首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A warfarin‐resistant strain and a warfarin‐susceptible strain of wild rats (Rattus norvegicus) maintained in enclosures of the National Veterinary School of Lyon (France) were studied to determine the mechanism of the resistance to anticoagulant rodenticides. A low vitamin K epoxide reductase (VKOR) activity has been reported for many resistant rat strains. As recently suggested, mutations in the vitamin K epoxide reductase subunit 1 (VKORC1) gene are the genetic basis of anticoagulant resistance in wild populations of rats from various locations in Europe. Here we report, for our strain, one of the seven described mutations (Tyr139Phe) for VKORC1 in rats. In addition, a low expression of mRNA encoding VKORC1 gene is observed in resistant rats, which could explain their low VKOR activity. We calculated kinetic parameters of VKOR in the warfarin‐resistant and warfarin‐susceptible rats. The Vmax and the Km of the VKOR obtained in resistant rats were lowered by 57 and 77%, respectively, compared to those obtained in susceptible rats. As a consequence, the enzymatic efficiency (Vm/Km) of the VKOR was similar between resistant and susceptible rats. This result could be a good explanation to the observation that no clinical signs of vitamin K deficiency was observed in the warfarin‐resistant strain, while a low VKOR activity was found. VKOR activity in warfarin‐resistant rats was poorly inhibited by warfarin (Ki for warfarin is 29 μM and 0.72 μM for resistant and susceptible rats, respectively). © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 19:379‐385, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20104  相似文献   

2.
Vitamin K-1 epoxide reductase activity was investigated in liver microsomal preparations from warfarin-resistant and -susceptible rats. One rat strain (TAS) is susceptible to the anticoagulant and lethal effects of warfarin and the other two strains are homozygous for warfarin resistance genes from either wild Welsh (HW) or Scottish (HS) rats. The enzyme in microsomal preparations from HW rat livers apparently has a reduced affinity for both warfarin and vitamin K-1 2,3-epoxide. The kinetic parameters for the enzyme activity in HS microsomal preparations indicated, however, that vitamin K-1 epoxide reductase in this warfarin-resistant strain was very similar, in respect of substrate and inhibitor affinities, to that prepared from susceptible (TAS) animals. Analysis of vitamin K-1 epoxide reductase activity in the livers of animals that had been orally treated with sodium warfarin (20 mg/kg body wt.) indicated that enzyme activity was inhibited in all three strains, although this dose is lethal only to animals of the TAS strain.  相似文献   

3.
Vitamin K epoxide reductase (VKOR) activity in liver microsomes from a susceptible and a genetically warfarin-resistant strain of mice (Mus Musculus domesticus) was analyzed to determine the mechanism of resistance to this 4-hydroxycoumarin derivative. Kinetic parameters for VKOR were calculated for each strain by incubating liver microsomes with vitamin K epoxide +/- warfarin. In susceptible mice, an Eadie-Hofstee plot of the data was not linear and suggested the involvement of at least two different components. Apparent kinetic parameters were obtained by nonlinear regression using a Michaelis--Menten model, which takes into account two enzymatic components. Component A presents a high Km and a high Vm, and as a consequence only an enzymatic efficiency Vm/Km was obtained (0.0024 mL/min/mg). Estimated warfarin Ki was 0.17 microM. Component B presented an apparent Km of 12.73 microM, an apparent Vm of 0.32 nmol/min/mg, and an apparent Ki for warfarin of 6.0 microM. In resistant mice, the enzymatic efficiency corresponding to component A was highly decreased (0.0003-0.00066 mL/min/mg) while the Ki for warfarin was not modified. The apparent Vm of component B was poorly modified between susceptible and resistant mice. The apparent Km of component B observed in resistant mice was similar to the Km observed in susceptible mice. These modifications of the catalytic properties are associated with a single nucleotide polymorphism (T175G) in the VKOR-C1 gene, which corresponds to a Trp59Gly mutation in the protein.  相似文献   

4.
The in vitro effects of two coumarin anticoagulants, warfarin and difenacoum, on rat liver microsomal vitamin K dependent carboxylase, vitamin K epoxidase, vitamin K epoxide reductase, and cytosolic vitamin K reductase (DT-diaphorase) from the livers of normal and a warfarin-resistant strain of rats have been determined. Millimolar concentrations of both coumarins are required to inhibit the carboxylase and epoxidase activities in both strains of rats. Sensitivity of DT-diaphorase to coumarin inhibition differs when a soluble or liposomal-associated substrate is used, but the diaphorases isolated from both strains of rats have comparable sensitivity. The anticoagulant difenacoum is an effective rodenticide in the warfarin-resistant strain of rats, and the only enzyme studied from warfarin-resistant rat liver that demonstrated a significant differential inhibition by the two coumarins used was the vitamin K epoxide reductase. This enzyme also showed the greatest sensitivity to coumarin inhibition among the enzymes studied. These results support the hypothesis that the physiologically important site of action of coumarin anticoagulants is the vitamin K epoxide reductase.  相似文献   

5.
The present study characterizes the anticoagulant resistance mechanism in a Danish bromadiolone-resistant strain of Norway rats (Rattus norvegicus), with a Y139C VKORC1 mutation. We compared liver expression of the VKORC1 gene, which encodes a protein of the vitamin K 2,3-epoxide reductase complex, the NQO1 gene, which encodes a NAD(P)H quinone dehydrogenase and the Calumenin gene between bromadiolone-resistant and anticoagulant-susceptible rats upon saline and bromadiolone administration. Additionally, we established the effect of bromadiolone on the gene expression in the resistant and susceptible phenotype. Bromadiolone had no effect on VKORC1 and NQO1 expression in resistant rats, but induced significantly Calumenin expression in the susceptible rats. Calumenin expression was similar between the resistant and the susceptible rats upon saline administration but twofold lower in resistant rats after bromadiolone treatment. These results indicate that Danish bromadiolone resistance does not involve an overexpression of calumenin. Independent of the treatment, we observed a low VKORC1 expression in resistant rats, which in conjugation with the Y139C polymorphism most likely explains the low VKOR activity and the enhanced need for vitamin K observed in Danish resistant rats. Furthermore the bromadiolone resistance was found to be associated with a low expression of the NQO1 gene.  相似文献   

6.
Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1), expressed in HEK 293T cells and localized exclusively to membranes of the endoplasmic reticulum, was found to support both vitamin K 2,3-epoxide reductase (VKOR) and vitamin K reductase enzymatic activities. Michaelis-Menten kinetic parameters for dithiothreitol-driven VKOR activity were: K(m) (μM) = 4.15 (vitamin K(1) epoxide) and 11.24 (vitamin K(2) epoxide); V(max) (nmol·mg(-1)·hr(-1)) = 2.57 (vitamin K(1) epoxide) and 13.46 (vitamin K(2) epoxide). Oxidative stress induced by H(2)O(2) applied to cultured cells up-regulated VKORC1L1 expression and VKOR activity. Cell viability under conditions of no induced oxidative stress was increased by the presence of vitamins K(1) and K(2) but not ubinquinone-10 and was specifically dependent on VKORC1L1 expression. Intracellular reactive oxygen species levels in cells treated with 2,3-dimethoxy-1,4-naphthoquinone were mitigated in a VKORC1L1 expression-dependent manner. Intracellular oxidative damage to membrane intrinsic proteins was inversely dependent on VKORC1L1 expression and the presence of vitamin K(1). Taken together, our results suggest that VKORC1L1 is responsible for driving vitamin K-mediated intracellular antioxidation pathways critical to cell survival.  相似文献   

7.
Vitamin K and 3- (and/or 2)-hydroxy-2,3-dihydro-2-methyl-3-phytyl-1,4-naphthoquinone (hydroxyvitamin K) have been identified as metabolites of vitamin K 2,3-epoxide incubated with hepatocytes isolated from normal and warfarin-resistant rats. Dithiothreitol added to the extracellular medium differentially enhanced the formation of both metabolites: hydroxyvitamin K formation, almost undetectable in the absence of dithiothreitol, was particularly affected. Addition of the vitamin K 2,3-epoxide reductase inhibitors warfarin (5 to 100 microM) and brodifacoum (1 to 5 microM) to normal rat hepatocyte cultures produced a slight increase in hydroxyvitamin K formation and a marked inhibition of vitamin K formation. Brodifacoum was a weak inhibitor of hydroxyvitamin K formation at higher concentrations. Hepatocytes from warfarin-resistant rats catalyzed hydroxyvitamin K formation 1.5 to 2 times faster and vitamin K formation 1.5 to 2 times slower than did normal rat hepatocytes. The addition of warfarin to these cultures had no effect on epoxide metabolism to hydroxyvitamin K and only partially diminished metabolism to vitamin K. In contrast, brodifacoum (1 microM) addition produced 50% inhibition of hydroxyvitamin K formation and almost complete inhibition of vitamin K formation. These data suggest that in resistant, but not in normal rat hepatocytes, the vitamin K 2,3-epoxide reductase makes a significant contribution to hydroxyvitamin K formation. A second sulfhydryl-dependent pathway, present in both strains, is also involved in the formation of this metabolite. They also suggest that in resistant rats, warfarin inhibition of the vitamin K 2,3-epoxide reductase, and presumably the sulfhydryl-dependent vitamin K reductase, is incomplete and independent of concentration.  相似文献   

8.
The genetic basis of resistance to anticoagulants in rodents   总被引:4,自引:0,他引:4       下载免费PDF全文
Anticoagulant compounds, i.e., derivatives of either 4-hydroxycoumarin (e.g., warfarin, bromadiolone) or indane-1,3-dione (e.g., diphacinone, chlorophacinone), have been in worldwide use as rodenticides for >50 years. These compounds inhibit blood coagulation by repression of the vitamin K reductase reaction (VKOR). Anticoagulant-resistant rodent populations have been reported from many countries and pose a considerable problem for pest control. Resistance is transmitted as an autosomal dominant trait although, until recently, the basic genetic mutation was unknown. Here, we report on the identification of eight different mutations in the VKORC1 gene in resistant laboratory strains of brown rats and house mice and in wild-caught brown rats from various locations in Europe with five of these mutations affecting only two amino acids (Tyr139Cys, Tyr139Ser, Tyr139Phe and Leu128Gln, Leu128Ser). By recombinant expression of VKORC1 constructs in HEK293 cells we demonstrate that mutations at Tyr139 confer resistance to warfarin at variable degrees while the other mutations, in addition, dramatically reduce VKOR activity. Our data strongly argue for at least seven independent mutation events in brown rats and two in mice. They suggest that mutations in VKORC1 are the genetic basis of anticoagulant resistance in wild populations of rodents, although the mutations alone do not explain all aspects of resistance that have been reported. We hypothesize that these mutations, apart from generating structural changes in the VKORC1 protein, may induce compensatory mechanisms to maintain blood clotting. Our findings provide the basis for a DNA-based field monitoring of anticoagulant resistance in rodents.  相似文献   

9.
Lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone] has been shown to be a potent inhibitor of both vitamin K epoxide reductase and the dithiothreitol-dependent vitamin K quinone reductase of rat liver microsomes in vitro. These observations explain the anticoagulant activity of lapachol previously observed in both rats and humans. Lapachol inhibition of the vitamin K epoxide and quinone reductases resembled coumarin anticoagulant inhibition, and was observed in normal strain but not in warfarin-resistant strain rat liver microsomes. This similarity of action suggests that the lactone functionality of the coumarins is not critical for their activity. The initial-velocity steady-state inhibition patterns for lapachol inhibition of the solubilized vitamin K epoxide reductase were consistent with tight binding of lapachol to the oxidized form of the enzyme, and somewhat lower affinity for the reduced form. It is proposed that lapachol assumes a 4-enol tautomeric structure similar to that of the 4-hydroxy coumarins. These structures are analogs of the postulated hydroxyvitamin K enolate intermediate bound to the oxidized form of the enzyme in the chemical reaction mechanism of vitamin K epoxide reductase, thus explaining their high affinity.  相似文献   

10.
Vitamin K is involved in the γ-carboxylation of the vitamin K-dependent proteins, and vitamin K epoxide is a by-product of this reaction. Due to the limited intake of vitamin K, its regeneration is necessary and involves vitamin K 2,3-epoxide reductase (VKOR) activity. This activity is known to be supported by VKORC1 protein, but recently a second gene, VKORC1L1, appears to be able to support this activity when the encoded protein is expressed in HEK293T cells. Nevertheless, this protein was described as being responsible for driving the vitamin K-mediated antioxidation pathways. In this paper we precisely analyzed the catalytic properties of VKORC1L1 when expressed in Pichia pastoris and more particularly its susceptibility to vitamin K antagonists. Vitamin K antagonists are also inhibitors of VKORC1L1, but this enzyme appears to be 50-fold more resistant to vitamin K antagonists than VKORC1. The expression of Vkorc1l1 mRNA was observed in all tissues assayed, i.e. in C57BL/6 wild type and VKORC1-deficient mouse liver, lung, and testis and rat liver, lung, brain, kidney, testis, and osteoblastic cells. The characterization of VKOR activity in extrahepatic tissues demonstrated that a part of the VKOR activity, more or less important according to the tissue, may be supported by VKORC1L1 enzyme especially in testis, lung, and osteoblasts. Therefore, the involvement of VKORC1L1 in VKOR activity partly explains the low susceptibility of some extrahepatic tissues to vitamin K antagonists and the lack of effects of vitamin K antagonists on the functionality of the vitamin K-dependent protein produced by extrahepatic tissues such as matrix Gla protein or osteocalcin.  相似文献   

11.
The vitamin K-dependent gamma-carboxylation system in the endoplasmic reticulum membrane responsible for gamma-carboxyglutamic acid modification of vitamin K-dependent proteins includes gamma-carboxylase and vitamin K 2,3-epoxide reductase (VKOR). An understanding of the mechanism by which this system works at the molecular level has been hampered by the difficulty of identifying VKOR involved in warfarin sensitive reduction of vitamin K 2,3-epoxide to reduced vitamin K(1)H(2), the gamma-carboxylase cofactor. Identification and cloning of VKORC1, a proposed subunit of a larger VKOR enzyme complex, have provided opportunities for new experimental approaches aimed at understanding the vitamin K-dependent gamma-carboxylation system. In this work we have engineered stably transfected baby hamster kidney cells containing gamma-carboxylase and VKORC1 cDNA constructs, respectively, and stably double transfected cells with the gamma-carboxylase and the VKORC1 cDNA constructs in a bicistronic vector. All engineered cells showed increased activities of the enzymes encoded by the cDNAs. However increased activity of the gamma-carboxylation system, where VKOR provides the reduced vitamin K(1)H(2) cofactor, was measured only in cells transfected with VKORC1 and the double transfected cells. The results show that VKOR is the rate-limiting step in the gamma-carboxylation system and demonstrate successful engineering of cells containing a recombinant vitamin K-dependent gamma-carboxylation system with enhanced capacity for gamma-carboxyglutamic acid modification. The proposed thioredoxin-like (132)CXXC(135) redox center in VKORC1 was tested by expressing the VKORC1 mutants Cys(132)/Ser and Cys(135)/Ser in BHK cells. Both of the expressed mutant proteins were inactive supporting the existence of a CXXC redox center in VKOR.  相似文献   

12.
Vitamin K epoxide reductase: homology, active site and catalytic mechanism   总被引:6,自引:0,他引:6  
Vitamin K epoxide reductase (VKOR) recycles reduced vitamin K, which is used subsequently as a co-factor in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. VKORC1, a subunit of the VKOR complex, has recently been shown to possess this activity. Here, we show that VKORC1 is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. Four cysteine residues and one residue, which is either serine or threonine, are identified as likely active-site residues. In some plant and bacterial homologues the VKORC1 homologous domain is fused with domains of the thioredoxin family of oxidoreductases. These might reduce disulfide bonds of VKORC1-like enzymes as a prerequisite for their catalytic activities.  相似文献   

13.
The vitamin K-dependent gamma-carboxylation system is responsible for post-translational modification of vitamin K-dependent proteins, converting them to Gla-containing proteins. The system consists of integral membrane proteins located in the endoplasmic reticulum membrane and includes the gamma-carboxylase and the warfarin-sensitive enzyme vitamin K(1) 2,3-epoxide reductase (VKOR), which provides gamma-carboxylase with reduced vitamin K(1) cofactor. In this work, an in vitro gamma-carboxylation system was designed and used to understand how VKOR and gamma-carboxylase work together as a system and to identify factors that can regulate the activity of the system. Results are presented that demonstrate that the endoplasmic reticulum chaperone protein calumenin is associated with gamma-carboxylase and inhibits its activity. Silencing of the calumenin gene with siRNA resulted in a 5-fold increase in gamma-carboxylase activity. The results provide the first identification of a protein that can regulate the activity of the gamma-carboxylation system. The propeptides of vitamin K-dependent proteins stimulate gamma-carboxylase activity. Here we show that the factor X and prothrombin propeptides do not increase reduced vitamin K(1) cofactor production by VKOR in the system where VKOR is the rate-limiting step for gamma-carboxylation. These findings put calumenin in a central position concerning regulation of gamma-carboxylation of vitamin K-dependent proteins. Reduced vitamin K(1) cofactor transfer between VKOR and gamma-carboxylase is shown to be significantly impaired in the in vitro gamma-carboxylation system prepared from warfarin-resistant rats. Furthermore, the sequence of the 18-kDa subunit 1 of the VKOR enzyme complex was found to be identical in the two rat strains. This finding supports the notion that different forms of genetic warfarin resistance exist.  相似文献   

14.
A new metabolite of vitamin K, 2(3)-hydroxy-2,3-dihydro-2-methyl,3-phytyl-1,4-naphthoquinone (hydroxyvitamin K), has been identified as a product of vitamin K epoxide metabolism in hepatic microsomes from warfarin-resistant rats, but not in those derived from normal rats. The structure was determined by comparison of the high performance liquid chromatography retention times, UV, IR, CD, and mass spectra of the unknown with chemically synthesized standards. Alterations in the formation of hydroxyvitamin K occur in parallel with alterations in total vitamin K epoxide conversion with respect to reaction time, extent of reaction, detergent stimulation, and inhibition by warfarin. Thus, hydroxyvitamin K appears to be a product of the warfarin-resistant vitamin K epoxide reductase. It is neither a substrate nor an inhibitor of epoxide reduction. Hydroxyvitamin K is formed from both enantiomers of racemic vitamin K epoxide with little stereoselectivity for the configuration of either the oxirane ring or the phytyl side chain. The reaction is stereospecific; however, the biologically formed (+)-vitamin K epoxide yields exclusively (+)-3-hydroxyvitamin K. Observation of this product is discussed as a key to understanding the normal reaction mechanism of the enzyme.  相似文献   

15.

Background

Warfarin directly inhibits vitamin K 2,3-epoxide reductase (VKOR) enzymes. Since the early 1970s, warfarin inhibition of vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1), an essential enzyme for proper function of blood coagulation in higher vertebrates, has been studied using an in vitro dithiothreitol (DTT) driven enzymatic assay. However, various studies based on this assay have reported warfarin dose–response data, usually summarized as half-maximal inhibitory concentration (IC50), that vary over orders of magnitude and reflect the broad range of conditions used to obtain VKOR assay data.

Methods

We standardized the implementation of the DTT-driven VKOR activity assay to measure enzymatic Michaelis constants (Km) and warfarin IC50 for human VKORC1. A data transformation is defined, based on the previously confirmed bi bi ping-pong mechanism for VKORC1, that relates assay condition-dependent IC50 to condition-independent Ki.

Results

Determination of the warfarin Ki specifically depends on measuring both substrate concentrations, both Michaelis constants for the VKORC1 enzyme, and pH in the assay.

Conclusion

The Ki is not equal to the IC50 value directly measured using the DTT-driven VKOR assay.

General significance

In contrast to warfarin IC50 values determined in previous studies, warfarin inhibition expressed as Ki can now be compared between studies, even when the specific DTT-driven VKOR assay conditions differ. This implies that warfarin inhibition reported for wild-type and variant VKORC1 enzymes from previous reports should be reassessed and new determinations of Ki are required to accurately report and compare in vitro warfarin inhibition results.  相似文献   

16.
Phylloquinone epoxide (vitamin K1-oxide), a metabolite of phylloquinone, does not inhibit prothrombin synthesis when administered in high doses to Sprague-Dawley and warfarin-resistant rats. Further, it does not accumulate to presumed inhibitory levels in the livers of rats given physiological doses of 3H-phylloquinone when they are anticoagulated with warfarin. These data do not support the Bell-Matschiner hypothesis that warfarin exerts its action by inhibiting the vitamin K oxide reductase which results in the accumulation of vitamin K oxide and the inhibition of vitamin K at its active site. Rather, our data support the view that vitamin K and warfarin combine at different sites with a single regulatory protein which serves as a conformational switch for prothrombin synthesis.  相似文献   

17.
Despite the difficulty in administering a safe dose regimen and reports of emerging resistance, warfarin (1) remains the most widely-used oral anticoagulant for the prevention and treatment of thrombosis in humans globally. Systematic substitution of the warfarin phenyl ring with either 1,3,5,7-cyclooctatetraene (COT) (2), cubane (3), cyclohexane (4) or cyclooctane (5) and subsequent evaluation against the target enzyme, vitamin K epoxide reductase (VKOR), facilitated interrogation of both steric and electronic properties of the phenyl pharmacophore. The tolerance of VKOR to further functional group modification (carboxylate 14, PTAD adduct 15) was also investigated. The results demonstrate the importance of both annulene conferred π-interactions and ring size in the activity of warfarin.  相似文献   

18.
R G Bell 《Federation proceedings》1978,37(12):2599-2604
Vitamin K is primarily located in hepatic microsomes, where the vitamin K-dependent carboxylation in prothrombin synthesis occurs. Recent evidence supports the idea that the carboxylation is linked to the metabolism of the vitamin--specifically the cyclic interconversion of vitamin K and vitamin K epoxide. The primary site of action of coumarin and indandione anticoagulants appears to be an inhibition of the epoxide-to-vitamin K conversion in this cycle. There is a correlation between the inhibition of prothrombin synthesis and the regeneration of vitamin K from the epoxide by anticoagulants. In hamsters and warfarin-resistant rats prothrombin synthesis and the epoxide-K conversion are less sensitive to warfarin than in the normal rat. The epoxide-K conversion is impaired in resistant rats, which may explain their high vitamin K requirement. There is also a correlation between vitamin K epoxidation and vitamin K-dependent carboxylation, but the apparent link may be because vitamin K hydroquinone is an intermediate in the formation of the epoxide and also the active form in carboxylation. The vitamin K-epoxide cycle is found in extrahepatic tissues such as kidney, spleen, and lung and is inhibited by warfarin.  相似文献   

19.
Abstract

Human vitamin K epoxide reductase (hVKOR) is a small integral membrane protein involved in recycling vitamin K. hVKOR produces vitamin K hydroquinone, a crucial cofactor for γ-glutamyl carboxylation of vitamin K dependent proteins, which are necessary for blood coagulation. Because of this, hVKOR is the target of a common anticoagulant, warfarin. Spurred by the identification of the hVKOR gene less than a decade ago, there have been a number of new insights related to this protein. Nonetheless, there are a number of key issues that have not been resolved; such as where warfarin binds hVKOR, or if human VKOR shares the topology of the structurally characterized but distantly related prokaryotic VKOR. The pharmacogenetics and single nucleotide polymorphisms of hVKOR used in personalized medicine strategies for warfarin dosing should be carefully considered to inform the debate. The biochemical and cell biological evidence suggests that hVKOR has a distinct fold from its ancestral protein, though the controversy will likely remain until structural studies of hVKOR are accomplished. Resolving these issues should impact development of new anticoagulants. The paralogous human protein, VKOR-like1 (VKORL1) was recently shown to also participate in vitamin K recycling. VKORL1 was also recently characterized and assigned a functional role as a housekeeping protein involved in redox homeostasis and oxidative stress with a potential role in cancer regulation. As the physiological interplay between these two human paralogs emerge, the impacts could be significant in a number of diverse fields from coagulation to cancer.  相似文献   

20.
Jin DY  Tie JK  Stafford DW 《Biochemistry》2007,46(24):7279-7283
Vitamin K epoxide (or oxido) reductase (VKOR) is the target of warfarin and provides vitamin K hydroquinone for the carboxylation of select glutamic acid residues of the vitamin K-dependent proteins which are important for coagulation, signaling, and bone metabolism. It has been known for at least 20 years that cysteines are required for VKOR function. To investigate their importance, we mutated each of the seven cysteines in VKOR. In addition, we made VKOR with both C43 and C51 mutated to alanine (C43A/C51A), as well as a VKOR with residues C43-C51 deleted. Each mutated enzyme was purified and characterized. We report here that C132 and C135 of the CXXC motif are essential for both the conversion of vitamin K epoxide to vitamin K and the conversion of vitamin K to vitamin K hydroquinone. Surprisingly, conserved cysteines, 43 and 51, appear not to be important for either reaction. For the in vitro reaction driven by dithiothreitol, the 43-51 deletion mutation retained 85% and C43A/C51A 112% of the wild-type activity. The facile purification of the nine different mutations reported here illustrates the ease and reproducibility of VKOR purification by the method reported in our recent publication [Chu, P.-H., Huang, T.-Y., Williams, J., and Stafford, D. W. (2006) Proc. Natl. Acad. Sci. U S A. 103, 19308-19313].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号