首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have compared the capacities of the E1A regions of nononcogenic adenovirus type 5 (Ad5) and highly oncogenic Ad12 to cooperate with the EJ bladder carcinoma Ha-ras-1 oncogene in the transformation of primary baby rat kidney cells. Both E1A regions, when cotransfected with the Ha-ras oncogene, transformed the primary cells with a low frequency. Ad5 E1A plus Ha-ras-transformed cells differed in phenotype from cells transformed by Ad12 E1A plus Ha-ras. The cells expressing Ad5 E1A appeared highly transformed and practically failed to adhere to plastic. This phenotype may be due to the virtually complete absence of fibronectin gene expression in these cells. In contrast, the cells expressing Ad12 E1A were flatter and adhered to plastic, whereas fibronectin gene expression was reduced but not absent. The oncogenic potential of the two types of E1A plus ras-transformed cells was tested by their injection into both athymic nude mice and weanling syngeneic rats. The Ad5 E1A plus ras-transformed cells were found to be highly oncogenic in both animal species, whereas the Ad12 E1A plus ras-transformed cells were only weakly oncogenic in both syngeneic rats and nude mice. The difference in oncogenic potential of the Ad5 E1A plus ras- and the Ad12 E1A plus ras-transformed cells is discussed in terms of the different capacities of the Ad5 and Ad12 E1A-encoded proteins to modulate cellular gene expression.  相似文献   

2.
An epithelial cell-transforming virus could be of great use, both in the culture of epithelial cell lines and in the study of carcinogenesis. Since the adenoviral E1A gene has been shown to partially transform some epithelial cells from primary rat cell cultures, we constructed retrovirus vectors containing either the 12S or 13S E1A cDNA sequences to facilitate the transfer of these genes into a variety of primary cell types. The 12S E1A virus induced proliferation and immortalization of epithelial cells in rat kidney, liver, heart, pancreas, and thyroid primary cultures. In the two cases tested, heart and liver cultures, E1A-immortalized cells were nontumorigenic, but could be completely transformed by subsequent introduction of the ras oncogene. To our surprise, the 13S virus had a greatly reduced immortalization potential. We discuss these data in light of the model of Spindler et al. (K. R. Spindler, C. Y. Eng, and A.-J. Berk, J. Virol. 53:742-750, 1985), in which the 12S E1A protein is required for the complete induction of the cellular DNA replication machinery in the quiescent human epithelial cells in which adenoviruses normally replicate.  相似文献   

3.
Epidemiologic studies have linked infection by the human T-lymphotropic virus type I (HTLV-I) with the development of adult T-cell leukemia. The low penetrance of the virus and the long latency for disease manifestation are factors that obscure the role of HTLV-I infection in oncogenesis. We have used an in vitro transformation assay system to determine directly whether the HTLV-I tax gene has transformation potential. Transfection of the tax gene alone into early-passage rat embryo fibroblasts did not induce morphological alterations. However, cotransfection of tax with the selectable marker plasmid pRSVneo gave rise to G418-resistant colonies that could be established as immortalized cell lines. Cotransfection of tax with the ras oncogene into rat embryo fibroblasts gave rise to foci of transformed cells that were highly tumorigenic in nude mice. These data represent a direct demonstration of the oncogenic potential of the tax gene in nonlymphoid cells and establish HTLV-I as a transforming virus.  相似文献   

4.
The formation of complexes between oncoproteins of DNA tumor viruses and the cellular protein p53 is thought to result in inactivation of the growth suppressor function of p53. In cells transformed by nononcogenic human adenovirus type 5 (Ad5), the 55-kDa protein encoded by E1B forms a stable complex with p53 and sequesters it in the cytoplasm. However, the homologous 54-kDa protein of highly oncogenic Ad12 does not detectably associate with p53. Yet in Ad12-transformed cells, p53 is metabolically stable, is present at high levels in the nucleus, and contributes to the oncogenicity of the cells. Such properties have previously been described for mutant forms of p53. Here, we show that stable p53 in Ad12-transformed cells is wild type rather than mutant and that stabilization of p53 is a direct consequence of the expression of the Ad12 E1B protein. We also compared the effects of the E1B proteins on transformation of rodent cells by different combinations of oncogenes. A synergistic interaction was observed for the gene encoding the 54-kDa E1B protein of Ad12 with myc plus ras oncogenes, resembling the effect of mutant p53 on myc plus ras. In contrast, the Ad5 55-kDa E1B protein strongly inhibited transformation by myc plus ras but stimulated transformation by E1A plus ras. The data are explained in terms of different interactions of the two E1B proteins with endogenous p53. The results suggest that in cultured rat cells, endogenous wild-type p53 plays an essential role in cell proliferation, even in the presence of myc plus ras. The dependence on p53 is lost, however, when the adenovirus E1A oncogene is present.  相似文献   

5.
F J Bober  D E Birk  T Shenk    K Raska  Jr 《Journal of virology》1988,62(2):580-585
A library of cells transformed with recombinant adenoviruses was used to study tumorigenicity and interaction with extracellular matrix. Cells expressing the complete E1 region of highly oncogenic adenovirus type 12 (Ad12) are tumorigenic, adhere preferentially to type IV collagen, and express cell surface laminin. Weakly tumorigenic cells, which express the E1A oncogene of Ad12 and the E1B genes of Ad5, also attach preferentially to type IV collagen but do not contain laminin on their surface. Cells which express the E1A oncogene of Ad5 and the E1B genes of Ad12 are nontumorigenic and do not preferentially attach to type IV versus type I collagen but have laminin on their surface. There is no significant difference in the amounts of laminin secreted into the culture medium among cells expressing the E1B genes of Ad5 or Ad12. In vitro assays show that cells which express the E1B genes of Ad12, irrespective of the origin of the E1A genes, can bind three times more exogenously added laminin than cells expressing the E1B genes of nononcogenic Ad5. The interaction of adenovirus-transformed cells with collagen is controlled by the serotype origin of the E1A oncogene, whereas cell surface laminin is controlled by the serotype origin of the E1B genes.  相似文献   

6.
Four transformed cell lines were established from cultures of human embryo kidney (HEK) cells microinjected or transfected with cloned adenovirus 12 (Ad12) EcoRI-C DNA (0 through 16.5 map units of the left-hand end of the viral genome). Each cell line showed a different growth pattern. Southern blotting demonstrated that all of the cell lines contained Ad12-specific DNA sequences, but in the microinjected isolates these were at a much lower copy number than in the transfected isolate. Two cell lines (Ad12 HEK 1 and 3) appeared to contain tandemly repeated Ad12 EcoRI-C DNA fragments. Immunoprecipitation and Western blotting confirmed that Ad12 early region 1 (E1) proteins were being expressed by all four of the transformed cell lines, but indicated that E1A polypeptide expression was considerably less than E1B polypeptide expression. All of the Ad12-transformed HEK cell lines were tumorigenic when inoculated intracranially into athymic nude mice.  相似文献   

7.
The cell growth-regulating properties of the adenovirus type 5 (Ad5) E1A oncogene correlate closely with the binding of the E1A products to specific cellular proteins. These proteins include the products of the retinoblastoma tumor susceptibility gene and a 300-kDa product, p300. pRB binds to E1A sequences that are highly conserved among the E1A products of various serotypes, while p300 binding requires sequences in the E1A amino terminus, a region that is not highly conserved. To help evaluate the roles of the E1A-associated proteins in cell growth control, we have compared the p300-binding abilities of the E1A products of Ad5 and of the more oncogenic Ad12 serotype. We show here that despite encoding a sequence that varies somewhat from the p300-binding sequences of Ad5 E1A, the Ad12 E1A products associate with p300 with an affinity similar to that of the Ad5 E1A products. Both the 12S and 13S splice products of Ad12 E1A, like those of Ad5 E1A, encode proteins able to associate with p300. Interestingly, though, both also give rise to prominent forms that are amino terminally modified and unable to associate with p300. This modification, at least in the 13S product, does not appear to diminish the affinity of this product for the retinoblastoma protein.  相似文献   

8.
The requirements for transformation of rat embryo fibroblasts (REFs) by transfected ras and myc oncogenes were explored. Under conditions of dense monolayer culture, neither oncogene was able to transform REFs on its own. However, the introduction of a ras oncogene together with a selectable neomycin resistance marker into REFs allowed killing of the normal nontransfected cells and the outgrowth of colonies of ras transformants, 10% of which survived crisis and became tumorigenic. These cells expressed greater than 10-fold-higher levels of ras p21 than tumorigenic cells cotransfected with ras and myc oncogenes. The myc oncogene similarly was unable to induce tumorigenic conversion of REFs unless especially refractile colonies of oncogene-bearing cells, produced by use of a cotransfected selectable marker, were picked and subcultured. Tumorigenic conversion of REFs by single transfected oncogenes appears to require special culture conditions and high levels of gene expression.  相似文献   

9.
10.
11.
Transfected ras oncogenes have been shown to induce metastatic properties in some cells. This altered behavior is likely due to changes in ras-mediated signal transduction pathways, resulting in altered expression of genes important to metastasis. Clarification of the mechanisms by which ras is able to induce metastatic ability in model systems will improve our understanding of tumor progression, even in those cells in which ras activation has not been implicated. Many of the consequences of ras expression also have been detected in cells that have become metastatic in the absence of altered ras, suggesting that there is a set of common changes that can lead to metastasis, with multiple signals capable of eliciting these changes. We have identified several changes in metastatic, ras-transformed NIH 3T3 cells that may contribute to their increased malignancy, including expression of proteolytic enzymes and their inhibitors, and adhesive and calcium-binding proteins. Not all cells, however, respond in this way to expression of oncogenic ras. We have found that murine LTA cells, which are tumorigenic but nonmetastatic, are ras resistant and remain nonmetastatic when expressing high levels of transfected ras, in contrast to NIH 3T3 cells, which are ras sensitive and become both tumorigenic and metastatic in response to comparable levels of ras. LTA cells differ in their patterns of gene expression in response to ras when compared with NIH 3T3 cells, suggesting that the two cell lines process the ras signal differently. Here we review our results with ras-transfected NIH 3T3 and LTA cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effects of hormonal promotion of T24-ras oncogene-transfected rat embryo fibroblasts (REF) were compared to cotransformation of these cells with adenovirus E1A and ras. Cotransfection of E1A + ras resulted in the appearance of morphologically transformed cells which were very efficiently established into cell lines. Addition of glucocorticoid hormones to T24-ras-transfected REF cells resulted in cells with a transformed morphology and a capacity to form foci. These foci were, however, inefficiently established into stable cell lines. Removal of hormone from growing cells resulted in retarded growth, suggesting that the hormone acted as a growth factor on these cells. Both E1A-transformed cells and hormone-treated ras-transformed cells showed a reduction in synthesis of high molecular weight tropomyosin isoforms and a decreased expression of surface fibronectin. Control experiments demonstrated that the effects of hormone were mediated through the glucocorticoid receptor. Our findings suggest that glucocorticoid hormones may promote the in vitro growth of ras-initiated REF cells into stably transformed cell lines, but that this ability is limited compared to that of adenovirus E1A.  相似文献   

13.
Rat embryo fibroblast clones transformed with the human papillomavirus type 16 E7 gene and the H-ras oncogene (ER clones) fall into two groups on the basis of endogenous p53 genotype, wild type or mutant. We have compared these clones with the aim of indentifying physiological differences that could be attributed to p53 protein function. We show that all ER clones, regardless of p53 gene status, are tumorigenic and metastatic in severe combined immunodeficiency mice. We demonstrate that only the wild-type p53 protein expressed in ER clones is functional on the basis of its site-specific double-stranded DNA-binding activity and its ability to confer a G1 delay on cells following treatment with ionizing radiation. These data indicate that disruption of the p53 growth-regulatory pathway is not a prerequisite for the malignant conversion of rat embryo fibroblasts expressing the E7 gene and mutant ras. Differences in phenotype that were correlated with loss of p53 protein function included the following: serum-independent growth of ER clones in culture, decreased tumor doubling time in vivo, and increased radioresistance. In addition, we demonstrate the p53-dependent G1 checkpoint alone does not determine radiosensitivity.  相似文献   

14.
Transformation of a specific clone of Fischer rat embryo (CREF) cells with wild-type 5 adenovirus (Ad5) or the E1a plus E1b transforming gene regions of Ad5 results in epithelioid transformants that grow efficiently in agar but that do not induce tumors when inoculated into nude mice or syngeneic Fischer rats. In contrast, CREF cells transformed by a host-range Ad5 mutant, H5hrl, which contains a single base-pair deletion of nucleotide 1055 in E1a resulting in a 28-kd protein (calculated) in place of the wild-type 51-kd acidic protein, display a cold-sensitive transformation phenotype and an incomplete fibroblastic morphology but surprisingly do induce tumors in nude mice and syngeneic rats. Tumors develop in both types of animals following injection of CREF cells transformed by other cold-sensitive Ad5 E1a mutants (H5dl101 and H5in106), which contain alterations in their 13S mRNA and consequently truncated 289AA proteins. CREF cells transformed with only the E1a gene (0-4.5 m.u.) from H5hrl or H5dl101 also produce tumors in these animals. To directly determine the role of the 13S E1a encoded 289AA protein and the 12S E1a encoded 243AA protein in initiating an oncogenic phenotype in adenovirus-transformed CREF cells, we generated transformed cell lines following infection with the Ad2 mutant pm975, which synthesizes the 289AA E1a protein but not the 243AA protein, and the Ad5 mutant H5dl520 and the Ad2 mutant H2dl1500, which do not produce the 289AA E1a protein but synthesize the normal 243AA E1a protein. All three types of mutant adenovirus-transformed CREF cells induced tumors in nude mice and syngeneic rats. Tumor formation by these mutant adenovirus-transformed CREF cells was not associated with changes in the arrangement of integrated adenovirus DNA or in the expression of adenovirus early genes. These results indicate, therefore, that oncogenic transformation of CREF cells can occur in the presence of a wild-type 13S E1a protein or a wild-type 12S E1a protein when either protein is present alone, but does not occur when both wild-type E1a proteins are present.  相似文献   

15.
In the adenovirus type 2 (Ad2)-transformed hamster cell line HE3, the integrated late E2A promoter of Ad2 DNA is inactive, is methylated at all three 5'-CCGG-3' sequences, and can be reactivated by growing the cells in the presence of 50 microM 5-azacytidine (5-azaC). The three 5'-CCGG-3' sequences then become demethylated. Demethylation and reactivation are stable over 30 passages even after the removal of 5-azaC. The dormant late E2A promoter in cell line HE3 can also be reactivated by transfecting the cells with recombinant plasmids that carry the left terminal E1A and part of the E1B region of Ad2 DNA or the E1A 13S cDNA, but not with plasmids containing the E1A 12S cDNA. The E1A 13S cDNA encodes the 289-amino-acid trans-activating protein of Ad2. The E1A-mediated reactivation of the late E2A promoter is not accompanied by its demethylation in both DNA complements. Cell line HE3 produces constitutively E1A-encoded mRNAs and reactivates the methylated late E2A promoter-chloramphenicol acetyltransferase gene construct after transfection into HE3 cells. Constitutive levels of the endogenous E1A gene products in HE3 cells are detectable but, paradoxically, appear insufficient to reactivate the endogenous, chromosomally integrated E2A gene.  相似文献   

16.
The E4 region of human adenovirus type 9 (Ad9) transforms established rat embryo fibroblasts and encodes an essential determinant for the production of estrogen-dependent mammary tumors in rats. Testing of the seven Ad9 E4 open reading frames (ORFs) individually for transformation of the established rat embryo fibroblast cell line CREF indicated that only Ad9 E4 ORF1 possessed a significant ability to generate transformed foci on these cells. In contrast, the E4 ORF1 sequences from human Ad5 and Ad12 lacked the transforming potential exhibited by Ad9 E4 ORF1. Cell lines derived from Ad9 E4 ORF1-transformed foci expressed the 14-kDa Ad9 E4 ORF1 protein and formed colonies in soft agar. In addition, the Ad9 E4 ORF1 protein was required for initiation of mammary oncogenesis in vivo, as E4 ORF1 mutant viruses failed while E4 ORF2 and ORF3 mutant viruses succeeded in eliciting mammary tumors in animals. A role for Ad9 E4 ORF1 in tumor maintenance was suggested by the fact that 100% of virus-induced mammary tumors expressed the E4 ORF1 protein. Taken together, the facts that the Ad9 E4 ORF1 protein exhibits transforming potential in culture and is required by Ad9 to produce mammary tumors in animals suggest that Ad9 E4 ORF1 is a new viral oncoprotein.  相似文献   

17.
Expression of adenovirus type 5 E1A 12S is sufficient to immortalize primary baby rat kidney cells, but another viral or cellular oncogene, such as E1B or T24ras, is necessary for complete transformation. The regions of 12S sufficient for T24ras cotransformation have been well characterized and are located in the first exon. The second exon is dispensable for ras cotransformation, although it contains a region which appears to modulate the transforming phenotype. The same 12S first exon regions important in ras transformation are also necessary for E1B transformation. Analysis of an extensive series of second exon deletion and amino acid point mutations demonstrated that mutations affecting either the efficient nuclear localization and/or the immortalizing ability of the 12S protein also prevented cooperation with E1B. In general, the entire C-terminal half of 12S, including the nuclear localization signal, was necessary for efficient cotransformation with E1B. In addition to the differences between T24ras and E1B regarding 12S regions necessary for cotransformation, the characteristics of E1B-cotransformed foci differed from those of T24ras. The E1B foci took longer to appear and had a much slower growth rate. No hypertransformed foci were produced with E1B cotransfections, and established E1A-E1B lines exhibited minimal growth in soft agar compared with that of E1A-T24ras lines.  相似文献   

18.
A parallel-plate flow chamber was used to quantify the detachment of normal, transformed, and reverted rat fibroblasts from a confluent monolayer of normal fibroblasts. In this method, known shear stresses were applied to the adherent cells and the percent of cells detached from the monolayer was determined. Results indicate that the detachment of all cell types increased with increasing shear stress and detachment of highly metastatic ras-transformed cells was significantly higher than that of either nonmetastatic normal cells or transformed cells reverted with the Kirsten ras revertant (K-rev 1a) gene, which are lowly metastatic. From these results, it is concluded that a correlation exists between the metastatic phenotype of the cell and its ability to detach from normal cells.  相似文献   

19.
Overexpression of an activated ras gene in the rat embryo fibroblast line REF52 results in growth arrest at either the G1/S or G2/M boundary of the cell cycle. Both the DNA tumor virus proteins simian virus 40 large T antigen and adenovirus 5 E1a are able to rescue ras induced lethality and cooperate with ras to fully transform REF52 cells. In this report, we present evidence that the wild-type activity of the tumor suppressor gene p53 is involved in the negative growth regulation of this model system. p53 genes encoding either a p53Val-135 or p53Pro-193 mutation express a highly stable p53 protein with a conformation-dependent loss of wild-type activity and the ability to eliminate any endogenous wild-type p53 activity in a dominant negative manner. In cotransfection assays, these mutant p53 genes are able to rescue REF52 cells from ras-induced growth arrest, resulting in established cell lines which express elevated levels of the ras oncoprotein and show morphological transformation. Full transformation, as assayed by tumor formation in nude mice, is found only in the p53Pro-193-plus-ras transfectants. These cells express higher levels of the ras protein than do the p53Val-135-plus-ras-transfected cells. Transfection of REF52 cells with ras alone or a full-length genomic wild-type p53 plus ras results in growth arrest and lethality. Therefore, the selective event for p53 inactivation or loss during tumor progression may be to overcome a cell cycle restriction induced by oncogene overexpression (ras). These results suggest that a normal function of p53 may be to mediate negative growth regulation in response to ras or other proliferative inducing signals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号