the soil. Inoculant added to the seed furrow produced nodules mainly in the top region of the soybean root. Inoculant tilled into the soil produced nodules primarily in the bottom part of the root. The nodules that were produced in the bottom part of the root are younger and may contribute significant amounts of fixed nitrogen to the soybean during seed formation.  相似文献   

12.
Nodulated soybean plants (Glycine max [L.] Merr) were grown in sand culture. Carbohydrate composition of nodules, roots, and leaf blades was determined and related to the effects of nitrate in nutrient solution on nodule growth and on nitrogenase activity of nodules.  相似文献   

13.
The synthesis and accumulation of nitrite has been suggested as a causative factor in the inhibition of legume nodules supplied with nitrate. Plants were grown in sand culture with a moderate level of nitrate (2.1 to 6.4 millimolar) supplied continuously from seed germination to 30 to 50 days after planting. In a comparison of nitrate treatments, a highly significant negative correlation between nitrite concentration in soybean (Glycine max [L.] Merr.) nodules and nodule fresh weight per shoot dry weight was found even when bacteroids lacked nitrate reductase (NR). However, in a comparison of two Rhizobium japonicum strains, there was only 12% as much nitrite in nodules formed by NRR. japonicum as in nodules formed by NR+R. japonicum, and growth and acetylene reduction activity of both types of nodules was about equally inhibited. In a comparison of eight other NR+ and NRR. japonicum strains, and a comparison of G. max, Phaseolus vulgaris, and Pisum sativum, the concentration of nitrite in nodules was unrelated to nodule weight per plant or to specific acetylene reduction activity. The very small concentration of nitrite found in P. vulgaris nodules (0.05 micrograms NO2-N per gram fresh weight) was probably below that required for the inhibition of nitrogenase based on published in vitro experiments, and yet the specific acetylene reduction activity was inhibited 83% by nitrate. The overall results do not support the idea that nitrite plays a role in the inhibition of nodule growth and nitrogenase activity by nitrate.  相似文献   

14.
Certain strains of Bradyrhizobium japonicum form a previously unknown polysaccharide in the root nodules of soybean plants (Glycine max (L.) Merr.). The polysaccharide accumulates inside of the symbiosome membrane—the plant-derived membrane enclosing the bacteroids. In older nodules (60 days after planting), the polysaccharide occupies most of the symbiosome volume and symbiosomes become enlarged so that there is little host cytoplasm in infected cells. The two different groups of B. japonicum which produce different types of polysaccharide in culture produce polysaccharides of similar composition in nodules. Polysaccharide formed by group I strains (e.g., USDA 5 and USDA 123) is composed of rhamnose, galactose, and 2-O-methylglucuronic acid, while polysaccharide formed by group II strains (e.g., USDA 31 and USDA 39) is composed of rhamnose and 4-O-methylglucuronic acid. That the polysaccharide is a bacterial product is indicated by its composition plus the fact that polysaccharide formation is independent of host genotype but is dependent on the bacterial genotype. Polysaccharide formation in nodules is common among strains in serogroups 123, 127, 129, and 31, with 27 of 39 strains (69%) testing positive. Polysaccharide formation in nodules is uncommon among other B. japonicum serogroups, with only 1 strain in 18 (6%) testing positive.  相似文献   

15.
Chen CL  Sung JM 《Plant physiology》1983,73(4):1065-1066
The effects of water stress on nitrate reductase and nitrite reductase activities in symbiotic nodules were examined in field-grown soybean plants (Glycine max L Merr. cv Clark). The in vitro assays of enzyme activity indicated that the nodule cytosol and bacteroids contained both nitrate reductase and nitrite reductase activities. The reduction of nitrate in bacteroids increased significantly as nodule water potential declined from −0.6 to −1.4 megapascals, and then decreased when −1.8 megapascals water potential was reached. On the contrary, the reduction of nitrate in nodule cytosol was inhibited as water stress progressed. Increases in water stress intensity also caused a significant inhibition in nitrite reductase activities of bacteroids and nodule cytosol within soybean nodules. The results show that nitrate reduction occurred both in the cytosol and bacteroids of water-stressed soybean nodules. The reduction of nitrate functioned at different physiological modes in these two fractions.  相似文献   

16.
The relationship between ureide N and N2 fixation was evaluated in greenhouse-grown soybean (Glycine max L. Merr.) and lima bean (Phaseolus lunatus L.) and in field studies with soybean. In the greenhouse, plant N accumulation from N2 fixation in soybean and lima bean correlated with ureide N. In soybean, N2 fixation, ureide N, acetylene reduction, and nodule mass were correlated when N2 fixation was inhibited by applying KNO3 solutions to the plants. The ureide-N concentrations of different plant tissues and of total plant ureide N varied according to the effectiveness of the strain of Bradyrhizobium japonicum used to inoculate plants. The ureide-N concentrations in the different plant tissues correlated with N2 fixation. Ureide N determinations in field studies with soybean correlated with N2 fixation, aboveground N accumulation, nodule weight, and acetylene reduction. N2 fixation was estimated by 15N isotope dilution with nine and ten soybean genotypes in 1979 and 1980, respectively, at the V9, R2, and R5 growth stages. In 1981, we investigated the relationship between ureide N, aboveground N accumulation, acetylene reduction, and nodule mass using four soybean genotypes harvested at the V4, V6, R2, R4, R5, and R6 growth stages. Ureide N concentrations of young stem tissues or plants or aboveground ureide N content of the four soybean genotypes varied throughout growth correlating with acetylene reduction, nodule mass, and aboveground N accumulation. The ureide-N concentrations of young stem tissues or plants or aboveground ureide-N content in three soybean genotypes varied across inoculation treatments of 14 and 13 strains of Bradyrhizobium japonicum in 1981 and 1982, respectively, and correlated with nodule mass and acetylene reduction. In the greenhouse, results correlating nodule mass with N2 fixation and ureide N across strains were variable. Acetylene reduction in soybean across host-strain combinations did not correlate with N2 fixation and ureide N. N2 fixation, ureide N, acetylene reduction, and nodule mass correlated across inoculation treatments with strains of Bradyrhizobium spp. varying in effectiveness on lima beans. Our data indicate that ureide-N determinations may be used as an additional method to acetylene reduction in studies of the physiology of N2 fixation in soybean. Ureide-N measurements also may be useful to rank strains of B. japonicum for effectiveness of N2 fixation.  相似文献   

17.
Siderophore-bound iron in the peribacteriod space of soybean root nodules   总被引:2,自引:0,他引:2  
Water-soluble, non-leghemoglobin iron (125 µmol kg-1 wet weight nodule) is found in extracts of soybean root nodules. This iron is probably confined to the peribacteroid space of the symbiosome, where its estimated concentration is 0.5 – 2.5 mM. This iron is bound by siderophores (compounds binding ferric iron strongly) which are different for each of the three strains of Bradyrhizobium japonicum with which the plants were inoculated. One of these, that from nodules inoculated with strain CC 705, is tentatively identified as a member of the pseudobactin family of siderophores. Leghemoglobin is present in only very small amounts in the peribacteroid space of symbiosomes isolated from soybean root nodules, and may be absent from the peribacteroid space of the intact nodule.  相似文献   

18.
Non-nodular tissue of soybean (Glycine max L. Merrill) plants grown hydroponically in the absence of added N have a 15N abundance close to that of atmospheric N2. In contrast, nodules are usually enriched in 15N. In this paper, we report measurements of the 15N abundance of foliar tissue and nodules of soybeans inoculated with 11 variably efficient strains of Rhizobum japonicum and grown hydroponically with no added N. The efficiency of the 11 symbioses varied over a wide range as judged by a 16-fold difference in N content. The degree of 15N enrichment of nodules was closely correlated with N2-fixing efficiency (milligrams N fixed per milligram N in the nodules).

These results confirm prior preliminary data based on six variably efficient R. japonicum strains. The strong correlation between NN enrichment of soybean nodules and N2-fixing efficiency is consistent with the hypothesis that new nodule tissue is synthesized from a pool of recently fixed N within the same nodule.

  相似文献   

19.
Free-living Rhizobium (according to Bergey's Manual of Systematic Bacteriology, [1984, The Williams & Wilkins Co., Baltimore], Bradyrhizobium) japonicum was found to release a peptide into the nutrient media. Soybean nodules contained this peptide and exuded it into the soil. The name “rhizobin A” is suggested for this peptide. Nodules also contained another peptide, rhizobin B, as well as an unidentified, ninhydrin-positive compound, rhizobin C. The three peptides were confined to the free-amino-acid pool of the soluble fraction and eluted consecutively from a cation-exchange column. Rhizobin A was isolated in a highly purified form; its molecular mass was approximately 1,600 daltons as determined by Sephadex gel filtration and mass spectrometry. The amino-acid composition could be determined only approximately, because a long time was necessary for acid hydrolysis, possibly due to unusual linkages. The rhizobin concentration in soybean nodules continually increased during 50 days of growth, from 2 to approximately 400 μg/g (fresh weight). When combined nitrogen was added to nodulated soybean and subsequently removed, nitrogenase activity, nodulation, and nodule growth first decreased and then recovered. The relative amount of rhizobin A followed a similar pattern. Rhizobins were not detected in the roots, stems, and leaves of nodulated soybean plants. They were present in Lupinus nodules, but absent in alder nodules.  相似文献   

20.
The application of sewage sludge to land may increase the concentration of heavy metals in soil. Of considerable concern is the effect of heavy metals on soil microorganisms, especially those involved in the biocycling of elements important to soil productivity. Bradyrhizobium japonicum is a soil bacterium involved in symbiotic nitrogen fixation with Glycine max, the common soybean. To examine the effect of metal-rich sludge application on B. japonicum, the MICs for Pb, Cu, Al, Fe, Ni, Zn, Cd, and Hg were determined in minimal media by using laboratory reference strains representing 11 common serogroups of B. japonicum. Marked differences were found among the B. japonicum strains for sensitivity to Cu, Cd, Zn, and Ni. Strain USDA 123 was most sensitive to these metals, whereas strain USDA 122 was most resistant. In field studies, a silt loam soil amended 11 years ago with 0, 56, or 112 Mg of digested sludge per ha was examined for total numbers of B. japonicum by using the most probable number method. Nodule isolates from soybean nodules grown on this soil were serologically typed, and their metal sensitivity was determined. The number of soybean rhizobia in the sludge-amended soils was found to increase with increasing rates of sludge. Soybean rhizobia strains from 11 serogroups were identified in the soils; however, no differences in serogroup distribution or proportion of resistant strains were found between the soils. Thus, the application of heavy metal-containing sewage sludge did not have a long-term detrimental effect on soil rhizobial numbers, nor did it result in a shift in nodule serogroup distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号