首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A new control policy for the on-line optimization of the nutrient supply in bakers yeast process is proposed. A feed rate corresponding to minimal substrate uptake time was shown to be optimal for cell yield and specific growth rate. Cultivation results of baker's yeast are presented.Nomenclature c glucose concentration in wort (mol.l–1) - C total glucose used (mol) - ce ethanol concentration in wort (mg.l–1) - cp glucose concentration in fresh medium (mol.l–1) - dt/dc glucose consumption time (sec.mol–1) - F substrate feed rate (litre.hr–1) - qc glucose uptake rate (mol.hr–1) - Qc specific glucose uptake rate (moll.g–1.hr–1) - qO2 oxygen uptake rate (mol.hr–1) - QO2 specific oxygen uptake rate (mol.g–1.hr–1) - rx productivity (g.l–1.hr–1) - t time (hr) - x biomass concentration (g.l–1) - X total biomass (g) - Yx/c cell yield (g.g–1): (g.mol–1) - Yo/c consumed oxygen to glucose ratio (mol.mol–1)  相似文献   

2.
Summary Optimal growth conditions for Zymomonas mobilis have been established using continuous cultivation methods. Optimal substrate utilization efficiency occurs with 2.5 g l–1 yeast extract, 2.0 g l–1 ammonium sulfate and 6.0 g l–1 magnesium sulfate in the media. Catabolic activity is at its maximum with glucose uptake rates of 16–18 g l–1 h–1 and ethanol production rates of 8–9 g l–1 h–1, Qg values of 22–26 and Qp values between 11 and 13, which results in 40 g l–1 h–1 ethanol yields using a 100 g l–1 substrate feed. Any increase in these parameters goes on cost of substrate utilization efficiency. Calcium pantothenate can not substitute yeast extract.Abbreviations G Glucose (%) - Pant Calcium pantothenate (mg l–1) - D Dilution rate (h–1) - NH4 Ammonium sulfate (%) - Mg Magnesium sulfate (%) - S1 Residual glucose in the fermenter (g l–1) - S0 Glucose feed (g l–1) - Eth Ethanol concentration (g l–1) - GUR Glucose uptake rate (g l–1 h–1) - Qg Specific glucose uptake rate (g g–1 h–1) - Qp Specific ethanol production rate (g g–1 h–1) - EPR Ethanol production rate (g l–1 h–1) - Yg Yield coefficient for glucose (g g–1) - Yp Conversion efficiency (%) - C Biomass concentration (g l–1) Present address: (Until June 1982) Institut für Mikrobiologie, TH Darmstadt, 6100 Darmstdt, Federal Republic of Germany  相似文献   

3.
Inorganic nitrogen and soluble reactive phosphate (o-P) concentrations were measured in the water of a marsh and in its interstitial water at two sites, and in the river water of a floodplain marsh of the Lower Paraná River. These values were compared with the N and P concentration in sediments and macrophyte biomass in order to assess nutrient availability, fate and storage capacity. High variability was found in the interstitital water using a 1 cm resolution device. Nitrate was never detected in the pore water. Depth averaged NH4 + concentrations in the upper 30 cm layer often ranged from N = 1.5 to 1.8 mg l-1, but showed a pronounced minimum (0.5–0.7 mg l-1), close to (March 95), or relatively soon after (May 94) the end of the macrophyte growing season. Soluble phosphate showed a large variation between P = 0.1–1.1 mg l-1 without any discernible seasonal pattern. NH4 + depletion in the pore water concentration and low N/P ratios (3.7 by weight) within the macrophyte biomass at the end of the growing period suggest that available N limits plant growth. NH4 + and o-P concentrations were 35 and 7 times higher, respectively, in the pore water than in the overlying marsh, suggesting a permanent flux of nutrients from the sediments. o-P accumulate in the marsh leading to higher concentrations than in the incoming river. NH4 + did not accumulate in the marsh, and no significant differences were observed between the river and the marsh water, while the NO3 - contributed by the river water was depleted within the marsh, caused probably by coupled nitrification-denitrification at the sediment–water interface. Although an order of magnitude smaller, the pore water pool can supply enough nutrients to build up the macrophyte biomass pool, but only if a fast turnover is attained. The Paraná floodplain marsh retains a large amount of nutrients being stored mainly in the sediment compartment.  相似文献   

4.
Mäkelä  Kalervo  Tuominen  Liisa 《Hydrobiologia》2003,492(1-3):43-53
Chemical profiles of nutrients at the sediment–water interface were measured in the northern Baltic Sea. A whole core squeezer technique capable of mm-scale resolution was used to obtain the vertical profiles of NO3 , NO2 , o-P, NH4 + and Si in the soft bottom sediments. The profiles were compared with nutrient flux and denitrification measurements. In the Gulf of Finland, the profiles revealed a marked chemical zonation in NO3 and NO2 distribution indicating strong potential of nitrification just under the sediment surface followed by a layer of denitrification down to a depth of 30 mm. Below the depth of 20 mm NO3 was usually absent, whereas other nutrients were increasing steadily in concentration. A distinct minimum of NO3 was observed at the sediment–water interface, suggesting NO3 uptake by a microbial biofilm and/or active denitrification at the suboxic microniches usually present in organic-rich sediments. At the deep stations in the Baltic Proper, the NO3 concentration in pore water, as well as denitrification, were very low. The concentrations of NH4 +, o-P and Si were usually increasing steadily with depth.  相似文献   

5.
PVA-cryogels entrapping about 109 cells of Acidithiobacillus ferrooxidans per ml of gel were prepared by freezing-thawing procedure, and the biooxidation of Fe2+ by immobilized cells was investigated in a 0.365 l packed-bed bioreactor. Fe2+ oxidation fits a plug-flow reaction model well. A maximum oxidation rate of 3.1 g Fe2+ l–1 h–1 was achieved at the dilution rate of 0.4 h–1 or higher, while no obvious precipitate was determined at this time. In addition, cell-immobilized PVA-cryogels packed in bioreactor maintained their oxidative ability for more than two months under non-sterile conditions. Nomenclature: C A0 – Concentration of Fe2+ in feed stream (g l–1) C A – Concentration of Fe2 + in outlet stream (g l– 1) D – Dilution rate of the packed-bed bioreactor (h–1) F – Volumetric flow rate of iron solution (l h–1) F A0 – Mass flow rate of Fe2+ in the feed stream (g h–1) K – Kinetic constant (l l–1 h–1) r A – Oxidation rate of Fe2+ (g l–1 h–1) V – Volume of packed-bed bioreactor (l) X A – Conversion ratio of Fe2+ (%)  相似文献   

6.
Summary Water turnover rate (WTR), urine concentration and field metabolic rate (FMR) were examined in house mice, Mus domesticus, permanently inhabiting roadside verge areas and seasonally invading crops in semi-arid wheatlands in South Australia. FMR was approximately proportional to body mass0.5 and mean values varied from 4.8 ml CO2 g–1h–1 (2.9 kJ g–1d–1) in autumn and winter, to 7.0 ml CO2 g–1h–1 (4.2 kJ g–1d–1) in maturing crops during spring. WTR was independent of body mass, indicating that larger mice were selecting a diet containing moister foods. WTR was low in summer and high in winter, and in mice from crops varied from 165 ml l–1 body water d–1 (122 ml kg–1d–1) to 1000 ml l–1d–1 (725 ml kg–1d–1). Seasonal changes in WTR were less extreme on the roadside, where a greater diversity of food was available. In the crops, breeding occurred throughout summer during two of three years, but the population increased only in the one summer when mice had marginally higher WTR. On the roadside breeding and population growth were continuous during summer, except in a drought year. Avcrage urine concentration was inversely related to WTR, and varied from 2.0 to 4.8 Osm l–1. The data indicate that the water conserving abilities of mice equal those of many desert rodents. The water conserving abilities of mice living in crops during summer were fully extended, and in some years aridity limited breeding success and population levels. The degree of moisture stress to which mice are exposed during summer appears to depend not only on rainfall but also on other factors such as availability of food and shelter, and the level of weed infestation in crops.  相似文献   

7.
A mesocosm experiment in 24 enclosures (6 m3) started at the end of June 1996 in a highly eutrophic shallow lake, Lake Köyliönjärvi (SW Finland). The original factorial design with nutrient, fish and macrophyte treatments was lost due to strong winds causing leakages. However, after the walls were made leak-proof again on July 11, the planktonic communities developed in divergent ways. On July 31 there was a tenfold variation in total crustacean biomass among the enclosures and the lake (40.2–417.5 g C l–1), and chlorophyll a varied from 9.5 to 67.0 g l–1. Here, the single-day data on the 25 planktonic communities is analysed by means of correlation and factor analysis in order to identify factors controlling the protozoans, with particular emphasis on ciliates. The data set comprised: total phosphorus, nitrogen, chlorophyll, bacteria, autotrophic picoplankton, heterotrophic flagellates, abundance and species composition of ciliates, phytoplankton and metazooplankton. The results indicate that although the total ciliate abundance (ranging from 16.2 to 95.0 ind l–1) was controlled by food resources, the observed differences in ciliate community structure could be attributed partly to differential predation by metazooplankton. The effect of Daphnia cucullata, the dominant daphnid cladoceran, was stronger than that of other metazoans.  相似文献   

8.
Summary Submerged batch cultivation under controlled environmental conditions of pH 3.8, temperature 30°C, and KLa200 h–1 (above 180 mMO2 l –1 h–1 oxygen supply rate) produced a maximum (12.0 g·l –1) SCP (Candida utilis) yield on the deseeded nopal fruit juice medium containing C/N ratio of 7.0 (initial sugar concentration 25 g·l –1) with a yield coefficient of 0.52 g cells/g sugar. In continuous cultivation, 19.9 g·l –1 cell mass could be obtained at a dilution rate (D) of 0.36 h–1 under identical environmental conditions, showing a productivity of 7.2 g·l –1·h–1. This corresponded to a gain of 9.0 in productivity in continuous culture over batch culture. Starting with steady state values of state variables, cell mass (CX–19.9 g·l –1), limiting nutrient concentration (Cln–2.5 g·l –1) and sugar concentration (CS–1.5 g·l –1) at control variable conditions of pH 3.8, 30°C, and KLa 200 h–1 keeping D=0.36 h–1 as reference, transient response studies by step changes of these control variables also showed that this pH, temperature and KLa conditions are most suitable for SCP cultivation on nopal fruit juice. Kinetic equations obtained from experimental data were analysed and kinetic parameters determined graphically. Results of SCP production from nopal fruit juice are described.Nomenclature Cln concentration of ammonium sulfate (g·l –1) - CS concentration of total sugar (g·l –1) - CX cell concentration (g·l –1) - D dilution rate (h–1) - Kln Monod's constant (g·l –1) - m maintenance coefficient (g ammonium sulfate cell–1 h–1) - m(S) maintenance coefficient (g sugar g cell–1 h–1) - t time, h - Y yield coefficient (g cells/g ammonium sulfate) - Ym maximum of Y - YS yield coefficient based on sugar consumed (g cells · g sugar–1) - YS(m) maximum value of YS - µm maximum specific growth rate constant (h–1)  相似文献   

9.
Summary Chaetomium cellulolyticum (ATCC 32319) was cultivated on glucose, Avicel and/or Sigmacell in a 20-1 stirred tank batch reactor. The substrate (cellulose) concentration, the cell mass concentration (through protein and/or nitrogen content), reducing sugar concentration, the enzyme activity, the alkali consumption rate, the dissolved O2 and CO2 concentrations in the outlet gas were measured. The specific growth rate, the substrate yield coefficient, cell productivity, the oxygen consumption rate, the CO2 production rate and the volumetric mass transfer coefficient were determined. At the beginning of the growth phase the oxygen utilization rate exhibits a sharp maximum. This maximum could be used to start process control. Because of the long lag phase periodic batch operation is recommended.Symbols CP cell protein concentration (g l–1) - FPA FP enzyme activity (IU l–1) - GP dissolved protein concentration (g l–1) - IU international unit of enzyme activity - kLa volumetric mass tranfer coefficient (h–1) - LG alkali (1 n NaOH) consumption (ml) - LGX specific alkali consumption rate per cell mass (ml g–1 h–1) - P cell mass productivity (g l–1 h–1) - specific oxygen consumption rate per cell mass (g g–1 h–1) - Q aeration rate (volumetric gas flow rate per volume of medium, vvm) (min–1) - N impeller speed (revolution per minute, rpm) (min–1) - S substrate concentration (g l–1) - S0 S at tF=0 (g l–1) - S0 S in feed (g l–1) - SR acid consumption (ml) - TDW total dry weight (g l–1) - T temperature (° C) - tF cultivation time (h) - U substrate conversion - X cell mass concentration (g l–1) - YX/S vield coefficient - specific growth rate (h–1) - m maximum specific growth rate (h–1)  相似文献   

10.
Summary The growth parameters ofPenicillium cyclopium have been evaluated in a continuous culture system for the production of fungal protein from whey. Dilution rates varied from 0.05 to 0.20 h–1 under constant conditions of temperature (28°C) and pH (3.5). The saturation coefficients in the Monod equation were 0.74 g l–1 for lactose and 0.14 mg l–1 for oxygen, respectively. For a wide range of dilution rates, the yield was 0.68 g g–1 biomass per lactose and the maintenance coefficient 0.005 g g–1 h–1 lactose per biomass, respectively. The maximum biomass productivity achieved was 2 g l–1 h–1 biomass at dilution rates of 0.16–0.17 h–1 with a lactose concentration of 20 g l–1 in the feed. The crude protein and total nucleic acid contents increased with a dilution rate, crude protein content varied from 43% to 54% and total nucleic acids from 6 to 9% in the range of dilution rates from 0.05 to 0.2 h–1, while the Lowry protein content was almost constant at approximately 37.5% of dry matter.Nomenclature (mg l–1) Co initial concentration of dissolved oxygen - (h–1) D dilution rate - (mg l–1) K02 saturation coefficient for oxygen - (g l–1) Ks saturation coefficient for substrate - (g g–1 h–1) lactose per biomass) m maintenance energy coefficient - (mM g–1 h–1O2 per biomass) Q02 specific oxygen uptake rate - (g l–1) S residual substrate concentration at steady state - (g l–1) So initial substrate concentration in feed - (min) t1/2 time when Co is equal to Co/2 - (g l–1) X biomass concentration - (g l–1) X biomass concentration at steady state - (g g–1 biomass per lactose) YG yield coefficient for cell growth - (g g–1 biomass per lactose) Yx/s overall yield coefficient - (h–1) specific growth rate  相似文献   

11.
Three concentrations of the herbicide simazine were added to in situ macrophyte-free enclosures with and without sediment contact. Changes in the concentrations of total ammonia, total reactive phosphorus, and silicon were monitored, and net sediment flux was calculated from the difference in nutrient concentration between bottomed and unbottomed enclosures. Rates of sediment release for all three nutrients were unaltered by 0.1 mg · l–1 simazine in relation to a control, whereas rates were increased proportionally at 1.0 and 5.0 mg · l–1. These results suggest that increases in dissolved nutrients commonly observed following herbicide treatment of shallow waters may not be attributable solely to macrophyte decay, byt may also involve a complex interaction of biotic and abiotic sediment nutrient exchange processes.Contribution Number 103 from the University of Manitoba Field Station, Delta Marsh, Canada  相似文献   

12.
Simultaneous nitrification and denitrification using a mixed methanotrophic culture was investigated. When both NO3 -N (108 mg l–1) and NH3-N (59 mg l–1) were added into batch reactors, nitrate removal was complete within 10 h at the rate of 47 mg NO3 -N g VSS–1 day–1 when dissolved oxygen (DO) concentration was maintained at 2 mg DO l–1. Ammonia removal started simultaneously with nitrate removal at a slower rate of 14 NH3-N g VSS–1 day–1. No significant accumulation of nitrite or nitrate during ammonia utilization suggested the occurrence of simultaneous nitrification and denitrification.  相似文献   

13.
The applicability of batch respirometry, as a simple technique for monitoring off-line nitrifying activity and kinetic parameters, was evaluated using two sets of ammonia and nitrite concentrations. The O2 uptake rate (OUR) profiles obtained from the assays were adjusted to a substrate inhibition model. The maximum specific ammonia-oxidizing biomass activity (rSmax) was 0.079 g N-NH4 + g VSS–1 d–1 with a half saturation coefficient (KS) of 11 mg N-NH4 + l–1 and an inhibition coefficient (Ki) of 3300 mg N-NH4 + l–1. Besides, the maximum specific value of nitrite-oxidizing activity was 0.082 g N-NO2 g VSS–1 d–1 with a KS of 4.1 mg N-NO2 l–1 and Ki of 1400 mg N-NO2 l–1.  相似文献   

14.
Phytoplankton production and respiration in the Blue Nile and White Nile at Khartoum were measured during the period November 1969–January 1971 using the light and dark bottle technique. Maximum rates of production coincided with periods of maximum phytoplankton densities. In the Blue Nile gross production varied between 0.00 gCm–3d–1 during the flood season and 2.19 gCm–3d–1 (0.49 mgO2l–1h–1) during November 1969. In the White Nile the range was from 0.41 gCm–3d–1 (0.09 MgO2l–1h–1) in May to 3.74 gCm–3d–1 (0.83 MgO2l–1h–1) in November. The maximum rates of respiration in the Blue Nile and White Nile were 0.10 and 0.63 MgO2l–1h–1 respectively. The ratios net:gross production were generally higher in the White Nile than in the Blue Nile.  相似文献   

15.
The Interlake region of central Manitoba is characterized by numerous shallow, relatively unproductive wetlands. Typically, these wetlands are poorly utilized by breeding waterfowl in spite of generally reliable water conditions during spring and summer. Nutrient additions were made throughout the growing season to 18 PVC enclosures installed in a low productivity wetland near Lundar, Manitoba. Inorganic phosphorus (as H3PO4) and nitrogen (as NH4NO3) were added at bi-weekly intervals during the summer of 1988 at target rates of 0 and 0, 30 and 800, and 60 and 1600 µg 1–1 (P and N respectively). Algal and invertebrate communities were monitored from mid-June to September, 1988. Phytoplankton, epiphytic periphyton and metaphyton communities demonstrated significant increases in biomass over the treatment period. No significant differences in epipelon community biomass were noted. An examination of several indicators of nutrient deficiency indicated that algal productivity was moderately to severely limited in all enclosures, with little or no mitigative effects noted due to nutrient addition treatment. No significant differences in numbers or biomass of total invertebrates or invertebrate functional groups attributed to fertilization were observed. Nutrient additions did increase community productivity, however the levels used in this study were insufficient to yield a sustained increase in primary or secondary productivity.  相似文献   

16.
The production of extracellular enzymes by the thermophilic fungus Thermomyces lanuginosus was studied in chemostat cultures at a dilution rate of 0.08 h–1 in relation to variation in the ammonium concentration in the feed medium. Under steady state conditions, three growth regimes were recognised and the production of several extracellular enzymes from T. lanuginosus was recorded under different nutrient limitations ranging from nitrogen limitation to carbon/energy limitation. The range and the production of carbohydrate hydrolysing enzymes and lipase increased from Regime I (NH4Cl 600 mg l–1) to Regime III (NH4CI 1200 mg l–1), whereas production of protease was highest in Regime II (600 mg l–1 < NH4Cl <1200 mg l–1).  相似文献   

17.
Glucose repressed xylose utilization inCandida tropicalis pre-grown on xylose until glucose reached approximately 0–5 g l–1. In fermentations consisting of xylose (93 g l–1) and glucose (47 g l–1), xylitol was produced with a yield of 0.65 g g–1 and a specific rate of 0.09 g g–1 h–1, and high concentrations of ethanol were also produced (25 g l–1). If the initial glucose was decreased to 8 g l–1, the xylitol yield (0.79 g g–1) and specific rate (0.24 g g–1 h–1) increased with little ethanol formation (<5 g l–1). To minimize glucose repression, batch fermentations were performed using an aerobic, glucose growth phase followed by xylitol production. Xylitol was produced under O2 limited and anaerobic conditions, but the specific production rate was higher under O2 limited conditions (0.1–0.4 vs. 0.03 g g–1 h–1). On-line analysis of the respiratory quotient defined the time of xylose reductase induction.  相似文献   

18.
The death of the hybridoma VO 208 in a continuous culture at pH 7 and 6.8 was investigated by measuring both the appearance of visible dead cells which do not exclude the trypan blue dye and the release of lactate dehydrogenase (LDH) in the culture medium. The intracellular LDH was found to be completely released either when live cells lysed or when they were transformed into visible dead cells. No significant lysis of blue dead cells could be observed at the two different pH. Using a LDH balance over the culture system, cell lysis was found negligible at pH 7, but accounted for 20% of the total cell death at pH 6.8. A methodology is proposed to evaluate the rate constants of hybridoma lysis and total death. For the investigated cell line in continuous culture, the calculated total cell death rate constant was found to increase from 0.002 h–1 to 0.01 h–1 when decreasing the pH from 7 to 6.8.Abbreviations D dilution rate (h–1) - kb specific trypan-blue dead cells appearance rate (h–1) - kL specific lysis rate of viable cells (h–1) - kd specific death rate (h-1) - LDH0 lactate dehydrogenase activity in the feed culture medium (IU.l–1) - LDH lactate dehydrogenase activity in the outlet culture medium (IU.l–1) - LDHi intracellular lactate dehydrogenase activity of viable cells (IU.10–9 cells) - rLDH total rate of LDH release (IU.h–1.L–1) - rb transformation rate of viable cells into blue dead cells (109 cells.h–1.L–1) - xv viable cell concentration (109 cells.l–1) - xb trypan-blue dead cell concentration (109 cells.l–1)  相似文献   

19.
Production of the indole alkaloids, ajmalicine or catharanthine, in cell suspension cultures of Catharanthus roseus was enhanced by cerium (CeO2 and CeCl3), yttrium (Y2O3) and neodymium (NdCl3). The yield of ajmalicine in these treated-cultures reached 51 mg l–1 (CeO2), 40 mg l–1 (CeCl3), 41 mg l–1 (Y2O3) and 49 mg l–1 (NdCl3) while catharanthine production reached to 36 mg l–1 (CeO2) and 31 mg l–1 (CeCl3). A major portion of increased alkaloids was released into medium in these treatments. But Sm2O3, SmCl3, La2O3, LaCl3, complex of chromium (III)-titanium (IV) and NaSeO4 treatments had little effect on alkaloid production of C. roseus cell cultures.  相似文献   

20.
Effects of the triazine herbicides simazine and terbutryn on total biovolume and community structure of haptobenthic periphytic algal communities within in situ marsh enclosures are described. Levels of biovolume inhibition in excess of 98% relative to an untreated control were observed at all levels of terbutryn tested (0.01, 0.1 and 1.0 mg l–1). No reduction in total biovolume was observed at 0.1 mg l–1 simazine, with increasing inhibition (to 98%) at 1.0 and 5.0 mg l–1. Following incidental enclosure flooding and removal of herbicide, increases in biovolume were observed in all but the highest treatment levels, with rates of colonization similar to that of the control.Pre-flood community structure of periphyton in simazine-treated enclosures was qualitatively similar to that of the control, while a small blue-green alga was abundant only in terbutryn-treated enclosures. After flooding, substratum colonization in most experimental enclosures was dominated by the diatom Cocconeis placentula, while this taxon accounted for about 25% of total biovolume on substrata from the control and 0.1 mg l–1 simazine enclosures. It is concluded that periphyton successional processes, which normally lead to the development of a complex 3-dimensional mat, may be averted by short herbicide exposures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号