首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
AIMS: Staphylococcus carnosus, used as starter culture in fermented meat products, decreases the level of volatiles arising from lipid oxidation. To analyse its antioxidant capacities, catalase and superoxide dismutase (SOD) were characterized. METHODS AND RESULTS: Catalase and SOD activities were measured with spectrophotometric methods and visualized on non-denaturing polyacrylamide gels. The corresponding sod gene was identified by PCR. Southern hybridizations and enzymatic analyses showed that there was a single catalase and a single SOD in Staph. carnosus 833 strain. The gene encoding the Staph. carnosus SOD was found to encode a protein closely related to SOD requiring manganese. Catalase and SOD levels increased in mid-log phase. Only catalase was induced by oxygen, nitrate or nitrite while glucose induced neither enzyme. Metal ion limitation increased catalase and decreased SOD activities. CONCLUSION: Staph. carnosus synthesizes both enzymes in conditions encountered in sausage manufacturing. These results could explain the antioxidant properties of Staph. carnosus starter culture. SIGNIFICANCE AND IMPACT OF THE STUDY: The knowledge of the antioxidant properties of Staphylococci will allow a more rational use of these starters in meat fermented products.  相似文献   

3.
The effects of superoxide dismutase (SOD) and catalase on the autoxidation rate of L-ascorbic acid (ASA) in the absence of metal ion catalysts were examined. The stabilization of ASA by SOD was confirmed, and the enzyme activity of SOD, which scavenges the superoxide anion formed during the autoxidation of ASA, contributed strongly to this stabilization. The stabilization of ASA by catalase was observed for the first time; however, the specific enzyme ability of catalase would not have been involved in the stabilization of ASA. Such proteins as bovine serum albumin (BSA) and ovalbumin also inhibited the autoxidation of ASA, therefore it seems that non-specific interaction between ASA and such proteins as catalase and BSA might stabilize ASA and that the non-enzymatic superoxide anion scavenging ability of proteins might be involved.  相似文献   

4.
The dynamics of the level of catalase and superoxidedismutase (SOD) expression by S. aureus isolated in persistent experimental kidney infection is described. A rise in the activity of the staphylococci under study during transition of the infectious process from the alteration to persistence stage. Changes in the expression of SOD and catalase were observed simultaneously with a decrease in hemolytic, fibrinolytic and protease activity, as well as in the presence of more pronounced clumping and an increase in the production of protein A, the antilysozyme and anticomplement activity of staphylococcal clones obtained from kidney tissue. The significance of all above-mentioned phenomena in the persistence of microorganisms is discussed.  相似文献   

5.
6.
We demonstrated that oxidative stress plays a role in freeze-thaw-induced killing of Campylobacter coli following analysis of mutants deficient in key antioxidant functions. Superoxide anions, but not H(2)O(2), were formed during the freeze-thaw process. However, a failure to detoxify superoxide anions may lead to spontaneous disproportionation of the radicals to H(2)O(2).  相似文献   

7.
8.
A. Puppo  L. Dimitrijevic  J. Rigaud 《Planta》1982,156(4):374-379
Superoxide anion is able to oxidize oxyleghemoglobin prepared from soybean nodules. Furthermore, ferrileghemoglobin is oxidized to leghemoglobin (IV) by hydrogen peroxide and this irreversible reaction leads to a complete inactivation of the hemoprotein. In scavenging O 2 - and H2O2, superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6) are able to limit these oxidations. The occurrence of these enzymes within soybean nodules and their main characteristics are reported here. A general scheme taking into account their roles in leghemoglobin protection in vivo is proposed.Abbreviations Lb leghemoglobin - SOD superoxide dismutase  相似文献   

9.
Embryonic bioactivation and formation of reactive oxygen species (ROS) are implicated in the mechanism of phenytoin teratogenicity. This in vivo study in pregnant CD-1 mice evaluated whether maternal administration of the antioxidative enzymes superoxide dismutase (SOD) and/or catalase conjugated with polyethylene glycol (PEG) could reduce phenytoin teratogenicity. Initial studies showed that pretreatment with PEG-SOD alone (0.5–20 KU/kg IP 4 or 8 h before phenytoin) actually increased the teratogenicity of phenytoin (65 mg/kg IP on gestational days [GD] 11 and 12, or 12 and 13) (p < .05), and appeared to increase embryonic protein oxidation. Combined pretreatment with PEG-SOD and PEG-catalase (10 KU/kg 8 or 12 h before phenytoin) was not embryo-protective, nor was PEG-catalase alone, although PEG-catalase alone reduced phenytoin-initiated protein oxidation in maternal liver (p < .05). However, time-response studies with PEG-catalase (10 KU/kg) on GDs 11, or 11 and 12, showed maximal 50-100% increases in embryonic activity sustained for 8-24 h after maternal injection (p < .05), and dose-response studies (10–50 KU/kg) at 8 h showed maximal respective 4-fold and 2-fold increases in maternal and embryonic activities with a 50 KU/kg dose (p < .05). In controls, embryonic catalase activity was about 4% of that in maternal liver, although with catalase treatment, enhanced embryonic activity was about 2% of enhanced maternal activity (p < .05). PEG-catalase pretreatment (10-50 KU/kg 8 h before phenytoin) also produced a dose-dependent inhibition of phenytoin teratogenicity, with maximal decreases in fetal cleft palates, resorptions and postpartum lethality at a 50 KU/kg dose (p < .05). This is the first evidence that maternal administration of PEG-catalase can substantially enhance embryonic activity, and that in vivo phenytoin teratogenicity can be modulated by antioxidative enzymes. Both the SOD-mediated enhancement of phenytoin teratogenicity, and the inhibition of phenytoin teratogenicity by catalase, indicate a critical role for ROS in the teratologic mechanism, and the teratologic importance of antioxidative balance.  相似文献   

10.
11.
Abstract The planktonic cyanobacterium Microcystis aeruginosa is particularly sensitive to photoinhibition by visible light, Photosystem II and ribulose 1,5-bisphosphate (RuBP) carboxylase activities being affected. Although the organism contains superoxide dismutase (SOD) and catalase, these protective enzymes are also photoinactivated during the illumination of whole cells by visible light.  相似文献   

12.
Reactive oxygen species are involved in various aspects of intestinal inflammation and tumor development. Decreasing their levels using antioxidant enzymes, such as catalase (CAT) or superoxide dismutase (SOD) could therefore be useful in the prevention of certain diseases. Lactic acid bacteria (LAB) are ideal candidates to deliver these enzymes in the gut. In this study, the anti-inflammatory effects of CAT or SOD producing LAB were evaluated using a trinitrobenzenesulfonic acid (TNBS) induced Crohn's disease murine model. Engineered Lactobacillus casei BL23 strains producing either CAT or SOD, or the native strain were given to mice before and after intrarectal administration of TNBS. Animal survival, live weight, intestinal morphology and histology, enzymatic activities, microbial translocation to the liver and cytokines released in the intestinal fluid were evaluated. The mice that received CAT or SOD-producing LAB showed a faster recovery of initial weight loss, increased enzymatic activities in the gut and lesser extent of intestinal inflammation compared to animals that received the wild-type strain or those that did not receive bacterial supplementation. Our findings suggest that genetically engineered LAB that produce antioxidant enzymes could be used to prevent or decrease the severity of certain intestinal pathologies.  相似文献   

13.
The neutrophil enzyme myeloperoxidase generates hypochlorous acid (HOCl) at sites of inflammation. Glutathione peroxidase is very quickly inactivated by low concentration of HOCl. Inactivation of catalase is also rapid, but requires higher HOCl concentrations and the haem appears to be degraded. Inactivation of bovine CuZn superoxide dismutase is slower. Hence superoxide dismutase should not be easily inactivated by HOCl at sites of inflammation, which may contribute to its effectiveness as an anti-inflammatory agent and in minimizing reperfusion injury.  相似文献   

14.
DNA sequencing and operon disruption experiments indicate that the genes glgBI and glgBII, which code for the two developmentally specific glycogen branching enzymes of Streptomyces coelicolor A3(2) each form part of larger duplicated operons consisting of at least four genes in the order pep1-treS-pep2-glgB. The sequences of the TreS proteins are 73% identical (93% similar) to that of an enzyme that converts maltose into trehalose in Pimelobacter, a distantly related actinomycete; and the Pep1 proteins show relatedness to the α-amylase superfamily. Disruptions of each operon have spatially specific effects on the nature of glycogen deposits, as assessed by electron microscopy. Upstream of the glgBI operon, and diverging from it, is a gene (glgP) that encodes a protein resembling glycogen phosphorylase from Thermatoga maritima and a homologue in Mycobacterium tuberculosis. These three proteins form a distinctive subgroup compared with glycogen phosphorylases from most other bacteria, which more closely resemble the enzymes from eukaryotes. Diverging from the glgBII operon, and separated from the pep1 gene by two very small ORFs, is a gene (glgX) encoding a probable glycogen debranching enzyme. It is suggested that most of these gene products participate in the developmentally modulated interconversion of immobile, inert glycogen reservoirs, and diffusible forms of carbon, both metabolically active (e.g. glucose-1-phosphate generated by glycogen phosphorylase) and metabolically inert but physiologically significant (trehalose). Received: 12 November 1999 / Accepted: 31 January 2000  相似文献   

15.
Previous experiments have suggested that superoxide dismutase (SOD) and catalase (CAT) may inhibit prostaglandin synthesis. The purpose of this study was to determine if these free radical scavengers can alter the metabolism of free arachidonic acid (AA) by the cyclooxygenasse and lipoxygenase enzyme systems in platelets. In control experiments washed platelets were incubated with 3H-AA for 5 minutes, extracted and the products separated by reverse phase high pressure liquid chromatography (HPLC). In normal intact platelets 13.5 ± 0.6% of the radioactivity was found in TxB2, 16.3 ± 1.4% in HHT, 61.3 ± 1.1% in 12-HETE and 9.0 ± 1.0% was unconverted AA. Pre-incubating the platelets for 1 minute with 10 μg/ml SOD or CAT or 10 μg/ml SOD plus 10 μg/ml CAT did not inhibit AA conversion or alter the percent product distribution. Similarly, SOD and CAT had no effect on AA metabolism in broken cells. However, as expected, pretreating platelets with indomethaoin blocked TxB2,and HHT formation (P <.0001). We conclude that SOD and CAT do not inhibit cyclooxygenase or lipoxygenase metabolism of free AA in platelets.  相似文献   

16.
Summary The effects of oxygen (100%), paraquat (0.5 mM), and copper (0.1 mM) on the growth and the biosynthesis of the antioxidant enzymes, superoxide dismutase (SOD) and catalase, were studied in Saccharomyces cerevisiae grown in glucose-limited chemostat cultures. The effect of dilution rates (D, h−1) on cell mass, glucose consumption, ethanol production, oxygen uptake, and specific activities of SOD and catalase were also investigated at each steady state. SOD was optimally produced at D-values between 0.22 and 0.26 h−1 in the presence of oxygen or paraquat, and at D-values greater than 0.17 h−1 when copper was used. On the other hand, catalase activity decreased with increasing D-values. However, the presence of copper or 100% oxygen repressed catalase activity at low D-values (D<0.1 h−1), and decreased the rate of oxygen uptake at all D-values tested. The presence of paraquat affected the rate of oxygen uptake only at high D-values (D>0.22 h−1). We also studied the effect of oxygen concentration on the biosynthesis of SOD and catalase at D=0.1 h−1. The data clearly show that synthesis of SOD and catalase, though correlated with changes in oxygen tension, are independent of one another. Paper Number 10871 of the Journal Series of North Carolina Agricultural Research Service, Raleigh, NC 27 695. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentioned  相似文献   

17.
The use of high oxygen concentrations and high mean airway pressures during mechanical ventilation of premature newborn infants with respiratory distress syndrome leads in 20%–30% of the survivors to chronic lung disease. This study explores if exogenous polyethylene glycol conjugated superoxide dismutase (PEG-SOD) and catalase (PEG-CAT) mitigate oxygen toxicity in premature lambs with respiratory distress syndrome. Six pairs of premature lambs were delivered by cesarean section and treated by tracheal instillation of 60 mg natural sheep surfactant/kg/body weight. After birth, all lambs were ventilated with 100% oxygen, and one of each pair received a single intravenous injection of 1 million U/kg PEG-CAT and 50,000 U/kg PEG-SOD. At 8 h of age or after respiratory failure was established, the lambs were killed and the lungs were removed intact. Lung damage was assessed by microscopy. The arterial blood gases, pH, and mean airway pressures of the lambs treated with PEG-SOD/PEG-CAT did not differ from those of the controls. Mean PaO2 was > 140 mmHg during the first 4 h of the experiments. In the lambs treated with PEG-SOD/PEG-CAT, SOD and CAT levels were very high during the study period and less bronchiolar epithelial damage and lung hemorrhages were found at microscopy.  相似文献   

18.
19.
CuZn superoxide dismutase, Mn superoxide dismutase, catalase, and glutathione peroxidase form the primary enzymic defense against toxic oxygen reduction metabolites in cells. To test the importance of these protective enzymes in the cellular radiation response, the enzymic activities of seven different human cell lines were determined in parallel with their clonogenic survival characteristics. A positive correlation between the content of glutathione peroxidase in cell lines and their extrapolation numbers (n) and quasithreshold doses (Dq) was detected. Between the cellular contents of the other enzymes and D0, n, and Dq no positive correlations could be established. An interesting finding was a very high Mn superoxide dismutase content in a malignant mesothelioma cell line P7, which had an extremely high D0, 5.0 Gy.  相似文献   

20.
The polarographic method of catalytic currents applied to a wave of oxygen permits the simultaneous assay of superoxide dismutase and catalase in biological materials with high speed and reproducibility and minimal manipulation of tissues. Washed red blood cells and tissue homogenates give rise to a strong polarographic maximum, apparently due to heme proteins, which interferes with the measurement. This maximum is suppressed by addition of approximately 0.2% plasma. Therefore, the determination of the two enzymes in red blood cells can be carried out by direct addition of whole blood to the polarographic solution. Thirty microliters of blood are enough for optimal determination of both enzymes. The method can determine superoxide dismutase and catalase at concentrations as low as 2 × 10−11m and 5 × 10−10m, respectively, and shows a linear correlation between measured activity and enzyme levels. The average values of the two enzymes in human red blood cells was found by this method to be 2.6 × 10−6m for catalase and 1.8 × 10−6m for superoxide dismutase, which agree with previously reported values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号