首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The ultrastructural changes in the cotyledon, radicle and suspensor haustorium ofPelargonium, containing either normal or mutant plastids, are investigated from the heart stage of embryogenesis to the mature seed. The fine structure of parenchymatous cells from the cotyledon and radicle is essentially similar whereas that of the suspensor haustorium is very different.The cotyledon and radicle develop into one massive storage tissue possessing numerous lipid and several protein bodies per cell, and well developed starch grains. The suspensor haustorium has no storage function, rather it acts as a transitory tissue which dies off as the seed matures. The extensive chloroplast development suggests that, in addition to its traditional role, the suspensor haustorium also acts as a photosynthetic booster for the developing embryo.The development of surviving mutant embryos is similar to normal ones except that in cotyledon and radicle cells plastids develop only to vesicles, which associate into loose prolamellar bodies and sometimes small fenestrated thylakoids, and in the suspensor haustorium cells, only to small compact grana.  相似文献   

2.
Summary During early embryogeny, the development of the suspensor is rapid both in terms of size and fresh weight; structural differentiation can be observed as early as the proembryo stage with the formation of wall ingrowths. Ingrowths first appear in the outer wall of the suspensor cells adjacent to the integumentary tapetum, soon ingrowths begin to form in the inner suspensor cells as well. A basal-terminal gradation in nuclear size exists, with the largest nuclei in the basal suspensor cells. Cytologically, the suspensor cells appear to be very active, especially when the embryo reaches heart stage. Initially, the development of the embryo proper lags behind the suspensor, but its size and fresh weight increase rapidly as development proceeds. The volume of the liquid endosperm rises most rapidly during the late heart stage; and it is absorbed soon after. A cellular endospermic sheath surrounds the embryo, separating it from the liquid endosperm. Structural differentiation also occurs in the cellular endosperm cells with the formation of wall ingrowths in those cells that abut directly onto the integumentary tapetum. Both the suspensor and the cellular endosperm appear to remain active through the maturation of the seed. Storage bodies are formed in the cotyledons as well as in the embryonic axis. In the suspensor and the cellular endosperm, starch grains and lipid bodies can be found at the maturation stage.  相似文献   

3.
Summary The fine structural changes in cotyledon cells of germinatingPelargonium seeds are studied on the first to fifth day of seedling emergence. Initially there is a rapid change in the cell fine structure, marked most conspicuously by the progressive liberation of the lipid and protein food reserves and the formation of an extensive thylakoid system within the plastids, but gradually the cells start to senesce. The subcellular changes in mutant cells are similar except that the plastids lack the usual thylakoid system and develop only deranged prolamellar bodies. They may store starch and they possess plastoglobuli, but seem not to contain plastid ribosomes. In rare mixed cells normal and mutant plastids remain quite distinct.  相似文献   

4.
Capsella embryogenesis: The suspensor and the basal cell   总被引:1,自引:1,他引:0  
Summary The suspensor and basal cell ofCapsella were examined with the electron microscope and analyzed by histochemical procedures. The suspensor cells are more vacuolate and contain more ER and dictyosomes, but fewer ribosomes and stain less intensely for protein and nucleic acids than the cells of the embryo. The end walls of the suspensor cells contain numerous plasmodesmata but there are no plasmodesmata in the walls separating the suspensor from the embryo sac. The lower suspensor cells fuse with the embryo sac wall and the lateral walls of the lower and middle suspensor cells produce finger-like projections into the endosperm. At the heart stage the suspensor cells begin to degenerate and gradually lose their ability to stain for protein and nucleic acids.The basal cell is highly vacuolate and enlarges to a size of 150 X 70. An extensive network of wall projections develops on the micropylar end wall and adjacent lateral wall. The nucleus becomes deeply lobed and suspended in a strand of cytoplasm traversing the large vacuole. The cytoplasmic matrix darkens at the late globular stage and histochemical staining for protein becomes very intense. The basal cell remains active after the suspensor cytoplasm has degenerated. It is proposed that the suspensor and basal cell function as an embryonic root in the absorption and translocation of nutriments from the integuments to the developing embryo.Research supported by NSF grant GB 3460 and NIH grant 5-RO 1-CA-03656-09.  相似文献   

5.
Nicos G. Marinos 《Protoplasma》1970,70(3-4):261-279
Summary The structural relationships of the pea embryo to its immediate organic environment have been studied under the light and electron microscopes during a phase of development just preceding the period of rapid embryo growth. The following observations are reported: a) Following fertilization the suspensor elongates and displaces the embryo from the micropylar to the opposite end of the embryo sac that has, by this time, developed a large chamber that is eventually occupied by the cotyledons and a narrow tubular arm that contains the elongated suspensor and later the radicle of the enlarging embryo. b) The embryo and the suspensor are ensheathed by an extra-embryonic wall that subsequently becomes attached to the boundary wall of the embryo sac by means of crosslinking walls. These structures are essential in the precise positioning of the embryo within the embryo sac. c) The thin layer of endospermic cytoplasm that lines all extra-embryonic walls and the boundary of the embryo sac is highly motile and has certain characteristic ultrastructural features,e.g., large and intricate mitochondria, a dense population of ribosomes, a specialized form of smooth ER and an organelle that may be a type of plastid. d) The ovular tissue and the boundary wall of the embryo sac, particularly in the vicinity of the embryo, are structurally specialized. Relatively large intercellular spaces in the former are associated with a greatly increased surface of the boundary wall by means of extensive protrusions into the endospermic cytoplasm, many large and complex mitochondria are associated with these protrusions. It is suggested that this organization may indicate sites of nutrient entry into the embryo sac. Some ideas regarding the possible role of the described structures are discussed but it is emphasized that no experimental evidence is available at this stage to provide an unequivocal basis of interpretation.Supported by a grant from the Australian Research Grants Committee.  相似文献   

6.
I. Hakman  P. Rennie  L. Fowke 《Protoplasma》1987,140(2-3):100-109
Summary Somatic embryos in embryogenic callus cultures derived from Immature zygotic embryos ofPicea glauca (White spruce) were examined by light and electron microscopy. Somatic embryos consist of an embryonic region of small densely cytoplasmic cells subtended by a suspensor consisting of long highly vacuolated cells. Mitotic figures are frequent in the embryonic cells but are not observed in the suspensor. Cell divisions in the embryonic region apparently produce rows of cells which elongate to form the suspensor. The presence of abundant polysomes, coated membranes and dictyosomes in the cytoplasm of embryonic and upper suspensor cells suggests rapid growth of the embryo. In contrast the basipetal suspensor cells appear to be senescing. While only a few scattered microfilaments are present in the meristematic cells, the upper suspensor cells contain numerous bundles of longitudinally oriented microfilaments. These bundles correspond to actin cables observed in light microscope preparations stained with rhodamine labelled phalloidin and are oriented parallel to the direction of active streaming in these cells.  相似文献   

7.
Summary Embryos of Phaseolus coccineus in different stages of development (from 0.5 to 5 mm in length) were grown in vitro. Both intact embryos (with suspensor) and embryos deprived of suspensor were studied. It was found that removal of the suspensor has no effect on the development of embryos which have reached a length of 5 mm. With younger embryos, removal of the suspensor reduces embryo development, the negative effect being the greater the younger the embryo. It was shown that gibberellic acid (GA3) concentrations of 10-8 to 10-6M can replace the suspensor in heart-shaped and early cotyledonary embryos (0.5 to 1.5 mm in length), whereas they reduce the development of suspensor-deprived embryos of later stages (embryos 2 to 3 mm in length) as compared with intact embryos of similar size grown on hormone-free medium. GA3 concentrations of 10-5 and 10-4M are generally inhibitory and may stimulate callus formation in some embryos. The present data and those of Alpi et al. (1975) concur in ascribing a major role to gibberellins in characterizing the physiological function of the suspensor in early embryogenesis in Phaseolus coccineus.Abbreviation GA gibberellic aid  相似文献   

8.
P. -J. Gärtner  W. Nagl 《Planta》1980,149(4):341-349
Autolysis of the suspensor, an embryonal haustorium, starts in the basal cells and proceeds in the direction of the embryo. InPhaseolus vulgaris, acid phosphatase activity is first found in transforming plastids, similar to the acid phosphatase activity inPh. coccineus [Nagl (1977) Z. Pflanzenphysiol.85, 45–51], although the ultrastructural details are different. InTropaeolum majus, autolysis begins in the most distal part of the suspensor, i.e., the chalazal or carpel haustorium. First the endoplasmic reticulum shows acid phosphatase activity, but neither the mitochondria, which undergo transformation similar to that observed in plastids ofPhaseolus, nor the leucoplasts show such activity. Later, however, the plastids exhibit low activity. Contrarily, the plastids in the suspensor cells adjacent to the embryo show increasing activity during senescence of the suspensor. During final autolysis, activity is found in all cytoplasmic membranes, while it is reduced in plastids. The visible ultrastructural transformations of various organelles into cytolysomes does not necessarily coincide with acid phosphatase activity. Our findings are a further indication of the high diversification and specialization of plastids during plant embryogenesis.  相似文献   

9.
Zusammenfassung In vergleichenden feinstrukturellen Beobachtungen an 24 Monocotyledonen aus 21 Familien wird ein für Monocotylen-Siebröhren charakteristischer Plastidentyp näher beschrieben. Neben gelegentlichen Ablagerungen von Siebröhrenstärke enthalten ausdifferenzierte Siebröhren-Plastiden zahlreiche keilförmige, kontrastreiche und proteinhaltige Kristalloide. Sie entstehen in der Matrix der noch amöboiden Formveränderungen unterworfenen Proplastiden; in reifem Zustand werden sie aus gekreuzten Reihen paralleler, gerader und kontrastreicher Filamente (50–60 Å) aufgebaut.Die Siebröhren-Plastiden von Nymphaea alba und Nuphar luteum bilden keine Kristalloide aus, dagegen läßt sich Siebröhrenstärke wie in den übrigen bisher untersuchten Dicotylen nachweisen.
Sieve-tube plastids of monocotyledonsComparative investigations of the fine structure and distribution of specific plastids
Summary Fine-structural investigations of 24 monocotyledons from 21 families and all but one order succeeded in revealing a plastid with cuneate proteinaceous inclusion bodies as being typical of monocot sieve-tubes. Inclusion bodies originate in large numbers during plastid differentiation; they concentrate in the matrix and aggregate around an invisible centre, that mostly lies at one end of the elongated ameboid proplastid. The inclusion-free part of the young plastid contains countless vesicles and short membranes, presumably invaginations of the inner plastid envelope. Proteinaceous inclusion bodies show a crystal-like structure composed of 50–60 Å subunits in straight and parallel order. Besides these crystal-like inclusion bodies sieve-tube plastids of many monocotyledons also contain starch. — Sieve-tube plastids of Nuphar luteum and Nymphaea alba look like plastids in dicotyledon sieve-tubes, starch being their only inclusion.
  相似文献   

10.
A C-to-U RNA editing event creates a functional initiation codon for translation of the psbL mRNA in tobacco plastids. Small trans-acting guide RNAs (gRNAs) have been shown to be involved in editing site selection in kinetoplastid mitochondria. A computer search of the tobacco plastid genome (ptDNA) identified such a putative gRNA, a 14-nucleotide sequence motif that is complementary to the psbL mRNA, including the A nucleotide required to direct the C-to-U change. The critical A nucleotide of the putative gRNA gene was changed to G by plastid transformation. We report here that the introduced mutation did not abolish psbL editing. Since no other region of the plastid genome contains significant complementarity to the psbL editing site we suggest that, if gRNAs serve as trans-acting factors for plastid psbL mRNA editing, they either have only a limited complementarity to the editing site, or are encoded in the nuclear genome.  相似文献   

11.
Abstract

The development and general morphology of Diplotaxis erucoides (L.) DC. suspensor is of the « Onagrad Type », « Alyssum Variation ». Maximum growth of the suspensor occurs from the globular to the early heart stage of embryo development. The suspensor starts then to degenerate disintegrating shortly after the torpedo stage of the embryo.

The wall ingrowths of the long, tapering, basal cell are especially abundant at the cell's micropilar pole which is closely surrounded by well developed wall ingrowths formed by the endosperm. Wall ingrowths and plasmodesmata are present on the suspensor cells cross walls with the exception of the cell closest to the embryo. No such structures in fact are present on the walls separating this last cell both from the embryo and from the rest of the suspensor. Wall ingrowths are generally associated with numerous, large, mitochondria.

The morphological data seem to indicate that absorption and transport of nutrients from the surrounding tissues is a main function of the suspensor. The possibility of an elaborative and secretory function of this structure is discussed.  相似文献   

12.
Ultrastructure of the cortical cells of living bark, leaf buds, and flower buds of apple trees (Malus pumila Mill. var. domestica Schneid, cv. McIntosh) was studied. The ultrastructural changes in preexisting plastids, leading to formation of the plastid initials and subsequent intermediates in the formation of plastids, started in mid-January or early February and continued to occur through late March. The plastid initials of apple trees resemble that of poplar, and prolamellar bodies were abundant in the developing intermediates in the cells of leaf buds and flower buds. Association of the endoplasmic reticulum and vesicles with developing plastid initials suggests that the former two organelles may possibly participate in the development of the plastid initial. Thus, formation of plastids from plastid initials takes place seasonally at this stage.  相似文献   

13.
Sarah Kohn  S. Klein 《Planta》1976,132(2):169-175
Summary Etioplasts were isolated from leaves of 9-day-old etiolated maize (Zea mays L.) seedlings and incubated in a relatively simple medium in light and in the dark. During the first 5 h no changes occurred in the fine structure of the isolated etioplasts in the dark. In light the size of the prolamellar bodies decreased and significantly more plastid sections without prolamellar bodies were counted. The total length of the thylakoids per plastid section increased, but there was no evidence for bi- and polythylakoid formation. It is concluded that light induces the structural transformation of the prolamellar body membranes into primary thylakoids also in isolated etioplasts.  相似文献   

14.
Parasitism has evolved innumerable times among eukaryotes. Red algal parasites alone have independently evolved over 100 times. The accepted evolutionary paradigm proposes that red algal parasites arise by first infecting a close relative and over time diversifying and infecting more distantly related species. This provides a natural evolutionary gradient of relationships between hosts and parasites that share a photosynthetic common ancestor. Upon infection, the parasite deposits its organelles into the host cell and takes over, spreading through cell‐cell connections. Microscopy and molecular studies have demonstrated that the parasites do not maintain their own plastid, but rather abscond with a dedifferentiated host plastid as they pack up spores for dispersal. We sequenced a ~90 kb plastid genome from the parasite Choreocolax polysiphoniae, which has lost genes for light harvesting and photosynthesis. Furthermore, the presence of a native C. polysiphoniae plastid indicates that not all red algal parasites follow the same evolutionary pathway to parasitism. Along with the 167 kb plastid genome of its host, Vertebrata lanosa, these plastids are the first to be sequenced from the Ceramiales.  相似文献   

15.
Oil bodies of liverworts are intracellular organelles bounded by a single unit membrane containing lipophilic globules suspended in a proteinaceous matrix. They are a prominent and highly distinctive organelle uniquely found in liverworts. Although they have been widely used in taxonomy and chemosystematics, and many of their secondary metabolites are known to be bioactive and are considered as potential sources of medicines, their origin, development and function still remain poorly understood. Recently, biochemical studies have indicated that the isoprenoid biosynthetic pathways in liverworts are similar to those of the seed plants and that oil bodies of Marchantia polymorpha contain a protein complex immunologically related to plastid and cytosolic enzymes of isoprenoid synthesis. Cytoplasmic lipid droplets lacking a bounding membrane have recently been recognized as important dynamic organelles playing active roles in cell physiology. Structural proteins, covering the surface of the lipid droplets and preventing them coalescing during desiccation, have been found in seed plants and also in the moss Physcomitrella patens. However, whether liverwort oil bodies play a dynamic role in cell metabolism, in addition to their role as sites of essential oil accumulation and sequestration, has not been formally tested. In this review, we present current knowledge on the oil bodies of liverworts on their origin and development, their role in taxonomy, chemosystematics and potential pharmaceutical applications leading to their functional significance, and we also identify avenues for future studies on this important but long-overlooked organelle.  相似文献   

16.
Dr. Kurt Maier  Uta Maier 《Protoplasma》1968,65(1-2):239-242
Summary In the cells of the foot of young sporophytes ofPolytrichum commune, plastids form buds which may separate entirely from the mother plastid. In ultra-thin sections these bodies may be easily mistaken for mitochondria. However, with the silver staining method ofMarinozzi, the matrix of these bodies has the same density as the matrix of the plastids and is markedly less dense than the matrix of the mitochondria. Similarly, after silver staining the envelope of these bodies resembles the plastid envelope and is distinctly different from the mitochondrial envelope. Thus, there is no evidence that mitochondria originate from plastids, as some authors believe.  相似文献   

17.
Developmental arrest of the embryo proper in aborted seeds from mutant 50B, a recessive embryo-lethal mutant of Arabidopsis thaliana, was shown to be followed by abnormal growth of the suspensor. Each of the 12 aborted seeds examined in sectioned material contained an abnormally large suspensor and an embryo proper arrested at a preglobular stage of development. Analysis of serial sections revealed that mutant suspensors contained 15–150 cells whereas wild-type suspensors were composed of only six to eight cells. Development of the mutant endosperm continued to a late nuclear or early cellular stage even in the absence of further development of the embryo proper. These results suggest that the missing gene product in mutant 50B is required for development of the embryo proper but not for continued growth of the suspensor or endosperm tissue. The pattern of abnormal development observed in this mutant provides further evidence that continued growth of the suspensor during normal development is inhibited by the developing embryo proper and that the full developmental potential of cells in the suspensor is expressed only when this inhibitory effect is removed through a mutation or experimental treatment that is lethal only to cells of the embryo proper.  相似文献   

18.
From ontogeny of tapetum in Anemarrhena asphodeloides, the ultrastructnral features of tapetal cells are as follows: 1. The profuse rough endoplasmic reticula are often closely associated with lipid bodies and vesicles, and linking each other into compound organelles. This is one of the striking features in Anemarrhena tapetal cell. 2. After meiosis of the micro- spore mother cell, the tapetal cytoplasm contains a large number of vesicles, in which the electron opaque substances are accumulated. Then they fuse to form a large zone of storage material similar to lipid bodies. Before accumulation of opaque material, these vesicles in the tapetal cytoplasm are larger than those in elaioplast (see Plate II, Fig. 2). 3. During stage of pollen maturation the tapetal cytoplasm becomes disorganized and the cells are almost occupied by the elaioplasts at various degree of development. On the basis of the report of Dickinson (1973), the formation of a pollen coatings of Lilium is different from that of Raphanus. The osmiophilic bodies in the former have originated from membrane lamellae or membranous system of plastid, and those in the latter are formed from the plastid vescles. It is intereting to note that the mode of origin of the plastid osmiophilic bodies in Anemarrhena is rather similar to that of Raphanus than to Lilium. About the origin of the pro-Ubisch bodies in tapetal cytoplasm of Anemarrhena studies revealed that a large number of the medium electron dense bodies appear in the tapetal cytoplasm. This is the first sign of the formation of the pro-Ubisch bodies and its character is very similar to spherosome in many respects. From many ultrasections, it can be seen that the ER profile is closely associated with the pro-Ubisch bodies. Thus we can conclude that the proubisch bodies of Anemarrhena are derived from rough endoplasmic reticulum. Although Heslop-Harrison et al. (1969) has considered that the compound Ubisch bodies do not occur in Lilium, there are prominent aggregation of Ubisch bodies in Anemarrhena, same as reported in Oxalis (Cariel, 1967), Silene (Heslop-Harrison, 1963a) and Helleborus (Echlin et al., 1968). After investigation on certain angiosperm in 1972, Gupta and Nanda have reported that the peritapetal membrane belonging to tapetum of secretory type lies against the inner tang- ential wall; in the plasmodial type of tapetum, it is formed on the outer tangential wall. But in some species of Poaceae and Solanaceae, the peritapetal membrane is formed on both sides of the tapetal cells (Banerjee, 1967; Reznickov & Willemse, 1980). In the secretory tapetum of Anemarrhena, the peritapetal membrane, which do not comply with the conclusion of Gupta & Nanta (1972), is formed on outer tangential wall.  相似文献   

19.
Maple J  Winge P  Tveitaskog AE  Gargano D  Bones AM  Møller SG 《Planta》2011,234(5):1055-1063
Plastids are vital organelles involved in important metabolic functions that directly affect plant growth and development. Plastids divide by binary fission involving the coordination of numerous protein components. A tight control of the plastid division process ensures that: there is a full plastid complement during and after cell division, specialized cell types have optimal plastid numbers; the division rate is modulated in response to stress, metabolic fluxes and developmental status. However, how this control is exerted by the host nucleus is unclear. Here, we report a genome-wide microarray analysis of three accumulation and replication of chloroplasts (arc) mutants that show a spectrum of altered plastid division characteristics. To ensure a comprehensive data set, we selected arc3, arc5 and arc11 because they harbour mutations in protein components of both the stromal and cytosolic division machinery, are of different evolutionary origin and display different phenotypic severities in terms of chloroplast number, size and volume. We show that a surprisingly low number of genes are affected by altered plastid division status, but that the affected genes encode proteins important for a variety of fundamental plant processes.  相似文献   

20.
Cyanelles of glaucocystophytes may be the most primitive of the known plastids based on their peptidoglycan content and the sequence phylogeny of cyanelle DNA. In this study, EM observations have been made to characterize the cyanelle division of Cyanophora paradoxa Korshikov and to gain insights into the evolution of plastid division. Constriction of cyanelles involves ingrowth of the septum at the cleavage site with the inner envelope membrane invaginating at the leading edge and the outer envelope membrane invaginating behind the septum. This means the inner and outer envelope membranes do not constrict simultaneously as they do in plastid division in other plants. The septum and the cyanelle envelope became stained after a silver‐methenamine staining was applied for in situ detection of polysaccharides. Septum formation was inhibited by β‐lactams and vancomycin, which are potent inhibitors of bacterial peptidoglycan biosynthesis. These results suggest the presence of peptidoglycan at the septum and the cyanelle envelope. In dividing cyanelles, a single electron‐dense ring (cyanelle ring) was observed on the stromal face of the inner envelope membrane at the isthmus, but no ring‐like structures were detected on the outer envelope membrane. Thus a single, stromal cyanelle ring such as this is quite unique and also distinct from FtsZ rings, which are not detectable by TEM. These features suggest that the cyanelle division of glaucocystophytes represents an intermediate stage between cyanobacterial and plastid division. If monophyly of all plastids is true, the cyanelle ring and the homologous inner plastid dividing ring might have evolved earlier than the outer plastid dividing ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号