首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection of A431 cells with vaccinia virus, or exposure to a mitogenic polypeptide secreted by vaccinia virus-infected cells, induces tyrosine phosphorylation of epidermal growth factor receptors.  相似文献   

2.
The metabolism of the receptor for epidermal growth factor (EGF) in A-431 cells has been measured by labeling the receptor in vivo with radioactive amino acid precursors and then determining, by immunoprecipitation with specific anti-EGF receptor antisera, the rate of degradation of the receptor when the cells are placed in a nonradioactive medium. The rate of EGF receptor degradation (t1/2 = 20 hr) was faster than the rate of degradation of total cell protein (t1/2 = 52 hr). When EGF was added at the beginning of the chase, the half-life of prelabeled receptor decreased to 8.9 hr. This decrease was specific, as the level of total cellular protein and another plasma membrane protein, the transferrin receptor, were relatively unaffected by EGF. The carbohydrate portion of the receptor is degraded, in the presence or absence of EGF, at approximately the same rate as the protein moiety. The amount of EGF receptor protein in A-431 cells has been quantitated by radiolabeling total cellular protein and quantitating the immunoprecipitable receptor. The EGF receptor constitutes approximately 0.15% of the total cell protein in A-431 cells. These cells, therefore, have approximately 30 times more EGF receptor protein than fibroblasts. The EGF receptor constitutes an even higher proportion of 3H-glucosamine- or 3H-mannose-labeled macromolecules in A-431 cells, 1.5% or 5.2%, respectively. The EGF receptor from A-431 cells can easily be identified by submitting carbohydrate-labeled, solubilized cells to electrophoresis as described by Laemmli (1970).  相似文献   

3.
Epidermal growth factor (EGF), a mitogenic polypeptide hormone, stimulates the phosphorylation of certain endogenous proteins in membrane preparations derived from A431 cells, a human tumor cell line. Membrane vesicles prepared from A431 cells were reacted with 5'-p-fluorosulfonylbenzoyl adenosine (5'-p-FSO2BzAdo). Reaction of the vesicles with 5'-p-FSO2BzAdo results in a time-dependent inhibition of EGF-stimulable protein kinase activity which parallels an increase in incorporation into the vesicles of the 5'-p-sulfonylbenzoyl-[8-14C]adenosine moiety from 5'-p-FSO2Bz[14C]Ado. The primary bands labeled have Mr = 170,000 and 150,000. Labeling of these bands by 5'-p-FSO2Bz[14C]Ado is inhibited by incubation of the membrane vesicles with adenyl-5'-yl imidodiphosphate, an ATP analog. Inactivation of the kinase with N-ethylmaleimide or by heating results in a sharply decreased labeling of the proteins with Mr = 170,000 and 150,000. Proteins of these molecular weights have previously been identified in these cells as the EGF receptor and a degradation product of the receptor. These experiments provide chemical evidence that the EGF receptor and the EGF-stimulable kinase are the same protein.  相似文献   

4.
The epidermal growth factor receptor (EGF-R) on human epidermoid carcinoma cells, A431, was found to be predominantly associated with the detergent-insoluble cytoskeleton, where it retained both a functional ligand-binding domain and an intrinsic tyrosine kinase activity. The EGF-R was constitutively associated with the A431 cytoskeleton; this association was not a consequence of adventitious binding. The EGF-R was associated with cytoskeletal elements both at the cell surface, within intracellular vesicles mediating the internalization of the hormone-receptor complex, and within lysosomes. The EGF-R became more stably associated with cytoskeletal elements after its internalization. The cytoskeletal association of the EGF-R was partially disrupted on suspension of adherent cells, indicating that alteration of cellular morphology influences the structural association of the EGF-R, and that the EGF-R is not intrinsically insoluble. Cytoskeletons prepared from EGF-treated A431 cells, when incubated with gamma-32P-ATP, demonstrated enhanced autophosphorylation of the EGF-R in situ as well as the phosphorylation of several high molecular weight proteins. In this system, phosphorylation occurs between immobilized kinase and substrate. The EGF-R and several high molecular weight cytoskeletal proteins were phosphorylated on tyrosine residues; two of the latter proteins were phosphorylated transiently as a consequence of EGF action, suggesting that EGF caused the active redistribution of the protein substrates relative to protein kinases. The ability of EGF to stimulate protein phosphorylation in situ required treatment of intact cells at physiological temperatures; addition of EGF directly to cytoskeletons had no effect. These data suggest that the structural association of the EGF-R may play a role in cellular processing of the hormone, as well as in regulation of the EGF-R kinase activity and in specifying its cellular substrates.  相似文献   

5.
We have isolated and partially purified an intracellular vesicle fraction from A-431 cells that contains both epidermal growth factor (EGF) and enzymatically active EGF:receptor/kinase. Exposure of intact A-431 cells to EGF leads to an accumulation of both EGF and kinase activity in this vesicle fraction. The accumulation is time- and temperature-dependent and is blocked by inhibitors of energy production. The EGF receptor in internalized vesicles is capable of autophosphorylation and, in the presence of Ca2+, of phosphorylation of the previously isolated 35-kDa protein (Fava, R. A., and Cohen, S. (1984) J. Biol. Chem. 259, 2636-2645). The demonstration of an EGF-induced increase in kinase activity of an internalized vesicle fraction lends credence to the hypothesis that EGF-induced endocytosis of the receptor is of physiological significance in the response of cells to this ligand. In addition, these results are consistent with the suggestion that the phosphorylation of the 35-kDa protein is associated with internalization of the EGF:receptor/kinase complex.  相似文献   

6.
Summary To elucidate further the structure and molecular dynamics of the epidermal growth factor receptor, temperature-dependent aggregation and extracellular protrusion of the epidermal growth factor receptor in isolated plasma membranes from A431 cells were examined by fluorescence energy-transfer techniques. Epidermal growth factor was labeled at the amino terminus with either fluorescein isothiocyanate or tetramethylrhodamine isothiocyanate. A radionuclide receptor displacement assay demonstrated the bioactivity of these derivatives. Aggregation of the epidermal growth factor receptor was measured by determining the increase in fluorescence energy transfer between receptorbound fluorescein and tetramethylrhodamine-labeled epidermal growth factor. Energy transfer between receptor-bound fluorescent derivatives was reversibly greater at 37 than 4°C, indicating temperature-dependent aggregation of the receptor. The extracellular protrusion of the epidermal growth factor receptor was calculated from the magnitude of energy transfer between receptorbound fluorescein labeled epidermal growth factor and 5-(N-dodecanoylamino)-eosin partitioned into the lipid membrane at 4 and 37°C. No significant change in the distance of closest approach between the N-terminus of epidermal growth factor and the plasma membrane was observed at 4°C (69±2 Å) and 37°C (67±2 Å). Thus, the extracellular protrusion of the occupied epidermal growth factor receptor did not change detectably upon receptor aggregation.  相似文献   

7.
Biosynthesis of the epidermal growth factor receptor in A431 cells.   总被引:16,自引:6,他引:16       下载免费PDF全文
A monoclonal antibody R1 against the human epidermal growth factor receptor has been used to study biosynthesis in the carcinoma cell line A431. Two glycoproteins of apparent mol. wts. 95 000 and 160 000 were immunoprecipitated from cells labelled for short times with [35S]methionine or [3H]mannose. Pulse-chase studies show the 160 000 mol. wt. glycoprotein to be a precursor of the 175 000 mol. wt. receptor, but do not establish a precursor role for the 95 000 mol. wt. glycoprotein. Limited proteolysis, peptide mapping, endoglycosidase digestion and the use of monensin and tunicamycin show that the 95 000 mol. wt. glycoprotein is structurally related to the 160 000 mol. wt. glycoprotein and that both glycoproteins have approximately 22 000 - 28 000 mol. wt. of oligosaccharide side chains. Monensin blocks conversion of the 160 000 to the 175 000 mol. wt. mature receptor, a process which involves complexing several of its N-linked oligosaccharide chains. Pulse-chase studies showed that an immunoprecipitable polypeptide of 115 000 mol. wt., or 95 000 mol. wt., in the presence of monensin, was secreted into the medium at late chase times. The possible mechanisms for the origins of all the receptor-related polypeptides are discussed.  相似文献   

8.
Epidermal growth factor (EGF) receptor protein kinase activity, estimated by the use of peptide substrates, was reduced by as much as 70% after the treatment of intact A431 human carcinoma cells with EGF. The apparent decrease in protein kinase activity was observed after immunoprecipitation of the receptor or after purification of the receptor by lectin chromatography. By the use of [35S]methionine, it was determined that the total amount of receptor obtained was the same whether or not cells were treated with EGF. EGF stimulated the purified receptor protein kinase activity in vitro; however, the EGF-stimulated activity of receptor from EGF-treated cells continued to be reduced by as much at 70% compared to the EGF-stimulated activity from untreated cells. The reduction in receptor protein kinase activity induced by EGF may represent a feedback mechanism by which responsiveness to the growth factor is regulated.  相似文献   

9.
Regulation of protein breakdown by epidermal growth factor in A431 cells   总被引:1,自引:0,他引:1  
Addition of epidermal growth factor (EGF) to cultures of A431 human epidermoid carcinoma cells produces an increase in the rate of intracellular protein breakdown that cannot be accounted for by increased proteolysis in lysates from EGF-treated cells. In support of this observation, inhibition of protein synthesis with cycloheximide does not reduce the EGF response in cell monolayers. On the other hand, inhibitors of lysosomal proteolytic function such as leupeptin, vinblastine and especially the weak base, ammonia, are able to block the ability of EGF to increase protein breakdown. Additional results suggest that the EGF effect is mediated via a stimulation of autophagy. First, the autophagocytosis inhibitor, 3-methyladenine, reduces the EGF response, and second, the ability of insulin to inhibit protein breakdown by preventing the formation of autophagic vacuoles is overcome by EGF. Moreover, the actions of inhibitors and competing hormones are similar to those reported for glucagon, a hormone known to increase autophagy. The EGF response on protein breakdown persists for at least 6 h after thorough washing of the A431 monolayers. This result contrasts with the rapid reversal of EGF effects in other cell lines. Examination of the fate of bound EGF in cells washed and incubated for 2 h at 37 degrees C shows that some 500-fold more EGF per mg protein is retained on the surface of A431 cells compared to AG2804-transformed fibroblasts, a difference which probably explains the unusual persistence of the EGF effect on protein breakdown.  相似文献   

10.
EGF-dependent receptor autophosphorylation (EDRA) in A431 plasma membrane was specifically stimulated by lysophospholipids having phosphorylcholine head group (e.g., lyso-phosphatidylcholine; lyso-PC) but not other lysophospholipids, in the absence of detergent. In contrast, GM3 specifically inhibited EDRA under the same experimental conditions in which lyso-PC stimulated EDRA. This GM3-dependent inhibition was more efficient in the absence (vs. presence) of a detergent (Triton X-100). These results indicate an essential role of lyso-PC in GM3-regulated EGF receptor functions.  相似文献   

11.
Using human-specific antibody reagents, we have examined the biosynthesis of the epidermal growth factor receptor in human epidermoid carcinoma-derived A431 cells. Four Mr species (Mr = 70,000, 95,000, 135,000, and 145,000) are detected when cells are subjected to a brief pulse of L-[35S]methionine; an Mr = 165,000 species is detected after 45-60 min of exposure of cells to radiolabel. In pulse-chase experiments, the four lower Mr species appear to bear a precursor relation to the Mr = 165,000 protein. The molecule acquires N-linked oligosaccharide cotranslationally, and two of the species (Mr = 95,000 and 145,000) are susceptible to digestion with endo-beta-N-acetylglucosaminidase H. The Mr = 145,000 and Mr = 165,000 proteins, which become labeled with 125I-epidermal growth factor after treatment of intact cells with a bifunctional cross-linking reagent, are phosphorylated at serine and threonine on identical tryptic peptides.  相似文献   

12.
The possible role of epidermal growth factor (EGF) receptor phosphorylation at threonine 654 in modulating the protein-tyrosine kinase activity of EGF-treated A431 cells has been studied. It has been suggested that EGF could indirectly activate a protein-serine/threonine kinase, protein kinase C, that can phosphorylate the EGF receptor at threonine 654. Protein kinase C is known to be activated, and threonine 654 is phosphorylated, when A431 cells are exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). The protein-tyrosine kinase activity of EGF receptors is normally evidenced in EGF-treated cells by phosphorylation of the receptor at tyrosine. This is inhibited when TPA-treated cells are exposed to EGF. We now show that receptor phosphorylation at threonine 654 can also be detected in EGF-treated A431 cells, presumably due to indirect stimulation of protein kinase C or a similar kinase. Some receptor molecules are phosphorylated both at threonine 654 and at tyrosine. Since prior phosphorylation at threonine 654 inhibits autophosphorylation, we propose that protein kinase C can phosphorylate the threonine 654 of autophosphorylated receptors. This provides evidence for models in which protein kinase C activation, consequent upon EGF binding, could reduce the protein-tyrosine kinase activity of the EGF receptor. Indeed, we find that 12-O-tetradecanoylphorbol-13-acetate, added 10 min after EGF, further increases threonine 654 phosphorylation and induces the loss of tyrosine phosphate from A431 cell EGF receptors.  相似文献   

13.
Recycling of epidermal growth factor in A431 cells   总被引:3,自引:0,他引:3  
The fate of epidermal growth factor (EGF) after internalization by A431 cells was studied. First, cells containing 125I-EGF-receptor complexes in endosomes were obtained. Subsequent incubation of the cells at 37 degrees C resulted in the recycling of 125I-EGF from endosomes to the cell surface in the receptor-bound state and the gradual release of recycled ligand into the medium. The excess of unlabeled EGF blocked both rebinding and re-internalization of recycled 125I-EGF to produce enhanced accumulation of ligand in the medium. The rate of recycling was shown to be much higher than that of EGF degradation.  相似文献   

14.
A monoclonal antibody to the epidermal growth factor (EGF) receptor of A431 cells, denoted 2D1-IgM, was generated after fusion of immunized BALB/c mouse spleen cells with SP2/0-Ag14 myeloma cells. Specific binding of 2D1-IgM to the A431 cell-surface receptor for EGF was demonstrated by indirect immunofluorescence, immunoprecipitation, and immunoblot analysis. Scatchard analysis of 125I-EGF binding to A431 cells demonstrated that 2D1-IgM treatment did not change the number of EGF receptors, but caused an increase in the affinity of EGF receptors from a population of low affinity to a uniform population of high affinity. Like EGF, 2D1-IgM induced phosphorylation of EGF receptors and EGF receptor clustering. As in the case of EGF, a biphasic growth response with stimulation of DNA synthesis at low and inhibition at high concentrations of 2D1-IgM was evident in A431 cells. The intrinsic "EGF-like" bioactivity of 2D1-IgM was enhanced by the presence of EGF. These results suggest that the binding of 2D1-IgM to the EGF receptor at a different site from that to which EGF binds can initiate an effective EGF-like biological response; and the EGF-like biological effects of 2D1-IgM may be mediated by a population of high affinity EGF receptors which may be involved in the control of cellular growth.  相似文献   

15.
Recently, we have obtained evidence in favor of a structural interaction between the epidermal growth factor (EGF) receptor and the Triton X-100-insoluble cytoskeleton of epidermoid carcinoma A431 cells. Here we present a further analysis of the properties of EGF receptors attached to the cytoskeleton. Steady-state EGF binding studies, analyzed according to the Scatchard method, showed that A431 cells contain two classes of EGF-binding sites: a high-affinity site with an apparent dissociation constant (KD) of 0.7 nM (7.5 x 10(4) sites per cell) and a low-affinity site with a KD of 8.5 nM (1.9 x 10(6) sites per cell). Non-equilibrium binding studies revealed the existence of two kinetically distinguishable sites: a fast-dissociating site, with a dissociation rate constant (k-1) of 1.1 x 10(-3) s-1 (1.0-1.3 x 10(6) sites per cell) and a slow-dissociating site, with a k-1 of 3.5 x 10(-5) s-1 (0.6-0.7 x 10(6) sites per cell). The cytoskeleton of A431 cells was isolated by Triton X-100 extraction. Scatchard analysis revealed that approximately 5% of the original number of receptors were associated with the cytoskeleton predominantly via high-affinity sites (KD = 1.5 nM). This class of receptors is further characterized by the presence of a fast-dissociating component (k-1 = 2.0 x 10(-3) s-1) and a slow-dissociating component (k-1 = 9.1 x 10(-5) s-1). The distribution between fast and slow sites of the cytoskeleton was similar to that of intact cells (65% fast and 35% slow sites). Incubation of A431 cells for 2 h at 4 degrees C in the presence of EGF resulted in a dramatic increase in the number of EGF receptors associated to the cytoskeleton. These newly cytoskeleton-associated receptors appeared to represent low-affinity binding sites (KD = 7 nM). Dissociation kinetics also revealed an increase of fast-dissociating sites. These results indicate that at 4 degrees C EGF induces the binding of low-affinity, fast-dissociating sites to the cytoskeleton of A431 cells.  相似文献   

16.
Modification of the type II calmodulin-dependent protein kinase by 5'-p-fluorosulfonylbenzoyl adenosine (FSBA) resulted in a time-dependent inactivation of the enzyme. The reaction followed pseudo-first-order kinetics and showed a nonlinear dependence on reagent concentration. The rate of inactivation was sensitive to Mg2+- and calmodulin-induced conformational changes on the enzyme. However, the enhancing effects of these ligands were not additive; indeed, the kinetic parameters of the Mg2+-stimulated inactivation reaction with FSBA (Kinact = 2.4 mM; kappa max = 0.12 min-1) were almost unaffected by the simultaneous addition of calmodulin (Kinact = 1.5 mM; kappa max = 0.086 min-1). Protection from inactivation by FSBA was provided by Mg2+-ADP which is consistent with modification of the catalytic site. An analysis of the protective effect of Mg2+-ADP in the absence (Kd = 590 microM) and presence (Kd = 68 microM) of calmodulin demonstrated that binding of the modulator protein to the enzyme increases the affinity of the protein kinase for nucleotides. Modification by FSBA resulted in labeling of both Tyr and Lys residues but only labeling of Lys was decreased by Mg2+-ADP which is consistent with the hypothesis that a conserved Lys residue is important in nucleotide binding to the protein kinase. However, the kinetic results of the inactivation reaction suggest that this Lys is not involved in mediating the calmodulin-promoted increase in the affinity of the enzyme for Mg2+-nucleotide complexes.  相似文献   

17.
The epidermal growth factor (EGF) receptor exists in a monomeric (170 kDa) form and in several aggregated states (360 kDa, greater than 500 kDa). The hypothesis that the oligomerization of the receptor is required for the stimulation of the kinase was tested by correlating the oligomeric state of the receptor with the protein kinase activity. EGF and sphingosine stimulate the phosphorylation of an exogenous peptide substrate by the receptor to an equal extent. Chemical cross-linking using disuccinimidyl suberate and the analysis of EGF receptor complexes by Western blotting demonstrated that EGF caused the aggregation of receptors. Similar results were obtained when [32P]phosphate-labeled receptors were cross-linked using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. These results were confirmed by sucrose density gradient sedimentation analysis. In contrast to the effects of EGF, incubation of EGF receptors with sphingosine did not cause the oligomerization of the receptors. These data demonstrate that the EGF receptor kinase can be stimulated independently of the aggregation of the receptors.  相似文献   

18.
This paper presents a new method to evaluate the biologicalsignificance of glycosphingolipids (GSLs) using a GSL-spedficenzyme, endoglycoceramidase (EGCase), by which GSL-sugar chainsare removed from the cell surface of living cells. In this report,the effects of EGCase on epidermal growth factor (EGF)-dependenttyrosine-specific EGF receptor (EGFR) phosphorylation of A431cells are described. After treatment of A431 cells with EGCaseII (20 mU/ml) in the presence of the activator for 12 h, allacidic GSLs tested were reduced to  相似文献   

19.
The initial steps of heat stress in A431 cells were previously characterized by ligand-independent EGFR transactivation via an unknown mechanism and concomitant secretion of Hsp70. In this work we demonstrate that the depletion of Hsp70 from the conditioned medium of heated cells abolishes EGFR transactivation indicating that secreted Hsp70 is essential for EGFR transactivation during heat shock. This notion is supported by the findings that purified Hsp70 can induce EGFR transactivation and the activation of EGFR-dependent signaling pathways. Both heat stress and pure Hsp70 stimulate activation of TLR2/4 and their association with EGFR. These results suggest that the secreted Hsp70 mediates the cross-communication of TLR and EGFR signaling systems in A431 cells.  相似文献   

20.
The Ca2+- and phospholipid-dependent protein kinase (C-kinase) binds tightly in the presence of Ca2+ to purified membranes of A431 human epidermoid carcinoma cells. The major membrane substrate for C-kinase is the epidermal growth factor (EGF) receptor. Phosphorylation of the EGF receptor is Ca2+-dependent and occurs at threonine and serine residues. After tryptic digestion of the receptor, three major phosphothreonine-containing peptides were identified. These are identical with three new phosphopeptides present in the EGF receptor isolated from A431 cells treated with either of the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. C-kinase catalyzes phosphorylation at these same sites in purified EGF receptor protein. These results indicate that, in A431 cells exposed to tumor promoters, C-kinase catalyzes phosphorylation of a significant population of EGF receptor molecules. This phosphorylation of EGF receptors results in decreased self-phosphorylation of the EGF receptor at tyrosine residues both in vivo and in vitro and in decreased EGF-stimulated tyrosine kinase activity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号