首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 165 毫秒
1.
Abstract 1. Mutualistic interactions between aphids and ants are mediated by honeydew that aphids produce. Previous work showed that when attended by the ant Formica yessensis Forel (Hymenoptera: Formicidae), nymphs of the aphid Tuberculatus quercicola (Matsumura) (Homoptera: Aphididae) developed into significantly smaller adults with lower fecundity than did nymphs that were not ant attended.
2. This study tested the hypothesis that this cost of ant attendance arises through changes in the quality and quantity of honeydew. Ant-attended and ant-excluded aphid colonies were prepared in the field. The composition and concentration of amino acids were compared between the honeydew produced by ant-attended colonies and that produced by ant-excluded colonies.
3. The aphids excreted smaller droplets of honeydew, but also excreted them more frequently, in ant-attended colonies than in ant-excluded colonies. The honeydew of ant-attended aphids contained more types of amino acid, and a significantly higher total concentration of amino acids, than did the honeydew of ant-excluded aphids.
4. These results suggest that the increase in the concentration of amino acids in honeydew leads to a shortage of nitrogen available for aphid growth and reproduction, resulting in lower performance under ant attendance.
5. With the advance of seasons, a significant reduction was found in both the total free amino acid concentration in phloem sap and the frequency of honeydew excretion; however the total concentration of amino acids in the honeydew did not vary significantly during the seasons, suggesting that aphids keep the quality of honeydew constant in order to maintain ant visitation.  相似文献   

2.
Some aphid species are attended by ants, which protect aphids against enemies, but ants sometimes prey on the aphids they are attending depending on the resource conditions. A previous study indicated that the ant Lasius niger preys less on the aphid individuals that experienced ant attendance than on those that did not. This observation leads to the hypothesis that ants transfer some substances to the aphids they attend and selectively prey on the aphids without the substances. In this study, we focus on cuticular hydrocarbons (CHCs), which are used by ants as nestmate recognition substances, and test whether ants discriminate the aphids on the basis of CHCs. We confirmed that the ant Lasius fuji preyed less on the aphids that were attended by their nestmates than those that were not attended. Glass dummies treated with CHCs from attended aphids were attacked less by ants than those treated with CHCs from non-attended aphids. The CHC profiles of ant attended aphids resembled those of the ants, suggesting that ants’ CHCs are transferred to the aphids’ body surface through ant attendance. These results support the hypothesis that ants “mark” their attended aphids with their CHCs and the CHCs reduce ant predation intensity.  相似文献   

3.
Yao I 《Biology letters》2012,8(4):624-627
In otherwise mutualistic relationships between aphids and ants, attendance by ants often has negative impacts on aphids. For example, in a previous study using traps in the field, the aphid Tuberculatus quercicola, which exhibits mutualistic interactions with ants, showed extremely low dispersal rates, despite having long wings. This study investigates whether components of the flight apparatus (mesonotum length, flight muscle and wings) differ between aphids attended by ants and not attended by ants. Randomized block analysis of variance, using body length as a covariate, showed that ant attendance has a negative influence on aphid flight apparatus. This result indicates that aphids produce honeydew at the expense of resource investment in flight apparatus. Since the dispersal of T. quercicola is limited under ant attendance, the reduction in flight apparatus could precede a decrease in body size. This study also showed that flight apparatus was more developed in aphids under ant-exclusion conditions. This may imply that T. quercicola fly when ants are not available. The maintenance of flight apparatus in T. quercicola might therefore be partly explained by gene flow on the rare occasions that this aphid species disperses.  相似文献   

4.
Aphid-tending ants protect aphids from natural enemies and collect honeydew secreted by the aphids. However, ants also often prey on the aphids they attend. Aphids, therefore, like social parasites of ants, may well have evolved chemical mimicry as an anti-predation strategy. In this study, we aimed to determine whether the aphid Stomaphis yanonis actively produces cuticular hydrocarbons (CHCs) that resemble those of the tending ant Lasius fuji. In the wild, ants put their CHCs on the aphids that they are tending, so in this study we analyzed “ant-free” aphids. Mature aphids that exuviated in the absence of ant attendance had almost all of the hydrocarbon components that the ants’ CHCs had. Moreover, hydrocarbons artificially applied to the aphids’ body surface were lost by exuviation. Taken together, these findings indicate that mature aphids actively produced ant-like CHCs, and they constitute the first documentation of a chemical resemblance between aphids and ants in a specific aphid–ant association.  相似文献   

5.
Jason P. Harmon  D. A. Andow 《Oikos》2007,116(6):1030-1036
Density-dependent mutualisms have been well documented, but the behavioral mechanisms that can produce such interactions are not as well understood. We investigated interactions between predatory ladybirds and the ant Lasius neoniger, which engages in a facultative association with the aphid Aphis fabae . We found that ants disrupted predator aggregation and deterred foraging, but that this effect varied with aphid density. In the field, smaller aphid colonies had higher numbers of ants per aphid (higher relative ant density), whereas plants with larger aphid colonies had lower relative ant density. Ants deterred ladybird foraging when relative ant density was high, but when relative ant density was low, ladybirds aggregated to aphids and foraged more successfully. This difference in ladybird foraging success appeared to be driven by variation in the ants' distribution on the plant and the ladybirds' reaction to ants. When relative ant density was high, ants moved around the perimeter of the aphid colonies, which resulted in faster detection of predators and a greater likelihood of ladybirds leaving. However, when relative ant density was low, ants moved only in the midst of the aphid colonies and rarely around the perimeter, which allowed predators to approach the aphid colony from the perimeter and feed without detection. Such predators were less likely to leave the aphid colony when subsequently detected by ants. We suggest that differences in relative ant numbers, ant distribution, and predator reaction to detection by ants could lead to complex population-level consequences including density-dependent mutualisms and the possibility that predators act as prudent predators.  相似文献   

6.
The aphid–ant mutualistic relationships are not necessarily obligate for neither partners but evidence is that such interactions provide them strong advantages in terms of global fitness. While it is largely assumed that ants actively search for their mutualistic partners namely using volatile cues; whether winged aphids (i.e., aphids’ most mobile form) are able to select ant‐frequented areas had not been investigated so far. Ant‐frequented sites would indeed offer several advantages for these aphids including a lower predation pressure through ant presence and enhanced chances of establishing mutuaslistic interactions with neighbor ant colonies. In the field, aphid colonies are often observed in higher densities around ant nests, which is probably linked to a better survival ensured by ants’ services. Nevertheless, this could also result from a preferential establishment of winged aphids in ant‐frequented areas. We tested this last hypothesis through different ethological assays and show that the facultative myrmecophilous black bean aphid, Aphis fabae L., does not orientate its search for a host plant preferentially toward ant‐frequented plants. However, our results suggest that ants reduce the number of winged aphids leaving the newly colonized plant. Thus, ants involved in facultative myrmecophilous interactions with aphids appear to contribute to structure aphid populations in the field by ensuring a better establishment and survival of newly established colonies rather than by inducing a deliberate plant selection by aphid partners based on the proximity of ant colonies.  相似文献   

7.
Interaction between a predator and a parasitoid attacking ant-attended aphids was examined in a system on photinia plants, consisting of the aphid Aphis spiraecola, the two ants Lasius japonicus and Pristomyrmex pungens, the predatory ladybird beetle Scymnus posticalis, and the parasitoid wasp Lysiphlebus japonicus. The ladybird larvae are densely covered with waxy secretion and are never attacked by attending ants. The parasitoid females are often attacked by ants, but successfully oviposit by avoiding ants. The two ants differ in aggressiveness towards aphid enemies. Impacts of the predator larvae and attending ant species on the number of parasitoid adults emerging from mummies per aphid colony were assessed by manipulating the presence of the predator in introduced aphid colonies attended by either ant. The experiment showed a significant negative impact of the predator on emerging parasitoid numbers. This is due to consumption of healthy aphids by the predator and its predation on parasitized aphids containing the parasitoid larvae (intraguild predation). Additionally, attending ant species significantly affected emerging parasitoid numbers, with more parasitoids in P. pungens-attended colonies. This results from the lower extent of interference with parasitoid oviposition by the less aggressive P. pungens. Furthermore, the predator reduced emerging parasitoid numbers more when P. pungens attended aphids. This may be ascribed to larger numbers of the predator and the resulting higher levels of predation on unparasitized and parasitized aphids in P. pungens-attended colonies. In conclusion, a negative effect of the predator on the parasitoid occurs in ant-attended aphid colonies, and the intensity of the interaction is affected by ant species.  相似文献   

8.
1. Winged dispersal is vital for aphids as predation pressure and host plant conditions fluctuate. 2. Ant‐tended aphids also need to disperse, but this may represent a cost for the ants, resulting in an evolutionary conflict of interest over aphid dispersal. 3. The combined effects of aphid alarm pheromone, indicating predation risk, and ant attendance on the production of winged aphids were examined in an experiment with Aphis fabae (Homoptera: Aphididae) (Scopoli 1763) aphids and Lasius niger (Formicidae: Formicinae) (Linné, 1758) ants. 4. This study is the first to investigate the joint effects of alarm pheromone and ant attendance, and also the first to detect an influence of alarm pheromone on the production of winged morphs in A. fabae. 5. After a period of 2 weeks, it was found that aphid colonies exposed to intermittent doses of alarm pheromone produced more winged individuals, whereas ant tending had the opposite effect. The effects were additive on a log scale, and ant attendance had a greater proportional influence than exposure to alarm pheromone. A tentative conclusion is that ants have gained the upper hand in an evolutionary conflict about aphid dispersal.  相似文献   

9.
While many studies have demonstrated that ants provide beneficial services to aphids, Bristow (Ant-plant interactions, Oxford University Press, Oxford, 104–119, 1991) first questioned why so few aphid species are ant-attended. Phylogenetic trees have demonstrated multiple gains and loss of ant-attendance in the course of aphid-ant interactions, implying that mutualisms easily form and dissolve. Several studies have reported the factors that influence the formation and maintenance of aphid-ant interactions. Examples include the physiological costs of ant attendance, competition for mutualistic ants, ant predation on aphids, the influence of host plants, and parasitoid wasps. Recent physiological techniques have also revealed the chemical component of aphid-ant mutualisms. The honeydew of ant-attended aphids contains melezitose (a trisaccharide), which has an important role in aphid-ant interactions. Studies of cuticular hydrocarbons on aphids and ants have clarified the underlying mechanisms of ant predation on aphids. Attending ants also reduce aphid dispersal ability, causing the formation of fragmented aphid populations with low genetic diversity in each population. The reduced aphid dispersal could be partly explained by higher wing loading and reduction of flight apparatus due to ant attendance. Whether ant attendance is associated with the range of host plants of aphids or genetic variation in microorganism in aphids remain to be explored.  相似文献   

10.
It is generally believed that most homopteran-eating insects avoid ant-tended colonies of Homoptera, due to the ant aggression they encounter there. However, because homopteran colonies which are ant-tended often persist for longer than untended colonies, some homopteran-eaters may utilise ant-tended Homoptera when untended colonies are scarce. Furthermore, a few homopteran-eaters are myrmecophilous, habitually coexisting with ants. To investigate these phenomena, a study was made of aphids and aphidophagous coccinellids (ladybirds) on Scots pine, Pinus sylvestris , growing in areas foraged and unforaged by the wood ant Formica rufa . The non-tended aphid Schizolachnus pineti exhibited a marked population decline in late summer but persisted in both areas at very low density. Facultatively tended Cinara aphids exhibited higher population densities when associated with F. rufa , and remaining colonies of these aphids were only found associated with ants in late summer. Coccinellids exhibited considerable interspecific variability in their level of association with F. rufa , and there was some evidence of an increase in certain species' frequencies of occurrence with the ant when Cinara aphids were all ant-tended, in late summer. Coexistence with ants appears to be associated with either an intolerance of low aphid densities, in Coccinella septempunctata and Harmonia quadripunctata , or with extreme dietary specialisation, in Myzia oblongoguttata . Similar factors to those which bring C. septempunctata into contact with ants were probably of importance in the initial stages of the evolution of myrmecophily of its congener, Coccinella magnifica .  相似文献   

11.
1. Mutualistic and antagonistic interactions, although often studied independently, may affect each other, and food web dynamics are likely to be determined by the two processes working in concert. 2. The structure, and hence dynamics, of food webs depends on the relative abundances of generalist and specialist feeding guilds. Secondary parasitoids of aphids can be divided into two feeding guilds: (i) the more specialised endoparasitoids, which attack the primary parasitoid larvae in the still living aphid, and (ii) the generalist ectoparasitoids, which attack the pre‐pupa of the primary or secondary parasitoid in the mummified aphid. 3. We studied the effect of an ant–aphid mutualism on the relative abundance of these two functional groups of secondary parasitoids. We hypothesised that generalists will be negatively affected by the presence of ants, thus leading to a greater dominance of specialists. 4. We manipulated the access of ants (Lasius niger) to aphid colonies in which we placed parasitised aphids. Aphid mummies were collected and reared to determine the levels of endo‐ and ecto‐secondary parasitism. 5. When aphids were attended by L. niger the proportion of secondary parasitism by ectoparasitoids dropped from 26 to 8% of the total number of parasitised aphids, with Pachyneuron aphidis most strongly affected, while endoparasitoids as a group did not respond. However, among these Syrphophagus mamitus profited from ant attendance becoming the dominant secondary parasitoid, while parasitisation rates of Alloxysta and Phaenoglyphis declined. 6. The shift to S. mamitus as dominant secondary parasitoid in ant‐attended aphid colonies is likely due to the behavioural plasticity of this species in response to ant aggression, and a release from tertiary parasitism by generalist ectoparasitoids. 7. The reduction of secondary parasitism by generalist ectoparasitoids reduces the potential for apparent competition among primary parasitoids with consequences for the dynamics of the wider food web.  相似文献   

12.
There are few longtime studies on the effects on aphids of being tended by ants. The aim of this study is to investigate how the presence of ants influences settling decisions by colonizing aphids and the post‐settlement growth and survival of aphid colonies. We conducted a field experiment using the facultative myrmecophile Aphis fabae and the ant Lasius niger. The experiment relied on natural aphid colonization of potted plants of scentless mayweed Tripleurospermum perforatum placed outdoors. Ants occurred naturally at the field site and had access to half of the pots and were prevented from accessing the remainder. The presence of winged, dispersing aphids, the growth and survival of establishing aphid colonies, and the presence of parasitoids were measured in relation to presence or absence of ants, over a period of five weeks. The presence of ants did not significantly influence the pattern of initial host plant colonization or the initial colony growth, but ant‐tended aphids were subject to higher parasitism by hymenopteran parasitoids. The net result over the experimental period was that the presence of ants decreased aphid colony productivity, measured as the number of winged summer migrants produced from the colonized host plants. This implies that aphids do not always benefit from the presence of ants, but under some conditions rather pay a cost in the form of reduced dispersal.  相似文献   

13.
In the United States, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are often tended by the aphid-tending ant, Lasius neoniger Emery (Hymenoptera: Formicidae). In this study, we examined the effects of tending by ants on the density and biomass of soybean aphids on soybeans in Kentucky. We performed cage studies that limited access by ants and/or natural enemies. We used a split-plot design with natural enemy access as the main plot and ant attendance as the sub plot. We found that natural enemy access negatively affected aphid population density in the presence of tending ants, seen as a three- to four-fold increase in aphid density when natural enemies were excluded. In addition, we found that ant tending positively affected aphid biomass, both when natural enemies were given access to aphids or when natural enemies were excluded, seen by a two-fold increase in aphid biomass when ants tended aphids, both in the presence or absence of natural enemies. Biomass accumulation is seen as an important measurement for assessing aphid performance, and we argue that aphid-tending by ants can have an influence on natural field populations of soybean aphids. Agronomic practices that affect ant abundance in soybeans may influence the performance and hence pest outbreaks for this economically important pest.  相似文献   

14.

—In 2015–2017, attendance of 15 invasive and 22 native species of herbaceous plants by ants was studied in 6 habitats in the environs of Kyiv (Ukraine). Altogether, 14 ant species were found, of which 12 were recorded on invasive plants and 9 on native plants; 8 aphid species were found on 8 invasive plant species. Five invasive plant species (Asclepias syriaca, Heracleum mantegazzianum, Oenothera biennis, Onopordum acanthium, and Amaranthus retroflexus) were found to be attractive to ants, with over a half of all the ant workers in all the habitats being recorded on them; besides, numerous colonies of 7 aphid species were also found on these plants. These invasive plants positively affect the structure of ant assemblages since the aphid colonies provide ants with food resource. The remaining 10 invasive plant species, including 5 transformer species, were poorly visited by ants and housed no aphid colonies, with the exception of Conyza canadensis on which the non-myrmecophilous aphid Uroleucon erigeronense (Thomas, 1878) was found. Two thirds of invasive plant species had a negative effect on the structure of ant assemblages because they replaced the native plants and thus reduced the trophic resources of aphids.

  相似文献   

15.
The following results on the behavior decision making of the antLasius niger toward two species of myrmecophilous aphidsLachnus tropicalis andMyzocallis kuricola on chestnut trees have been found. (1) An individual worker consistently attended only one aphid species, even if her nestmates attended other aphid species on the same tree. (2) The ants preyed less on the aphid species which they attended than on other myrmecophilous aphid species. (3) The ants preyed less on the aphids which had been attended by their nestmates, even if both aphids were the same species. (4) The ants preyed less on aphids which had provided honeydew to their nestmates. (5) The increased aphid density per ant led to an increase in the rate of predation on the introduced aphids by the ants. These results suggest that each worker ofL. niger chooses aphid species to attend from her experience. In addition, the workers can recognize whether an aphid has been attended by their nestmates and whether an aphid has given their nestmates honeydew. Through these processes, each worker decides to attend or to prey on the aphid. As a result, they may realize efficient collective foraging dependent on aphid density per worker.  相似文献   

16.
Cornicle length in Macrosiphini aphids: a comparison of ecological traits   总被引:1,自引:0,他引:1  
Abstract 1. Aphids often emit cornicle droplets when attacked by predators. While the function of cornicle droplets has long been debated (i.e. mechanical protection vs. chemical signalling), it is not understood why aphid species have cornicles of different lengths.
2. It was hypothesised that aphids living in more scattered colonies have longer cornicles to scent-mark predators with cornicle droplets containing alarm pheromone, so that clone-mates are provided with advanced warning of a threat, even if not at the predation site. To test this hypothesis, multiple regression analyses were used, due to a lack of phylogenetic information on these taxa, to address which ecological traits (amount of wax on an aphid, degree of colony aggregation, feeding shelter, ant attendance) are correlated with cornicle length.
3. Aphids living in dense colonies tended to have shorter cornicles than aphids living in more scattered colonies. Also, aphids with more protection (i.e. wax) on their bodies had shorter cornicles. Aphids also tended to have shorter cornicles when tended by ants. The presence of a feeding shelter was not a good predictor of cornicle length.
4. It is suggested that longer cornicles function to scent-mark predators with alarm pheromone to increase the inclusive fitness of a clone; however the negative correlation between the amount of individual protection, and also ant attendance, and cornicle length argues for a trade-off between different forms of defence.  相似文献   

17.
This study focused on three species of enemies, the parasitoid wasp Lysiphlebus japonicus Ashmead (Hymenoptera: Aphidiidae), the ladybird Scymnus posticalis Sicard (Coleoptera: Coccinellidae) and the predatory gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae), all of which are able to exploit aphids attended by ants. I experimentally evaluated the effects of prey aphid species on the abundance of each of the three enemy species in ant‐attended aphid colonies on citrus. The aphids compared were Aphis gossypii Glover versus Aphis spiraecola Patch in late spring, and Toxoptera citricidus (Kirkaldy) versus A. spiraecola in late summer (all, Hemiptera: Aphididae). Colonies of the three aphid species were attended by the ant Pristomyrmex punctatus Smith (Hymenoptera: Formicidae). The initial number of attending ants per individual aphid did not differ significantly between the colonies of the two aphid species compared in each season. Between A. gossypii and A. spiraecola, there was no significant difference in the number of mummies formed by the parasitoid or foraging larvae of each of the two predators per aphid colony. A significant difference was detected between T. citricidus and A. spiraecola for each of the three enemy species, with a far greater number of L. japonicus mummies in T. citricidus colonies and distinctly more larvae of each of the two predators in A. spiraecola colonies. Thus, the abundance of each of the three enemy species in ant‐attended aphid colonies was significantly influenced by the species of the prey aphids, with the three enemies showing different responses to the three aphid species.  相似文献   

18.
Costs of ant attendance for aphids   总被引:3,自引:0,他引:3  
1. Interactions between aphids and ants are considered to be mutualistic, with both partners benefiting. Costs associated with such interactions are likely to be less obvious, although they can be expected, especially if these associations are facultative.
2. It is demonstrated here that there are costs in several life-history parameters to individual aphids resulting from ant attendance. Over several generations Aphis fabae cirsiiacanthoides feeding on Cirsium arvense , at a range of developmental stages, suffered significant costs when tended by Lasius niger , e.g. in terms of a prolonged developmental time, delayed offspring production, proportionally smaller gonads, fewer well developed embryos and a reduced mean relative growth rate. These effects are similar to those observed when aphids feed on poor quality plants.
3. This is the first indication that there is a cost for aphids associated with ant attendance. The significance of this for the evolution of ant attendance in aphids is discussed.  相似文献   

19.
Larvae of the green lacewing Mallada desjardinsi Navas are known to place dead aphids on their backs. To clarify the protective role of the carried dead aphids against ants and the advantages of carrying them for lacewing larvae on ant-tended aphid colonies, we carried out some laboratory experiments. In experiments that exposed lacewing larvae to ants, approximately 40% of the larvae without dead aphids were killed by ants, whereas no larvae carrying dead aphids were killed. The presence of the dead aphids did not affect the attack frequency of the ants. When we introduced the lacewing larvae onto plants colonized by ant-tended aphids, larvae with dead aphids stayed for longer on the plants and preyed on more aphids than larvae without dead aphids. Furthermore, the lacewing larvae with dead aphids were attacked less by ants than larvae without dead aphids. It is suggested that the presence of the dead aphids provides physical protection and attenuates ant aggression toward lacewing larvae on ant-tended aphid colonies.  相似文献   

20.
1. The aphids Dysaphis plantaginea Passerini, Aphis spp. (Aphis pomi De Geer and Aphis spiraecola Patch), and Eriosoma lanigerum Hausmann are commonly found together in apple orchards. Ants establish a mutualistic relationship with the myrmecophilous aphids D. plantaginea and Aphis spp. but not with E. lanigerum. 2. Field surveys and one experiment manipulating the presence of ants and the aphid species were conducted to test the hypothesis that ants play a role in structuring the community of these aphids on apple. 3. Ants tended D. plantaginea and Aphis spp. but not E. lanigerum colonies. In the field, D. plantaginea performed better in the presence of ants while no effect was observed in Aphis spp. Contrarily, populations of Aphis spp. in the manipulative experiment performed better in the presence of ants while no differences were observed for D. plantaginea. Such differences between field and manipulative conditions could be related to thermal tolerance, phenology, and life cycles. In contrast, populations of E. lanigerum were reduced in the presence of ants. 4. Ants also had a significant negative effect on the abundance of natural enemies, which could partially explain the benefits to the tended aphids. However, while ants did not provide a benefit to Aphis spp. when it was reared alone, in the presence of other species ant attendance increased Aphis abundance by 256% and simultaneously reduced E. lanigerum abundance by 63%. Therefore, ants benefited Aphis by reducing competition with other aphid species, which involves a different mechanism, explaining the benefit of ant attendance. Considering all the aphid species together, ants had a net positive effect on aphid abundance, which was consequently considered harmful for the plant. 5. Our results highlighted the role that ants play in structuring apple aphid communities and give support to the observed pattern that ants can benefit tended aphids while simultaneously reducing the abundance of untended herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号