首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The activity of the respiratory electron transport system (ETS) of the microplankton (<240 m size) was measured in the Northern Weddell Sea during EPOS 1, in the Close Pack Ice (CPI), and in the ice edge (Outer and Inner Marginal Zones, OMIZ and IMIZ). During early spring the activity increased with time and in the pack ice-open water direction. The temporal trend was more obvious than the spatial one. ETS activity ranged from 0.01 to 1.25 ml O2 m–3 h–1 under the ice and from 0.1 to 1.6 ml O2 m–3 h–1 in the open water at the ice edge. Depth-integrated ETS activity in the upper 300 m ranged from 13 to 130 ml O2 m–2h–1. 60% to 80% of the activity took place above 100 m in the OMIZ in the prebloom conditions at the end of the cruise. ETS/Chl a ratios showed the importance of microheterotrophs under the ice, versus a greater phytoplankton dominance in the ice edge-open water zone. The carbon-specific activity reached a maximum (0.43 day–1) in the innermost zone of the CPI where bacteria dominated. Respiratory activity under the ice is important in producing the oxygen deficit observed, due to the negative balance between photosynthesis and respiration. The ETS activity was at the lower range of that found in the region in summer and is comparable to that measured in other oligotrophic, stratified systems in oceanic areas.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

2.
Summary Phytoplankton biomass and distribution of major phytoplankton groups were investigated in relation to sea ice conditions, hydrography and nutrients along three north-south transects in the north western Weddell Sea in early spring 1988 during the EPOS Study (European Polarstern Study), Leg 1. Three different zones along the transects could be distinguished: 1) the Open Water Zone (OWZ) from 58° to 60°S with high chlorophyll a concentrations up to 3.5 g l–1; 2) the Marginal Ice Zone (MIZ) from 60° to about 62.5° with chlorophyll a concentrations between 0.1 and 0.3 g l–1, and 3) the closed pack-ice zone (CPI) from 62.5° to 63.2°S with chlorophyll a concentrations below 0.1 gl–1. Nutrient concentrations increased towards the south showing winter values under the closed pack-ice. Centric diatoms such as Thalassiosira gravida and Chaetoceros neglectum forming large colonies dominated the phytoplankton assemblage in terms of biomass in open water together with large, long chain forming, pennate diatoms, whereas small pennate diatoms such as Nitzschia spp., and nanoflagellates prevailed in ice covered areas. Fairly low concentrations of phytoplankton cells were encountered at the southernmost stations and many empty diatom frustules were found in the samples. The enhanced phytoplankton biomass in the Weddell-Scotia-Confluence area is achieved through sea ice melting in the frontal zone of two different water masses, the Weddell and the Scotia Sea surface waters.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

3.
Summary As a means to estimate potential oxygen consumption, profiles of elctron transport system (ETS) activity were made along three transects across the Weddell-Scotia Confluence zone (WSC) and the marginal ice zone (which overlapped in part) during the EPOS leg 2 cruise of the RV Polarstern. The integrated ETS activity between 0 and 100 m depth (referred to in situ temperatures) ranged from 261 meq (mili-electron equivalents) m–2 day–1 in the WSC to 45 meq m–2 day–1 in the southernmost stations at 62° S. The temporal changes in the overall distribution of ETS activity were small compared with the spatial variations. The main feature of the ETS activity distribution was the presence of maxima located in the WSC, coinciding with peaks of phytoplankton biomass. Different relationships between ETS and chlorophyll a concentration in these maxima appeared to be related to diatom or flagellate dominance. Vertically integrated ETS activities were significantly correlated with chlorophyll a and paniculate organic carbon concentrations, primary production and bacterial thymidine uptake.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

4.
Summary The pelagic summer distribution of Antarctic seabirds, seals and whales was studied in the marginal ice zone of the northwestern Weddell Sea from November 1988 to January 1989. In order to relate top predators to other components of the ecosystem studied simultaneously, their distribution is mainly described in terms of energy flow. Bird, seal, and probably also whale requirements were highest in ice-covered areas. There was no evidence of higher numbers of top predators along the ice edge: densities generally increased further into the ice. In the pack ice, combined energy requirements of top predators often amounted to about 200.000 kJ/day/km2, or about 45 kg fresh food, indicating high abundance and availability of prey under the ice. There was a lack of conformity between top predator abundance on the ice and abundance of other life in the water column below. In open water, bird requirements were generally less than 25.000 kJ/day/km2, seals were virtually absent and whales were distributed unevenly. Tubenosed birds concentrated along the outer ice edge in early summer but they moved north to open water during December, leaving the area of maximum phytoplankton biomass associated with the retreating ice edge. This pattern matched northward movements of krill swarms that may be related to changes in quality rather than quantity of phytoplankton stocks.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

5.
Summary The zooplankton community in the vicinity of the ice edge in the west central Weddell Sea was investigated in the late austral summer (March 1986). Sampling was done with two ships operating concurrently, one in the pack ice and the other in the adjcent open sea. Metazoan microzooplankton (<1 mm) was most abundant in the epipelagic zone. It consisted mostly of copepod nauplii and copepods of the genera Oithona, Oncaea, Ctenocalanus and Microcalanus. While species composition was similar in both areas, vertical patterns differed in that the microzooplankton had sparse populations in the upper 50 m under the ice. This may have been related to water temperature which in the upper 50 m under the ice was more than 1°C cooler than in the open sea. Zooplankton in the 1–20 mm size range was dominated by the calanoid copepods Metridia gerlachei, Calanus propinquus and Calanoides acutus which constituted half the biomass in the upper 1000 m. Their populations had highest densities in the upper 150 m, though much of the C. acutus population resided below 300 m. Metridia gerlachei and C. propinquus underwent diel vertical migrations in both areas whereas C. acutus did not migrate. Species diversity in the epipelagic zone was moderate and the fauna was characterized by species typical of the oceanic east wind drift. Diversity increased with depth and was due primarily to the appearance of circumpolar mesopelagic copepods in Weddell Warm Deep Water. Biomass of 1–20 mm zooplankton in the 0–1000 m zone was low (1.1–1.3 gDWm-2) compared to other Southern Ocean areas investigated with comparable methods. It is suggested that this is related to Weddell circulation patterns and the resulting low annual primary production in the central Weddell Sea.  相似文献   

6.
Micronekton and macrozooplankton were collected during the austral spring of 1993 in the NW Weddell Sea. Sampling was done in three areas of the marginal ice zone: pack ice, ice edge, and open water, to examine the short-term effects of the spring phytoplankton bloom on the distribution and abundance of dominant fish and invertebrate species. Significant differences were observed for several common species, including Salpa thompsoni,Euphausia superba, Electrona antarctica, Gymnoscopelus braueri,and G. opisthopterus. Increased abundance seaward of the pack ice for these species is attributed to elevated phytoplankton and zooplankton biomass at the ice edge and in the open water areas. Distribution of the hyperiid amphipods, Cyllopus lucasii and Vibilia stebbingi mirrored that of S. thompsoni. No distributional trends between the areas were observed for Thysanoessa macrura, the amphipods Cyphocaris richardi and Primno macropa, the decapod shrimp Pasiphaea scotiae, the scyphomedusae Atolla wyvilli and Periphylla periphylla, and chaetognaths, indicating a trophic independence from the ice-edge bloom for these species. Lower occurrence of the mesopelagic fish Bathylagus antarcticus and Cyclothone microdon under the ice suggested that trophic repercussions of the spring bloom can also extend to deeper living species.  相似文献   

7.
Summary We applied two methods to measure bacterio-plankton production, the [3H]-thymidine (TTI) and the [3H]-leucine (LEU) incorporation into cold trichloro-acetic acid precipitate. Both methods gave similar results of the distribution of production in time and space (r 2=0.82, n=66). Using empirically determined conversion factors the TTI gave production values from 21 to 125 mg Cm–2 day–1, which are within the range reported earlier from the Southern Ocean. Highest production rates were associated with the open water in the Confluence area (59°S–60°S) and with the Scotia Sea front. Low production rates were recorded from the ice covered areas in the Weddell Sea and in the open Scotia Sea waters. Good correlation on an areal basis was found between bacterioplankton production and other measures of heterotrophy, including ETS (r2=0.93, n=9) and NH4(r2=0.50, n=21). Good correlation was also found between bacterioplankton and phytoplankton production (r2=0.63, n=19). Bacterioplankton production seems to be driven by products from photosynthesis and heterotrophic processes, most likely grazing, which are tightly coupled to autotrophy. Quantitatively, bacterioplankton production was on an average 11 % of net primary production, which is clearly a lower value than the 30% based on a review from temperate freshwater and marine ecosystems, but is comparable with values reported from the spring period in subarctic ecosystems. In comparison with the measurements of ETS, bacterioplankton contribution to community respiration was also lower than predicted from results from temperate ecosystems. We concluded from these results and the results obtained from microcosm experiments (Bjørnsen and Kuparinen 1991b) that the flux of organic matter to eucaryote heterotrophs via bacterioplankton during spring and early summer periods in the Southern Ocean is of considerable, but not of equivalent importance as in temperate waters.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

8.
Summary Phytoplankton biomass and species composition were studied in transects through the ice edge region of the Greeland Sea from 19 July to 8 August 1984. Biomass was estimated by vertical in situ chlorophyll fluorescence and pigment extraction of discrete samples. Preserved material was used for identification of phytoplankton species and calculation of their relative abundances. The results suggest that the various geographical regions of the Greenland Sea differ considerably in their phytoplankton development. Autotrophic biomass and species composition were closely associated with the extent of the annual and seasonal ice cover, hydrographic conditions, nutrient availability and the water masses typical of the different domains. In the NE Greenland polynya a deep mixed layer inhibited the development of a phytoplankton bloom, whereas greatest biomass concentrations were associated with a receding ice edge on the E Greenland Shelf. In the Fram Strait, the position of the relatively stationary ice edge is controlled by frontal dynamics, currents and wind. Due to rapidly changing physical and chemical conditions, phytoplankton biomass showed great variability between stations. High chlorophyll a concentrations may develop locally where melting ice causes stratification or can result from passive accumulation in eddies. In July/August 84 the Fram Strait area was dominated by a typical summer population of flagellates and large diatom species.Contribution 6 of the Alfred-Wegener-Institute for Polar and Marine Research  相似文献   

9.
The metabolic responses of several species of Antarctic copepods to primary productivity and changes between seasons were investigated. To examine the influence of the spring ice-edge bloom on the metabolism of copepods, oxygen consumption rates were determined on specimens from three zones of widely different ice coverage and chlorophyll biomass: pack ice (pre-bloom), ice edge (bloom) and open water (post-bloom). Summer metabolic rates were compared with published winter rates. Field work was done in the Weddell Sea in the region of 60 °S, 36°W in late November and December 1993. Oxygen consumption rates were determined by placing individuals in syringe respirometers and monitoring the oxygen partial pressure for 10–20 hours. Higher metabolic rates were observed in the primarily herbivorous copepods, Calanoides acutus, Rhincalanus gigas and Calanus propinquus in regions of higher primary production: ice edge and open water. The carnivorous Paraeuchaeta antarctica showed a similar pattern. The omnivorous copepods Metridia gerlachei and Gaetanus tenuispinus showed no changes in metabolism between zones. Data on routine rates of copepods from the winter were available for C. propinquus and P. antarctica. In P. antarctica, rates were higher in the summer. Calanus propinquus showed a higher metabolic rate in the summer than in the winter, but the difference was not significant at the 0.05 level. It was concluded that copepods near the ice zone in the ice zone in the Antarctic rely on the spring ice-edge bloom for growth and completion of their life cycle.  相似文献   

10.
D. Delille 《Polar Biology》1992,12(2):205-210
Summary In the eastern Weddell Sea on several transects from ice-covered, through ice melt, to open-ocean stations, total and heterotrophic bacteria were estimated to document an enhanced bacteriological biomass expected near the ice edge. The highest numbers of bacteria were found in melted ice cores, with 4.2·103 CFUml–1 and 1.1·107 Cells ml–1. Although brine from pore water samples average more than one order of magnitude less cells per ml, the highest bacterial production, 2.2·107 cells l–1 day–1, was recorded in brine samples. All quantitatively studied bacterial parameters were lower under the ice than in the ice samples but there were no clear vertical gradients in the water column. In the studied spring situation, sea ice occurrence seems to play only a minor role in the general distribution of the seawater bacterioplankton. The bacterial community structure was investigated by carrying out 29 morphological and biochemical tests on 118 isolated strains. The bacterial communities inhabiting Antarctic pack ice differ from those found in underlying seawater. Although non fermentative Gram-negative rods were always dominant in seawater, Vibrio sp. represented more than 25% of the strains isolated from some ice samples. The results clearly indicated that a large majority of the bacteria isolated from seawater must be considered psychrotrophic but that truly psychrophilic strains occurred in melted ice and brine samples.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

11.
Metabolic activity of bacteria was investigated in open water, newly forming sea ice, and successive stages of pack ice in the Weddell Sea. Microautoradiography, using [3H]leucine as substrate, was compared with incorporation rates of [3H]leucine into proteins. Relation of [3H]leucine incorporation to the biomass of active bacteria provides information about changes of specific metabolic activity of cells. During a phytoplankton bloom in an ice-free, stratified water column, total numbers of bacteria in the euphotic zone averaged 2.3 × 105 ml–1, but only about 13% showed activity via leucine uptake. Growth rate of the active bacteria was estimated as 0.3–0.4 days–1. Total cell concentration of bacteria in 400 m depth was 6.6 × 104 ml–1. Nearly 50% of these cells were active, although biomass production and specific growth rate were only about one-tenth that of the surface populations. When sea ice was forming in high concentrations of phytoplankton, bacterial biomass in the newly formed ice was 49.1 ng C ml–1, exceeding that in open water by about one order of magnitude. Attachment of large bacteria to algal cells seems to cause their enrichment in the new ice, since specific bacterial activity was reduced during ice formation, and enrichment of bacteria was not observed when ice formed at low algal concentration. During growth of pack ice, biomass of bacteria increased within the brine channel system. Specific activity was still reduced at these later stages of ice development, and percentages of active cells were as low as 3–5%. In old, thick pack ice, bacterial activity was high and about 30% of cells were active. However, biomass-specific activity of bacteria remained significantly lower than that in open water. It is concluded that bacterial assemblages different to those of open water developed within the ice and were dominated by bacteria with lower average metabolic activity than those of ice-free water.  相似文献   

12.
Summary The abundance and depth distribution of zooplankton faeces in spring to early summer were investigated along meridional transects (47°W and 49°W) that extended from the Scotia Sea (57°S) across the Weddell-Scotia Confluence and into the Weddell Gyre (62°S). The sea ice edge retreated from 59°30S to 61°S during the study. Faeces were sampled with nets, Niskin bottles and sediment traps and subsequently analysed by light and electron (SEM) microscopy. Krill faecal strings and oval faecal pellets of unknown origin were by far the most important zooplankton faeces and highest concentrations were always found in the Confluence often close to the ice border. Krill faeces were usually more abundant in the uppermost layer (0–50m) where they contributed an average of 130 g dry weight m–3. There was an exponential decrease with depth, with a minimum of 0.6 g dry weight m–3 in the 500–1000 m stratum. Oval pellets were more evenly distributed in the upper 1000 m of the water column, with an average of 9 g dry weight m –3, although there was a small peak (20 g dry weight m–3) in the subsurface layer (50–150 m depth). Consecutive collections (day-night) of krill faeces using drifting sediment traps showed that only the larger strings sank from 50 to 150 m depth. Peritrophic membranes appeared to deteriorate during sinking. Diatoms (in particular Nitzschia and Thalassiosira spp.) contributed by far the bulk of material in krill and oval faeces. In samples collected near or under the pack ice, remains of crustaceans in both krill- and oval faeces were also found.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

13.
During the EPOS leg 2 cruise of the RV Polarstern, carried out in late austral spring of 1988–1989, the composition of phytoplankton in relation to the distribution of hydrographic parameters was studied in four successive transects carried out along 49°W and 47°W, across the Weddell-Scotia Confluence (WSC) and the marginal ice zone (which overlapped in part). In all transects, a maximum of phytoplankton biomass was found in the WSC, in surface waters stabilized by ice melting. Different phytoplankton assemblages could be distinguished. North of the Scotia Front (the northern limit of the WSC) diatoms with Chaetoceros neglectus, Nitzschia spp. and (Thalassiosira gravida) dominated the phytoplankton community. This assemblage appeared to have seeded a biomass maximum which occupied, during the first transect, an area of the WSC, south of the Scotia Front. The southernmost stations of the first transect and all the stations to the south of the Scotia Front in the other transects were populated by a flagellate assemblage (with a cryptomonad, Pyramimonas spp. and Phaeocystis sp.) and an assemblage of diatoms (Corethron criophilum and Tropidoneis vanheurkii among others) associated to the presence of ice. During the last three transects, the flagellate assemblage formed a bloom in the low salinity surface layers of the WSC zone. The bulk of the biomass maximum was formed by the cryptomonad which reached concentrations up to 4×106 cells l–1 towards the end of the cruise. Multivariate analysis is used to summarize phytoplankton composition variation. The relationships between the distribution of the different assemblages and the hydrographic conditions indicate that the change of dominance from diatoms to flagellates in the WSC zone was related to the presence of water masses from different origin.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

14.
Savvichev  A. S.  Rusanov  I. I.  Pimenov  N. V.  Mitskevich  I. N.  Bairamov  I. T.  Lein  A. Yu.  Ivanov  M. V. 《Microbiology》2000,69(6):698-708
The total number of microorganisms and rates of microbial processes of the carbon cycle were determined in snow, sea ice, water, and seafloor sediments of the northern part of the Barents Sea from September to October, 1998. The explorations were carried out in two areas: along the transection from Franz Josef Land to Victoria Island and along the continental slope region covered with solid ice at latitude 81°–82° N and longitude 37°–39° E. At the time of study, the ice cover was represented by thick one-year old ice (up to 1.2 m), perennial ice (up to 1.85 m), and pack ice. The number of bacteria in the snow cover, sea ice, and seawater was 12 to 14, 50 to 110, and 10 to 240 × 103 cells/ml, respectively. Rates of dark CO2 assimilation, glucose utilization, and methane oxidation by bacteria were determined. The highest rate of microbial processes was found in samples of the lowermost newly formed sea ice. The lowest level of activity for all processes was observed in melted snow water. A direct relation was shown between the concentration of Corg, the bacterial biomass, and the values of 13Corg in mixtures of melted snow and ice. The number of microorganisms and rates of microbial processes in seafloor sediments measured at the stations on the continental slope are comparable to those in the central part of the Barents Sea and the northern part of the Kara Sea.  相似文献   

15.
Summary The present paper describes the composition, abundance, biomass and diversity of the meso- and macrozooplankton in the epipelagic zone of the open water and under the ice of the northern Weddell Sea. Samples were collected in October/November 1988 with a multiple RMT1+8 net during the European Polarstern Study (EPOS). Multivariate analysis resulted in two distinct site clusters, a northern one mainly located in the open water/marginal ice zone and a southern one extending from the marginal ice zone into the consolidated pack-ice. Clusters were, however, faunistically coherent with a high degree in positive covariation of species. There was no basis for the separation into communities, but differences occurred on the population level in numerical abundances, biomass (wet weight) and in a shift in species dominance. Different ice zones and vertical layers were tested among each other with regard to their relative species abundance. Significant differences were found between the upper 60 m layer of the open sea, the upper 60 m layer of the closed pack-ice and the so called transitional zone. Species richness and diversity was lowest directly under the closed pack-ice. Abundance and biomass was highest in the surface layer of the open water, while both variablès decreased dramatically under the ice. Copepods dominated numerically in open water, while salps dominated in biomass. Euphausia superba and Thysanoessa macrura were the dominant species in the upper water column of the closed pack-ice zone. Krill was the only species with increasing abundance in the sub-ice area and a dominance in biomass of more than 91% demonstrated its unique importance for the sub-ice habitat.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

16.
Summary During austral spring and summer 1988 the upper 500 m of water column in the Scotia-Weddell Confluence was sampled for the elemental composition of total suspended matter. For particulate organic carbon surface water concentrations ranged between 2.5 and 15 mol/l, with an estimated 19 to 47% of this pool being detrital carbon. In late November, the highest surface water particulate organic carbon concentrations (15 mol/l) occurred in the Confluence area where they coincided with a maximum in particulate Si (1.7 mol/l). Later in the season particulate Si in the Confluence area decreased to 0.3 mol/l. In the Scotia Sea on the contrary, surface water particulate Si increased with time and reached 3 mol/l in late December. For particulate Ca and Sr in surface water, strong gradients are observed across the Scotia Front (e.g. Ca: from 230 to 10 nmol/l; Sr: from 1.0 to 0.1 nmol/l), with highest concentrations in the Scotia Sea. In general, these distributions are confirmed by the observations on plankton species composition, done by other participants. In the Scotia Sea heavily calcified coccolithophorids and diatoms occurred throughout the season, while in the Confluence area heavily calcified coccolithophorids were absent and a switch-over from diatom to naked flagellate dominance was observed following a krill event. In the surface waters, the lithogenic Si fraction represents on average only 4% of the total particulate Si content. However, this fraction reaches 60% below 100 m depth in the Confluence area, due mainly to the presence of a sub-surface maximum in the aluminosilicate load (particulate Al content up to 30 pmol/l), probably reflecting advection of resuspended shelf sediments. Subsurface Ba/barite concentrations are highest in the Scotia Sea (280 pmol/l) and decrease through the Scotia Front to reach values of 100 pmol/l and less in the Confluence area, the marginal ice zone and the closed pack ice zone.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

17.
Summary Micronekton and macrozooplankton assemblages (0–1000 m) were sampled from the open ocean in the vicinity of marginal ice zones in the southern Scotia and western Weddell Seas using midwater trawls. Small regional differences in species composition were found in the differing hydrographic settings with the Scotia Sea being slightly more diverse. Most species exhibited broad vertical ranges with no distinct pattern of vertical movement. Exceptions were mesopelagic fish and Salpa thompsoni which undertook diel vertical migrations. Biomass was high (2.4–3.1 g DW/m2), comparable to Pacific subarctic waters. Euphausia superba and Salpa tompsoni were the numerical and biomass dominants, representing over 50% of the total numbers and standing stocks. In terms of biomass, euphausiids were the most important group at shallow depths (0–200 m) but were surpassed by salps in the Scotia Sea and mesopelagic fish in the Weddell Sea when all depths down to 1000 m were considered. Pelagic fish biomass (3.3–4.4 g WW/m2) greatly exceeded published estimates for birds (0.025–0.070 g WW/m2), seals (0.068–0.089 g WW/m2) and whales (0.167 to 0.399 g WW/m2), making mesopelagic fish the most prevalent krill predators in the Antarctic oceanic system.  相似文献   

18.
何剑峰 《生态学报》2004,24(4):750-754
近年来随着北极地区的开放和全球变化对北极地区生态环境和海冰现存量的影响日益显现,北极浮冰生态学研究得到了广泛的重视和实质性的进展.最新研究结果显示,浮冰本身包含了一个复杂的生物群落,高纬度浮冰生物群落的初级产量远高于原先的估算,浮冰生物群落在北极海洋生态系统中的作用被进一步确认.但由于对浮冰生物群落的研究受后勤保障条件的制约,目前尚有大量科学问题有待今后进一步深入研究,预期我国科学家将在其中做出贡献.  相似文献   

19.
Eight crabeater seals (Lobodon carcinophagus) (three females, five males), ranging in body mass between 125 and 220 kg, were captured off Queen Maud Land (70–72°S, 7–16°W) during the last week of February, just after moulting, and tagged with Argos satellite-linked dive recorders to provide data on location and diving depth and duration. During the first few weeks of March the seals were moving in the pack ice along the continental shelf edge, close to the coast of Queen Maud Land. In April and May, when the pack ice extended northwards, most of the seals moved north, one reaching 63°S in late May. In the first half of June the two remaining seals turned south and moved back deep into the pack ice. The seals made about 150 dives per day each throughout the study period. Ninety percent of these were made to depths of less than 52 m. Individual maximum diving depths varied between 288 and 528 m. In March the seals were most active at night, when the dive depth was shallower than during the day. In April and May the seals were more active during day-time, with an absence of any diurnal change in divng depth. These results support the notion that crabeater seals predominantly feed on krill in Antarctic pack ice, even when winter returns to the waters off Queen Maud Land.Publication no. 134 of the Norwegian Antarctic Research Expedtion 1992/1993  相似文献   

20.
Summary The Antarctic ice edge acts as a dynamic frontal system on the phytoplankton in the water column. Austral spring and autumn cruises to the Weddell Sea ice edge provided the opportunity to compare phytoplankton at the beginning of biological spring and at the end of biological autumn. The USCGC icebreakers Westwind (1983) and Glacier (1986) went into the sea ice, and the RV Melville (1983 and 1986) completed the transects in the adjacent open ocean. Field samples were observed alive on board ship to record different lifestages near the ice edge. In both seasons cell numbers were low under the ice, and single cells or short chains were the common growth habit. In spring in the open ocean, long chains of vegetative cells with large vacuoles and gelatinous colonies of diatoms and of prymnesiophytes dominated; in autumn in the open ocean close to the accreting ice edge, short chains, single cells, and resting spores were mostly packed with storage products. Enlarged cell diameters and auxospores also occurred near the ice cover in the autumn. Species from the following genera are included: the diatoms Leptocylindrus, Stellarima, Thalassiosira, Eucampia, Corethron, and Chaetoceros, the prymnesiophyte Phaeocystis, and the chrysophyte Distephanus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号