首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We have developed a rapid and sensitive method by which to quantitate proteolysis of fibrin(ogen) at interfaces. Microscopic polystyrene-divinylbenzene beads coated with a mixed monomolecular film of lecithin and fibrinogen aggregate in aqueous media following exposure to thrombin or enzymes of thrombin-like activity. This aggregation is a consequence of interbead association of fibrin. As an indirect measure of the rate of fibrin formation, the rate of aggregation of beads can be used advantageously to assay enzymes and enzyme regulators pertinent to coagulation. Since the apparent absorbance of monodisperse beads is greater than that of bead aggregates, determination of the rate of change of apparent absorbance of a stirred dispersion of beads following addition of enzyme or enzyme-regulator mixture is a convenient and simple means by which to quantitate the rate of bead aggregation. Using a simple spectrophotometer or aggregometer, the method can be used to quantitate as little as 0.0005 NIH unit of thrombin. Aggregates of fibrin-coated beads can be disaggregated by several proteinases, most notably plasmin. Thus, just as bead aggregation can be used to quantitate effectors of fibrin formation, dissociation of aggregates of fibrin-coated beads can be used to quantitate effectors of fibrinolysis. Using disaggregation as a measure of fibrinolysis, the method is sensitive to as little as 0.005 unit of plasmin. Fibrin(ogen)-coated beads should prove a useful tool for studying proteolysis of fibrin(ogen) in general, and adsorbed fibrin(ogen) in particular.  相似文献   

2.
Microscopic poly(styrene-divinylbenzene) beads coated with a monomolecular film of fibrinogen agglutinate when stirred in the presence of thrombin, a consequence of interbead fibrin formation. Trypsin, by digesting bead-bound fibrin, dissociates bead aggregates at a rate proportional to the amount of enzyme activity. The agglutination of beads and the dissociation of bead aggregates can be monitored turbidimetrically using a platelet aggregometer or other photometric device equipped with a stirred cell. We have exploited the behavior of aggregates of fibrin-coated beads to develop a rapid, sensitive, and accurate method for measuring the activity of trypsin and its inhibition, in aqueous media, including serum. The new method yields serum antitrypsin activity levels that correlate well with immunological levels of alpha1-antitrypsin and, thus, may prove useful for assessing antitrypsin activity in clinical specimens.  相似文献   

3.
Y L Chiu  Y L Chou  C Y Jen 《Blood cells》1988,13(3):437-450
Platelet deposition on fibrin-coated surfaces and release from these adherent platelets were studied in an in vitro flow system. When a mixed suspension of washed platelets and red cells flowed through a fibrin-coated glass tube, only platelets were deposited onto the fibrin-coated surfaces. The density of adhered platelets increased with flow time and decreased with distance from the tube inlet. The adhesion rate increased with increasing shear rates from 45 s-1 to 180 s-1. This adhesion process appears to fit a diffusion-limited mathematical model. Comparing with glass and other protein-coated surfaces such as collagen, fibrinogen, or albumin coated surfaces, the number of adhered platelet per unit area decreased in the following descending order: collagen, fibrin, fibrinogen, glass, albumin. On the other hand, the degree of release reaction from these platelets decreased by another order: collagen, glass, fibrinogen, fibrin. We observed little release from platelets that were in contact with a fibrin-coated surface. Our results suggest that platelets specifically adhere to fibrin-coated surface and that this interaction does not induce platelet release.  相似文献   

4.
The binding of human alpha-thrombin (IIa) to fibrin polymer (FnIIp) was studied in the presence and absence of a high affinity 20,300 Mr heparin (H) at pH 7.4, I 0.15, and 23 degrees C. In the absence of heparin, thrombin interacts with a high affinity class of binding sites on fibrin polymer with a dissociation constant of 301 +/- 36 nM in a manner which is independent of the enzyme active site. Studies of thrombin binding as a function of heparin and fibrin polymer concentrations imply that a ternary thrombin-fibrin polymer-heparin complex (IIa.FnIIp.H) is formed. Assembly of the ternary complex occurs randomly through the interactions of all three possible intermediate binary complexes; IIa.H, IIa.FnIIp, and FnIIp.H. Using an independently determined value of 280 +/- 35 nM for the FnIIp.H dissociation constant, global fits of the binding data yield a dissociation constant of 15 +/- 6 nM for the IIa.H interaction and 47 +/- 9 nM for the IIa.H intermediate binary complex interaction with FnIIp. These studies indicate that heparin enhances the binding of thrombin to fibrin polymer 6.4-fold with an overall dissociation constant for ternary complex formation of 705 nM2. The effect of heparin molecular weight on ternary complex formation has also been investigated. Heparins of molecular weights 11,200-20,300 behave similarly with respect to their influence on ternary complex formation, whereas heparins of lower molecular weight are less effective in promoting thrombin binding to fibrin polymer. This effect of heparin is also independent of whether it has high or low affinity for antithrombin III. The demonstration of the formation of a ternary IIa.FnIIp.H complex complements kinetic evidence indicating the formation of an analogous ternary complex with fibrin II monomer (Hogg, P. J., and Jackson, C. M. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 3619-3623). The possible implications of these findings for the in vivo distribution and actions of thrombin and the clinical efficacy of heparin are also discussed.  相似文献   

5.
The consequences of the combined effects of fibrin II monomer (FnIIm) and heparin (H) on the hydrolysis of peptidyl p-nitroanilide substrates by thrombin (IIa), the cleavage of prothrombin by thrombin and the thrombin-catalyzed release of fibrinopeptides from fibrinogen have been studied at pH 7.4 and I 0.15. The effects of fibrin II monomer and heparin on chromogenic substrate hydrolysis can be described by a hyperbolic mixed inhibition model in which substrate can interact with four possible enzyme species (IIa, IIa.H, IIa.FnIIm, and IIa.FnIIm.H) that arise as a result of random formation of a ternary complex among thrombin, fibrin II monomer, and heparin (Hogg, P. J. and Jackson, C. M. (1990) J. Biol. Chem. 265, 241-247). The formation of the ternary IIa.FnIIm.H complex results in an increase in the Km values of 7.03 +/- 1.17-fold (1.37-9.65 microM) and 1.94 +/- 0.60-fold (38.1-73.9 microM) for H-D-Ile-Pro-Arg-pNA and Cbz-Gly-Pro-Arg-pNA hydrolysis, respectively, and a decrease in the kc values of 0.45 +/- 0.08-fold (49.5-22.3 s-1) and 0.52 +/- 0.05-fold (93.1-48.4 s-1). Fibrin II monomer and heparin in combination also decrease the efficiency (kc/Km) with which thrombin cleaves prothrombin to produce Fragment 1 and Prethrombin 1 by 2.3-fold from 607 +/- 30 to 264 +/- 13 M-1 s-1. In contrast to the effects of fibrin II monomer and heparin on thrombin hydrolysis of chromogenic substrates, its proteolysis of prothrombin and its inactivation by antithrombin III (Hogg, P. J., and Jackson, C. M. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 3619-3623), these components have no discernible influence on the ability of thrombin to cleave fibrinogen. These observations indicate that the substrate specificity of thrombin is altered when it is bound in a complex with fibrin II monomer and heparin and suggest that the catalytic efficiency of thrombin for its physiological substrates will be affected differentially by these interactions. Such ternary complex formation involving thrombin, fibrin II monomer, and heparin may provide a mechanism for selectively regulating thrombin action.  相似文献   

6.
Previous experiments had shown that the free N-terminal fibronectin 30-kDa-domain mediates binding of soluble 125I-fibrin to transamidase-coated polystyrene beads (H?rmann et al., Biol. Chem. Hoppe-Seyler 368, 669-674, 1987). Now, the formation of covalent adducts of the N-terminal fragment with fibrin peptide chains is demonstrated. Binding of soluble 125I-fibrin was performed in presence of N-terminal fibronectin 30-kDa or 70-kDa fragments. The material adsorbed was removed from the beads under reducing conditions and analysed by dodecylsulfate gel electrophoresis followed by autoradiography. The 30-kDa fragment gave rise to bands of 80 kDa and 180-200 kDa which were lacking in the products of the 70-kDa compound. Instead, they showed bands at 120 kDa and ca. 280 kDa. Evidently, those bands represented covalent adducts of fibrin peptide chains or their dimers with the 30-kDa or the 70-kDa fragment, respectively. In addition, dimeric gamma-chains and alpha-chain polymers of fibrin were present indicating partial polymerization of bead-attached fibrin.  相似文献   

7.
Heparin has been shown recently to stimulate the activity of human tissue-type plasminogen activator (t-PA). To investigate this effect further, mutant proteins lacking various domains of t-PA were screened for the ability to be stimulated by heparin. Those mutants harboring either the finger domain or the 2nd kringle were found to have enhanced enzymatic activity in the presence of heparin. Only mutants containing these structures would bind to heparin-agarose beads; monoclonal antibodies directed against these domains blocked binding. The stimulatory effect of heparin was more pronounced in finger-containing mutants than kringle-2 proteins. Earlier results had localized the fibrin-binding domains to the same two structures. Unlike heparin, the 2nd kringle was shown to be more important than the finger for fibrin stimulation. Our results have implications for producing recombinant t-PA variants for use in thrombolytic therapy.  相似文献   

8.
Secondary generalized hyperfibrinolysis was induced by thrombin infusion or batroxobin injection in rats. To follow intravascular fibrinolysis quantitatively, an electroimmuno-assay was used for determination of the fibrin degradation products formed. Anticoagulants (heparin, hirudin), antifibrinolytics (EACA, PAMBA, AMCA), and synthetic (APPA) and naturally occurring (aprotinin) protease inhibitors were studied with regard to their influence on secondary fibrinolysis. The potency and duration of action of the antifibrinolytics tested correspond to their antifibrinolytic activity measured in vitro and to their pharmacokinetics. Formation of degradation products is initiated after the appearance of fibrin monomer or fibrin, respectively. Due to their antithrombin action heparin, hirudin, and APPA prevent the thrombin-induced fibrin formation and thus the induction of secondary fibrinolysis. In contrast, formation of fibrin monomers caused by batroxobin is not influenced by thrombin inhibitors so that in this case formation of degradation products is not prevented.  相似文献   

9.
Although fibrin-bound thrombin is resistant to inactivation by heparin.antithrombin and heparin.heparin cofactor II complexes, indirect studies in plasma systems suggest that the dermatan sulfate.heparin cofactor II complex can inhibit fibrin-bound thrombin. Herein we demonstrate that fibrin monomer produces a 240-fold decrease in the heparin-catalyzed rate of thrombin inhibition by heparin cofactor II but reduces the dermatan sulfate-catalyzed rate only 3-fold. The protection of fibrin-bound thrombin from inhibition by heparin.heparin cofactor II reflects heparin-mediated bridging of thrombin to fibrin that results in the formation of a ternary heparin.thrombin.fibrin complex. This complex, formed as a result of three binary interactions (thrombin.fibrin, thrombin.heparin, and heparin.fibrin), limits accessibility of heparin-catalyzed inhibitors to thrombin and induces conformational changes at the active site of the enzyme. In contrast, dermatan sulfate binds to thrombin but does not bind to fibrin. Although a ternary dermatan sulfate. thrombin.fibrin complex forms, without dermatan sulfate-mediated bridging of thrombin to fibrin, only two binary interactions exist (thrombin.fibrin and thrombin. dermatan sulfate). Consequently, thrombin remains susceptible to inactivation by heparin cofactor II. This study explains why fibrin-bound thrombin is susceptible to inactivation by heparin cofactor II in the presence of dermatan sulfate but not heparin.  相似文献   

10.
1. Possible interactions between fibrin(ogen) and heparin in the control of plasminogen activation were studied in model systems using the thrombolytic agents tissue-type plasminogen activator (t-PA), urokinase and streptokinase.plasminogen activator complex and the substrates Glu- and Lys-plasminogen. 2. Both t-PA and urokinase activities were promoted by heparin and by pentosan polysulphate, but not by chondroitin sulphate or hyaluronic acid. The effect was on Km. 3. In the presence of soluble fibrin (and its mimic, CNBr-digested fibrinogen) the effect of heparin on t-PA was attenuated, although not abolished. In studies using a monoclonal antibody and 6-aminohexanoic acid, it was found that heparin and fibrin did not seem to share a binding site on t-PA. 4. The activity of t-PA B-chain was unaffected by heparin, so the binding site is located on the A-chain of t-PA (and urokinase). 5. Fibrin potentiated the activity of heparin on urokinase. The activity of streptokinase.plasminogen was unaffected by heparin whether or not fibrin was present. 6. If these influences of heparin and fibrin also occur in vivo, then, in the presence of heparin, the relative fibrin enhancement of t-PA will be diminished and the likelihood of systemic activation by t-PA is increased.  相似文献   

11.
Effects of some heparin complex compounds (heparin-urea, adrenaline-heparin, fibrinogen-heparin complexes and secondary complex adrenalin-heparin-fibrinogen) on factor XIIIa unstabilized fibrin were studied using electron microscopy. Fibrillar network of unstabilized fibrin destroys with the formation of globular molecular particles similar to fibrinogen molecule or fibrin monomer ultrastructure. A mechanism of fibrinolytic action of all the complexes mentioned is probably the same, since under dissolving of unstabilized fibrin, structures are found, which are similar to those forming under dissolving of unstabilized fibrin with urea.  相似文献   

12.
Yakovlev S  Gorlatov S  Ingham K  Medved L 《Biochemistry》2003,42(25):7709-7716
The beta chain 15-42 sequence of the fibrin(ogen) E region was implicated in heparin binding [Odrljin et al. (1996) Blood 88, 2050-2061]; whether heparin binds to other fibrin(ogen) regions remains to be clarified. To address this question, we studied the interaction of heparin with fibrinogen, fibrin, and their major fragments D(1), D-D, E(1), E(3), and alphaC, which together cover the entire structure of the molecule, by ligand blotting, surface plasmon resonance, and fluorescence. All three techniques revealed that at physiological ionic conditions only fibrin(ogen) and the E(1) fragment bind heparin, indicating that the only physiologically relevant heparin-binding site of fibrin(ogen) is located in its E region. To test whether the beta15-42 sequence is sufficient to form this site or some additional sequences are also involved, we tested the interaction of heparin with a number of beta15-42-containing fragments. The synthetic beta15-42 peptide bound heparin weakly (K(d) = 44.5 microM) while the recombinant beta15-57 and beta15-64 fragments exhibited almost 7-fold higher affinity (K(d) = 6.4 and 7.1 microM, respectively), indicating that the beta43-57 region is also important for heparin binding. At the same time the recombinant dimeric disulfide-linked (beta15-66)(2) fragment which mimics the dimeric arrangement of the beta chains in fibrin bound heparin with high affinity (K(d) = 66 nM), almost 100-fold higher than that for the monomeric fragments. This affinity was similar to those determined for fibrin and the E(1) fragment (K(d) = 72 and 70 nM, respectively) suggesting that (beta15-66)(2) mimics well the heparin-binding properties of the latter two. Altogether, these results indicate that the only heparin-binding site in fibrin(ogen) is formed by NH(2)-terminal portions of the beta chains, including residues beta15-57, and that dimerization is essential for high-affinity binding.  相似文献   

13.
Studies suggest that patients with deep vein thrombosis and diabetes often have hypercoagulable blood plasma, leading to a higher risk of thromboembolism formation through the rupture of blood clots, which may lead to stroke and death. Despite many advances in the field of blood clot formation and thrombosis, the influence of mechanical properties of fibrin in the formation of thromboembolisms in platelet-poor plasma is poorly understood. In this paper, we combine the concepts of reactive molecular dynamics and coarse-grained molecular modeling to predict the complex network formation of fibrin clots and the branching of fibrin monomers. The 340-kDa fibrinogen molecule was converted into a coarse-grained molecule with nine beads, and using our customized reactive potentials, we simulated the formation and polymerization process of a fibrin clot. The results show that higher concentrations of thrombin result in higher branch-point formation in the fibrin clot structure. Our results also highlight many interesting properties, such as the formation of thicker or thinner fibers depending on the thrombin concentration. To the best of our knowledge, this is the first successful molecular polymerization study of fibrin clots to focus on thrombin concentration.  相似文献   

14.
We have examined the initial phase of fibrin formation, thrombin-catalyzed fibrinopeptide cleavage, from adsorbed fibrinogen using surface plasmon resonance and liquid chromatography-mass spectrometry. Fibrinogen adsorption impaired thrombin-fibrinogen interactions compared to the interactions of thrombin with fibrinogen in solution. The properties of the underlying substrate significantly affected the extent and kinetics of fibrinopeptide cleavage, and the conversion of adsorbed fibrinogen to fibrin. Fibrinogen adsorbed on negatively charged surfaces (carboxyl-terminated self-assembled monolayers) released a smaller amount of fibrinopeptides, at a reduced rate relative to those of hydrophobic, hydrophilic, and positively charged surfaces (methyl-, hydroxyl-, and amine-terminated self-assembled monolayers, respectively). Additionally, the conversion of adsorbed fibrinogen to fibrin was comparatively inefficient at the negatively charged surface. These data correlated well with trends previously reported for fibrin proliferation as a function of surface properties. We conclude that thrombin interactions with adsorbed fibrinogen determine the extent of subsequent fibrin proliferation on surfaces.  相似文献   

15.
Numerous studies have shown that fibrin-bound thrombin (IIa) is protected from inhibition by antithrombin (AT) + heparin (H) due to the formation of a ternary fibrin.IIa.H complex. We investigated factors affecting the inhibition of fibrin.IIa by a covalent complex of AT and H (ATH). The rate of IIa reaction with ATH was decreased 2-3-fold by fibrin monomer as compared to 57-fold for AT + heparin with high AT affinity. Furthermore, although the reaction of AT + H with a IIa mutant with decreased H binding (RA-IIa) was inhibited 2-3-fold in the presence of fibrin, reaction rates of ATH + RA-IIa were not reduced by fibrin. The relative difference in the effect of fibrin on the ATH reaction with RA-IIa compared to that for reactions of AT + H with RA-IIa is consistent with the fact that, in the absence of fibrin, the rate of the ATH reaction with RA-IIa relative to IIa was much less reduced (8-fold) compared to the corresponding reactions of AT + H (decreased 306 fold). Similarly, the addition of excess H in the absence of fibrin gave only a small decrease in rate of ATH + IIa reaction. However, in the presence of fibrin, the addition of 40-fold excess H decreased the rate of ATH inhibition of IIa by 1 order of magnitude. Experiments with ATH containing low molecular weight heparin chains with low AT affinity showed that IIa inhibition requires ATH with long chains that activate the AT moiety. Finally, electrophoresis of fibrin +/- ((125)I-)IIa +/- ((125)I-)ATH on native and denaturing gels showed that ATH forms ATH-IIa complexes that remain bound to fibrin through the ATH component. Thus, ATH is a potent inhibitor of fibrin-bound IIa, likely due to the formation of fibrin.ATH-IIa as opposed to fibrin.IIa.H ternary complexes.  相似文献   

16.
The preparation of functionalized beads in the micrometer size range that can be used to probe the action of immobilized biomolecules on cell cultures during controlled periods of time is of fundamental importance in cell biology. However, the preparation and characterization of such particles is tedious because of their fast sedimentation. It is hence difficult to prepare such beads in a reproducible manner. This highlights the need to prepare an important batch of functionnalized particles and to store them under conditions where the loss of biological activity is minimized. The aim of this paper was to immobilize alkaline phosphatase (AP) as a model enzyme on the surface of Affi-gel heparin beads functionnalized by means of a layer-by-layer (LBL) film made of poly-l-glutamic (PGA) acid and poly-l-lysine (PLL). The enzyme has been adsorbed either on the top of the LBL film or embedded under five polyelectrolyte layers. When embedded, the enzyme was not released in buffer and retained more than 30% of its initial activity after 3 months of storage at 4 degrees C. However, when the enzyme was adsorbed on top of the LBL film, about 80% of the adsorbed enzyme was released in the buffer after a few days of storage. Longer storage did not lead to any further desorption and the remaining enzyme displayed the same evolution of its activity with time as the embedded enzyme. The time evolution of the enzyme activity on the beads is compared with that in solution alone and in the presence of PGA and PLL separately.  相似文献   

17.
In the present work, the formation of the proline-heparin complex has been established. The way to synthesize the complex in vitro has been developed. The complex synthesized with the molar ratio of proline to heparin of 3: 1 extended the time of formation of a fibrin clot, reduced platelet aggregation, and showed a lytic effect towards nonstabilized fibrin in vitro conditions. Ten minutes after intravenous administration of the proline-heparin complex, there was an increase in levels of fibrin-depolymerization, anticoagulant, antifibrin-stabilizing and antiplatelet activity in blood of animals, whereas its components, proline and heparin, did not have such effects.  相似文献   

18.
Wound healing is a complex process initiated by the formation of fibrin fibers and endothelialization. Normally, this process is triggered in a wound by thrombin cleavage of fibrinopeptides on fibrinogen molecules, which allows them to self spontaneously-assemble into large fibers that provide the support structure of the clot and promote healing. We have found that the fibrous structures can also form without thrombin on most polymer or metal surfaces, including those commonly used for stents. We show that the relatively hydrophobic E and D regions of the fibrinogen molecule are adsorbed on these surfaces, exposing the αC domains, which in turn results in the formation of large fiber structures that promote endothelial cell adhesion. We show that the entire process can be suppressed when stents or other substrates are coated with polymers that are functionalized to bind the αC domains, leading to the development of potentially nonthrombogenic implant materials.  相似文献   

19.
The effects of 4 monoclonal antibodies against human tissue-type plasminogen activator (t-PA) on binding of t-PA to lysine, fibrin, and heparin, and on fibrin-mediated activation of one-chain t-PA-amidolytic activity were investigated. The association constants of the antibodies were determined in a direct assay to be equal to 0.125 l/nmol, 0.225 l/nmol, 0.4 l/nmol, and 0.5 l/nmol for mAB 5, mAB 16, mAB 25, and mAB 31, respectively. All 4 monoclonal antibodies inhibited binding of intact t-PA to lysine-Sepharose and fibrin, and they suppressed fibrin-mediated activation of one-chain t-PA-amidolytic activity. Binding analysis demonstrated that mAB 25 inhibited t-PA binding to lysine-Sepharose and to fibrin as well as fibrin-mediated enhancement of one-chain t-PA-amidolytic activity in a competitive manner with inhibitor constants of 5 nmol/l, 3 nmol/l and 10 nmol/l, respectively. It was also shown that free lysine counteracts the association of t-PA with the antibodies. Binding of t-PA to heparin is only moderately affected by the 4 antibodies. Since t-PA possesses two homologous kringle domains which contain fibrin (lysine) binding sites, the results underline the importance of a lysine binding site for fibrin binding by intact t-PA and show that the binding of the enzyme to fibrin and lysine is mediated by the same binding site of a kringle domain. The parallel effects of antibodies on fibrin binding and on fibrin-mediated enhancement of one-chain t-PA amidolytic activity proves that the site of fibrin binding is identical with the site of fibrin activation. The binding site of heparin apparently differs from lysine and fibrin binding sites.  相似文献   

20.
THERE are two principal theories of the mechanism of thrombus dissolution by the fibrinolytic system. Alkjaersig et al.1 suggested that as fibrin polymerizes, plasminogen is adsorbed preferentially to the fibrin and is available in large quantities within a thrombus which is comparatively free of antiplasmin. When an activator enters the circulation it diffuses into the clot converting the plasminogen to plasmin in situ and so promotes lysis. Ambrus and Markus2, however, proposed that when plasmin forms in the circulation naturally or during infusion of an activator it is normally bound to the excess antiplasmin present in blood. They suggested that this plasmin/antiplasmin complex is reversible and dissociates in the presence of fibrin, its preferred substrate, so allowing the plasmin to bring about fibrin dissolution by “external lysis”. Neither of these theories, however, is supported by an observed phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号