首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enveloped viruses are released from infected cells after coalescence of viral components at cellular membranes and budding of membranes to release particles. For some negative-strand RNA viruses (e.g., vesicular stomatitis virus and Ebola virus), the viral matrix (M) protein contains all of the information needed for budding, since virus-like particles (VLPs) are efficiently released from cells when the M protein is expressed from cDNA. To investigate the requirements for budding of the paramyxovirus simian virus 5 (SV5), its M protein was expressed in mammalian cells, and it was found that SV5 M protein alone could not induce vesicle budding and was not secreted from cells. Coexpression of M protein with the viral hemagglutinin-neuraminidase (HN) or fusion (F) glycoproteins also failed to result in significant VLP release. It was found that M protein in the form of VLPs was only secreted from cells, with an efficiency comparable to authentic virus budding, when M protein was coexpressed with one of the two glycoproteins, HN or F, together with the nucleocapsid (NP) protein. The VLPs appeared similar morphologically to authentic virions by electron microscopy. CsCl density gradient centrifugation indicated that almost all of the NP protein in the cells had assembled into nucleocapsid-like structures. Deletion of the F and HN cytoplasmic tails indicated an important role of these cytoplasmic tails in VLP budding. Furthermore, truncation of the HN cytoplasmic tail was found to be inhibitory toward budding, since it prevented coexpressed wild-type (wt) F protein from directing VLP budding. Conversely, truncation of the F protein cytoplasmic tail was not inhibitory and did not affect the ability of coexpressed wt HN protein to direct the budding of particles. Taken together, these data suggest that multiple viral components, including assembled nucleocapsids, have important roles in the paramyxovirus budding process.  相似文献   

2.
Receptor binding of paramyxovirus attachment proteins and the interactions between attachment and fusion (F) proteins are thought to be central to activation of the F protein activity; however, mechanisms involved are unclear. To explore the relationships between Newcastle disease virus (NDV) HN and F protein interactions and HN protein attachment to sialic acid receptors, HN and F protein-containing complexes were detected and quantified by reciprocal coimmunoprecipitation from extracts of transfected avian cells. To inhibit HN protein receptor binding, cells transfected with HN and F protein cDNAs were incubated with neuraminidase from the start of transfection. Under these conditions, no fusion was observed, but amounts of HN and F protein complexes increased twofold over amounts detected in extracts of untreated cells. Stimulation of attachment by incubation of untransfected target cells with neuraminidase-treated HN and F protein-expressing cells resulted in a twofold decrease in amounts of HN and F protein complexes. In contrast, high levels of complexes containing HN protein and an uncleaved F protein (F-K115Q) were detected, and those levels were unaffected by neuraminidase treatment of cell monolayers or by incubation with target cells. These results suggest that HN and F proteins reside in a complex in the absence of receptor binding. Furthermore, the results show that not only receptor binding but also F protein cleavage are necessary for disassociation of the HN and F protein-containing complexes.  相似文献   

3.
The VP40 matrix protein of Ebola virus buds from cells in the form of virus-like particles (VLPs) and plays a central role in virus assembly and budding. In this study, we utilized a functional budding assay and cotransfection experiments to examine the contributions of the glycoprotein (GP), nucleoprotein (NP), and VP24 of Ebola virus in facilitating release of VP40 VLPs. We demonstrate that VP24 alone does not affect VP40 VLP release, whereas NP and GP enhance release of VP40 VLPs, individually and to a greater degree in concert. We demonstrate further the following: (i). VP40 L domains are not required for GP-mediated enhancement of budding; (ii). the membrane-bound form of GP is necessary for enhancement of VP40 VLP release; (iii). NP appears to physically interact with VP40 as judged by detection of NP in VP40-containing VLPs; and (iv). the C-terminal 50 amino acids of NP may be important for interacting with and enhancing release of VP40 VLPs. These findings provide a more complete understanding of the role of VP40 and additional Ebola virus proteins during budding.  相似文献   

4.
The production of virus-like particles (VLPs) constitutes a relevant and safe model to study molecular determinants of virion egress. The minimal requirement for the assembly of VLPs for the coronavirus responsible for severe acute respiratory syndrome in humans (SARS-CoV) is still controversial. Recent studies have shown that SARS-CoV VLP formation depends on either M and E proteins or M and N proteins. Here we show that both E and N proteins must be coexpressed with M protein for the efficient production and release of VLPs by transfected Vero E6 cells. This suggests that the mechanism of SARS-CoV assembly differs from that of other studied coronaviruses, which only require M and E proteins for VLP formation. When coexpressed, the native envelope trimeric S glycoprotein is incorporated onto VLPs. Interestingly, when a fluorescent protein tag is added to the C-terminal end of N or S protein, but not M protein, the chimeric viral proteins can be assembled within VLPs and allow visualization of VLP production and trafficking in living cells by state-of-the-art imaging technologies. Fluorescent VLPs will be used further to investigate the role of cellular machineries during SARS-CoV egress.  相似文献   

5.
Killer strains of Saccharomyces cerevisiae bear at least two different double-stranded RNAs (dsRNAs) encapsidated in 39-nm viruslike particles (VLPs) of which the major coat protein is coded by the larger RNA (L-A dsRNA). The smaller dsRNA (M1 or M2) encodes an extracellular protein toxin (K1 or K2 toxin). Based on their densities on CsCl gradients, L-A- and M1-containing particles can be separated. Using this method, we detected a new type of M1 dsRNA-containing VLP (M1-H VLP, for heavy) that has a higher density than those previously reported (M1-L VLP, for light). M1-H and M1-L VLPs are present together in the same strains and in all those we tested. M1-H, M1-L, and L-A VLPs all have the same types of proteins in the same approximate proportions, but whereas L-A VLPs and M1-L VLPs have one dsRNA molecule per particle, M1-H VLPs contain two M1 dsRNA molecules per particle. Their RNA polymerase produces mainly plus single strands that are all extruded in the case of M1-H particles but are partially retained inside the M1-L particles to be used later for dsRNA synthesis. We show that M1-H VLPs are formed in vitro from the M1-L VLPs. We also show that the peak of M1 dsRNA synthesis is in fractions lighter than M1-L VLPs, presumably those carrying only a single plus M1 strand. We suggest that VLPs carrying two M1 dsRNAs (each 1.8 kilobases) can exist because the particle is designed to carry one L-A dsRNA (4.5 kilobases).  相似文献   

6.
For influenza virus, we developed an efficient, noncytotoxic, plasmid-based virus-like particle (VLP) system to reflect authentic virus particles. This system was characterized biochemically by analysis of VLP protein composition, morphologically by electron microscopy, and functionally with a VLP infectivity assay. The VLP system was used to address the identity of the minimal set of viral proteins required for budding. Combinations of viral proteins were expressed in cells, and the polypeptide composition of the particles released into the culture media was analyzed. Contrary to previous findings in which matrix (M1) protein was considered to be the driving force of budding because M1 was found to be released copiously into the culture medium when M1 was expressed by using the vaccinia virus T7 RNA polymerase-driven overexpression system, in our noncytotoxic VLP system M1 was not released efficiently into the culture medium. Additionally, hemagglutinin (HA), when treated with exogenous neuraminidase (NA) or coexpressed with viral NA, could be released from cells independently of M1. Incorporation of M1 into VLPs required HA expression, although when M1 was omitted from VLPs, particles with morphologies similar to those of wild-type VLPs or viruses were observed. Furthermore, when HA and NA cytoplasmic tail mutants were included in the VLPs, M1 failed to be efficiently incorporated into VLPs, consistent with a model in which the glycoproteins control virus budding by sorting to lipid raft microdomains and recruiting the internal viral core components. VLP formation also occurred independently of the function of Vps4 in the multivesicular body pathway, as dominant-negative Vps4 proteins failed to inhibit influenza VLP budding.  相似文献   

7.
Human respiratory syncytial virus (RSV) is a serious respiratory pathogen in infants and young children as well as elderly and immunocompromised populations. However, no RSV vaccines are available. We have explored the potential of virus-like particles (VLPs) as an RSV vaccine candidate. VLPs composed entirely of RSV proteins were produced at levels inadequate for their preparation as immunogens. However, VLPs composed of the Newcastle disease virus (NDV) nucleocapsid and membrane proteins and chimera proteins containing the ectodomains of RSV F and G proteins fused to the transmembrane and cytoplasmic domains of NDV F and HN proteins, respectively, were quantitatively prepared from avian cells. Immunization of mice with these VLPs, without adjuvant, stimulated robust, anti-RSV F and G protein antibody responses. IgG2a/IgG1 ratios were very high, suggesting predominantly T(H)1 responses. In contrast to infectious RSV immunization, neutralization antibody titers were robust and stable for 4 months. Immunization with a single dose of VLPs resulted in the complete protection of mice from RSV replication in lungs. Upon RSV intranasal challenge of VLP-immunized mice, no enhanced lung pathology was observed, in contrast to the pathology observed in mice immunized with formalin-inactivated RSV. These results suggest that these VLPs are effective RSV vaccines in mice, in contrast to other nonreplicating RSV vaccine candidates.  相似文献   

8.
S Bagai  R A Lamb 《Journal of virology》1995,69(11):6712-6719
To compare the requirements for paramyxovirus-mediated cell fusion, the fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins of simian virus 5 (SV5), human parainfluenza virus 3 (HPIV-3), and Newcastle disease virus (NDV) were expressed individually or coexpressed in either homologous or heterologous combinations in CV-1 or HeLa-T4 cells, using the vaccinia virus-T7 polymerase transient expression system. The contribution of individual glycoproteins in virus-induced membrane fusion was examined by using a quantitative assay for lipid mixing based on the relief of self-quenching (dequenching) of fluorescence of the lipid probe octadecyl rhodamine (R18) and a quantitative assay for content mixing based on the cytoplasmic activation of a reporter gene, beta-galactosidase. In these assays, expression of the individual F glycoproteins did not induce significant levels of cell fusion and no cell fusion was observed in experiments when cells individually expressing homologous F or HN proteins were mixed. However, coexpression of homologous F and HN glycoproteins resulted in extensive cell fusion. The kinetics of fusion were found to be very similar for all three paramyxoviruses studied. With NDV and HPIV-3, no cell fusion was detected when F proteins were coexpressed with heterologous HN proteins or influenza virus hemagglutinin (HA). In contrast, SV5 F protein exhibited a considerable degree of fusion activity when coexpressed with either NDV or HPIV-3 HN or with influenza virus HA, although the kinetics of fusion were two- to threefold higher when the homologous SV5 F and HN proteins were coexpressed. Thus, these data indicate that among the paramyxoviruses tested, SV5 has different requirements for cell fusion.  相似文献   

9.
10.
We have analyzed the mechanism by which M protein interacts with components of the viral envelope during Sendai virus assembly. Using recombinant vaccinia viruses to selectively express combinations of Sendai virus F, HN, and M proteins, we have successfully reconstituted M protein-glycoprotein interaction in vivo and determined the molecular interactions which are necessary and sufficient to promote M protein-membrane binding. Our results showed that M protein accumulates on cellular membranes via a direct interaction with both F and HN proteins. Specifically, our data demonstrated that a small fraction (8 to 16%) of M protein becomes membrane associated in the absence of Sendai virus glycoproteins, while > 75% becomes membrane bound in the presence of both F and HN proteins. Selective expression of M protein together with either F or HN protein showed that each viral glycoprotein is individually sufficient to promote efficient (56 to 73%) M protein-membrane binding. Finally, we observed that M protein associates with cellular membranes in a time-dependent manner, implying a need for either maturation or transport before binding to glycoproteins.  相似文献   

11.
The role of specific sequences in the transmembrane (TM) domain of Newcastle disease virus (NDV) fusion (F) protein in the structure and function of this protein was assessed by replacing this domain with the F protein TM domains from two other paramyxoviruses, Sendai virus (SV) and measles virus (MV), or the TM domain of the unrelated glycoprotein (G) of vesicular stomatitis virus (VSV). Mutant proteins with the SV or MV F protein TM domains were expressed, transported to cell surfaces, and proteolytically cleaved at levels comparable to that of the wild-type protein, while mutant proteins with the VSV G protein TM domain were less efficiently expressed on cell surfaces and proteolytically cleaved. All mutant proteins were defective in all steps of membrane fusion, including hemifusion. In contrast to the wild-type protein, the mutant proteins did not form detectable complexes with the NDV hemagglutinin-neuraminidase (HN) protein. As determined by binding of conformation-sensitive antibodies, the conformations of the ectodomains of the mutant proteins were altered. These results show that the specific sequence of the TM domain of the NDV F protein is important for the conformation of the preactivation form of the ectodomain, the interactions of the protein with HN protein, and fusion activity.  相似文献   

12.
Paramyxovirus particles, like other enveloped virus particles, are formed by budding from membranes of infected cells. To define mumps virus (MuV) proteins important for this process, viral proteins were expressed either singly or in combination in mammalian cells to produce virus-like particles (VLPs). Only the MuV matrix (M) protein when expressed by itself was capable of inducing particle release, but the quantity of these M-alone particles was very small. Efficient production of mumps VLPs occurred only when the M protein was coexpressed together with other viral proteins, with maximum production achieved upon coexpression of the viral M, nucleocapsid (NP), and fusion (F) proteins together. Electron microscopy analysis confirmed that VLPs were morphologically similar to MuV virions. The two MuV glycoproteins were not equal contributors to particle formation. The F protein was a major contributor to VLP production, while the hemagglutinin-neuraminidase protein made a smaller contribution. Evidence for the involvement of class E protein machinery in VLP budding was obtained, with mumps VLP production inhibited upon expression of dominant-negative versions of the class E proteins Vps4A and Chmp4b. Disruption of the sequence 24-FPVI-27 within the MuV M protein led to poor VLP production, consistent with findings of earlier studies of a related sequence, FPIV, important for the budding of parainfluenza virus 5. Together, these results demonstrate that different MuV structural proteins cooperate together for efficient particle production and that particle budding likely involves host class E protein machinery.Mumps virus (MuV) is a paramyxovirus from the Rubulavirus genus. Prior to mass vaccination, mumps was a very common childhood illness, with characteristic symptoms including fever, fatigue, and inflammation of the salivary glands. Less frequently, MuV infection results in serious complications including aseptic meningitis and encephalitis (22). Significant outbreaks of mumps have occurred recently in the United Kingdom (6), Canada (40), and the United States (7, 14), highlighting the continued relevance of this disease even in countries where vaccination is widespread. Like other paramyxoviruses, MuV possesses a genome that consists of single-stranded negative-sense RNA, encapsidated by a nucleocapsid (NP) protein and associated with an RNA-dependent RNA polymerase complex composed of large protein and phosphoprotein subunits. This core is linked to the virion membrane by matrix (M) protein. The outer surface of the virion is covered with glycoprotein spikes consisting of the hemagglutinin-neuraminidase (HN) protein, which binds sialic acid to allow virion attachment to cells, and fusion (F) protein, which induces viral and cellular membranes to fuse together during virus entry. Additional components of MuV include the small hydrophobic protein, which prevents infected cells from undergoing apoptosis (67), and V protein, which prevents induction of interferon-induced antiviral responses (29, 30, 62). The late steps of the MuV life cycle that allow for assembly and budding of MuV virions remain for the most part unexplored.Enveloped virus particles are formed by budding from cellular membranes at specific locations at which viral proteins, and often host factors, have assembled together. For the negative-strand RNA viruses, coordination among the different viral components during virus assembly appears to be directed by the viral matrix proteins, which have the potential to interact with the cytoplasmic tails of the viral glycoproteins and with viral ribonucleoproteins (RNPs) in the cytoplasms of infected cells. M proteins likely assemble as layers beneath the plasma membranes of infected cells and induce other viral components to gather at these locations, from which virus budding occurs (reviewed in references 49 and 57).For many viruses, it has been possible to achieve assembly and budding of particles from cells that have been transfected to produce one or more viral proteins in the absence of virus infection. These particles often resemble virions morphologically and have been termed virus-like particles (VLPs). VLP production provides a useful means for determining the individual roles of different virus proteins in particle formation, and in some cases the VLPs themselves have shown promise as vaccines (45). For most negative-strand RNA viruses, VLP formation is critically dependent on the presence of the viral matrix proteins (49). Indeed, in the cases of Newcastle disease virus (NDV) (37) and Nipah virus (11, 38), M protein expression is sufficient for highly efficient VLP production, with no apparent need for assistance from any of the other viral structural components, such as the viral glycoproteins or NP proteins. In the case of NDV, incorporation of glycoproteins and NP proteins into the budding VLPs requires specific interactions involving the M protein, but these interactions do not appear to facilitate the budding process itself (37).Although expression of viral matrix protein is sufficient for robust VLP production in the above cases, it has long been thought that additional viral components are also important for efficient budding of many negative-strand RNA viruses. For example, an important role for viral glycoproteins in virus assembly has been established based on studies with recombinant viruses that contain glycoproteins lacking their cytoplasmic tails (4, 17, 26, 34, 35, 48, 52, 66) and analyses of assembly-defective subacute sclerosing panencephalitis measles virus strains (5, 47). In fact, recent evidence suggests that for influenza virus it is the viral glycoproteins (and not viral matrix protein) that are the main drivers of virus budding (9). For other negative-strand RNA viruses, expression of viral glycoproteins together with matrix proteins in some cases significantly enhances the efficiency of VLP release. Ebola VLPs (31), Sendai VLPs (55, 56), and parainfluenza virus 5 (PIV5)-like particles (51) are all produced more efficiently in the presence of viral glycoprotein expression. Ebola virus glycoprotein in some cell types functions during virus release to inhibit the action of tetherin, a cellular protein which functions to prevent the release of enveloped virus particles from infected cells (28). In addition to the viral glycoproteins, other viral components can also enhance the production of VLPs. Production of Ebola VLPs and PIV5-like particles can be further enhanced through expression of the corresponding NP proteins (31, 51), and Sendai VLP production is enhanced through expression of Sendai virus C protein (55). Hence, for these viruses, multiple proteins cooperate with one another to achieve maximum VLP production. The extent to which particle formation actually requires this cooperation differs, however. In the case of PIV5, it is absolutely essential; expression of the M protein alone does not lead to VLP production (51). On the other hand, cooperation among viral proteins is beneficial but not strictly required for the production of Sendai or Ebola VLPs, since expression of the matrix proteins of these viruses is sufficient for VLP production (20, 55, 56, 61).The late steps of negative-strand RNA virus budding may occur in a way that is analogous to the budding of retroviruses, which employ protein-protein interaction domains called late domains to manipulate host machinery and allow release of virus particles (reviewed in references 1 and 3). Cellular factors recruited by late domains in many cases are class E proteins that are part of the vacuolar protein sorting (Vps) pathway of the cell. Indeed, disruption of the Vps pathway through expression of dominant-negative (DN) versions of the Vps4 ATPase protein blocks the budding of many retroviruses (reviewed in reference 1), as well as the budding of Ebola virus (32), Lassa fever virus (63), and PIV5 (50). However, other negative-strand RNA viruses, such as influenza virus, bud particles in ways that are not substantially affected by disruption of the cellular Vps pathway (reviewed in reference 8).Here, experiments are described which define MuV proteins important for the assembly and budding of VLPs. Using proteins derived from the 88-1961 wild-type (wt) strain of MuV, optimal production of mumps VLPs is shown to occur upon coexpression of the MuV M, F, and NP proteins together in transiently transfected mammalian cells. Evidence is also provided that supports a role for cellular class E protein machinery in the budding of mumps VLPs.  相似文献   

13.
S Suzu  Y Sakai  T Shioda    H Shibuta 《Nucleic acids research》1987,15(7):2945-2958
By analysing complementary DNA clones constructed from genomic RNA of bovine parainfluenza 3 virus (BPIV3), we determined the nucleotide sequence of the region containing the entire F and HN genes. Their deduced amino acid sequences showed about 80% homologies with those of human parainfluenza 3 virus (HPIV3), about 45% with those of Sendai virus, and about 20% with those of SV5 and Newcastle disease virus (NDV), indicating, together with the results described in the preceding paper on the NP, P, C and M proteins of BPIV3, that BPIV3, HPIV3 and Sendai virus constitute a paramyxovirus subgroup, and that BPIV3 and HPIV3 are very closely related. The F and HN proteins of all these viruses, including SV5 and NDV, however, were shown to have protein-specific structures as well as short but well-conserved amino acid sequences, suggesting that these structures and sequences are related to the activities of these glycoproteins.  相似文献   

14.
We are studying the structural proteins and molecular interactions required for formation and release of influenza virus-like particles (VLPs) from the cell surface. To investigate these events, we generated a quadruple baculovirus recombinant that simultaneously expresses in Sf9 cells the hemagglutinin (HA), neuraminidase (NA), matrix (M1), and M2 proteins of influenza virus A/Udorn/72 (H3N2). Using this quadruple recombinant, we have been able to demonstrate by double-labeling immunofluorescence that matrix protein (M1) localizes in nuclei as well as at discrete areas of the plasma membrane where HA and NA colocalize at the cell surface. Western blot analysis of cell supernatant showed that M1, HA, and NA were secreted into the culture medium. Furthermore, these proteins comigrated in similar fractions when concentrated supernatant was subjected to differential centrifugation. Electron microscopic examination (EM) of these fractions revealed influenza VLPs bearing surface projections that closely resemble those of wild-type influenza virus. Immunogold labeling and EM demonstrated that the HA and NA were present on the surface of the VLPs. We further investigated the minimal number of structural proteins necessary for VLP assembly and release using single-gene baculovirus recombinants. Expression of M1 protein alone led to the release of vesicular particles, which in gradient centrifugation analysis migrated in a similar pattern to that of the VLPs. Immunoprecipitation of M1 protein from purified M1 vesicles, VLPs, or influenza virus showed that the relative amount of M1 protein associated with M1 vesicles or VLPs was higher than that associated with virions, suggesting that particle formation and budding is a very frequent event. Finally, the HA gene within the quadruple recombinant was replaced either by a gene encoding the G protein of vesicular stomatitis virus or by a hybrid gene containing the cytoplasmic tail and transmembrane domain of the HA and the ectodomain of the G protein. Each of these constructs was able to drive the assembly and release of VLPs, although enhanced recruitment of the G glycoprotein onto the surface of the particle was observed with the recombinant carrying a G/HA chimeric gene. The described approach to assembly of wild-type and chimeric influenza VLPs may provide a valuable tool for further investigation of viral morphogenesis and genome packaging as well as for the development of novel vaccines.  相似文献   

15.
Conformational changes in the Newcastle disease virus (NDV) fusion (F) protein during activation of fusion and the role of HN protein in these changes were characterized with a polyclonal antibody. This antibody was raised against a peptide with the sequence of the amino-terminal half of the F protein HR1 domain. This antibody immunoprecipitated both F(0) and F(1) forms of the fusion protein from infected and transfected cell extracts solubilized with detergent, and precipitation was unaffected by expression of the HN protein. In marked contrast, this antibody detected significant conformational differences in the F protein at cell surfaces, differences that depended upon HN protein expression. The antibody minimally detected the F protein, either cleaved or uncleaved, in the absence of HN protein expression. However, when coexpressed with HN protein, an uncleaved mutant F protein bound the anti-HR1 antibody, and this binding depended upon the coexpression of specifically the NDV HN protein. When the cleaved wild-type F protein was coexpressed with HN protein, the F protein bound anti-HR1 antibody poorly although significantly more than F protein expressed alone. Anti-HR1 antibody inhibited the fusion of R18 (octadecyl rhodamine B chloride)-labeled red blood cells to syncytia expressing HN and wild-type F proteins. This inhibition showed that fusion-competent F proteins present on surfaces of syncytia were capable of binding anti-HR1. Furthermore, only antibody which was added prior to red blood cell binding could inhibit fusion. These results suggest that the conformation of uncleaved cell surface F protein is affected by HN protein expression. Furthermore, the cleaved F protein, when coexpressed with HN protein and in a prefusion conformation, can bind anti-HR1 antibody, and the anti-HR1-accessible conformation exists prior to HN protein attachment to receptors on red blood cells.  相似文献   

16.
For most paramyxoviruses, syncytium formation requires the expression of both surface glycoproteins (HN and F) in the same cell, and evidence suggests that fusion involves a specific interaction between the HN and F proteins (X. Hu et al., J. Virol. 66:1528-1534, 1992). The stalk region of the Newcastle disease virus (NDV) HN protein has been implicated in both fusion promotion and virus specificity of that activity. The NDV F protein contains two heptad repeat motifs which have been shown by site-directed mutagenesis to be critical for fusion (R. Buckland et al., J. Gen. Virol. 73:1703-1707, 1992; T. Sergel-Germano et al., J. Virol. 68:7654-7658, 1994; J. Reitter et al., J. Virol. 69:5995-6004, 1995). Heptad repeat motifs mediate protein-protein interactions by enabling the formation of coiled coils. Upon analysis of the stalk region of the NDV HN protein, we identified two heptad repeats. Secondary structure analysis of these repeats suggested the potential for these regions to form alpha helices. To investigate the importance of this sequence motif for fusion promotion, we mutated the hydrophobic a-position amino acids of each heptad repeat to alanine or methionine. In addition, hydrophobic amino acids in other positions were also changed to alanine. Every mutant protein retained levels of attachment activity that was greater than or equal to the wild-type protein activity and bound to conformation-specific monoclonal as well as polyclonal antisera. Neuraminidase activity was variably affected. Every mutation, however, showed a dramatic decrease in fusion promotion activity. The phenotypes of these mutant proteins indicate that individual amino acids within the heptad repeat region of the stalk domain of the HN protein are important for the fusion promotion activity of the protein. These data are consistent with the idea that the HN protein associates with the F protein via specific interactions between the heptad repeat regions of both proteins.  相似文献   

17.
Analysis of native disulfide-bonded protein oligomers in paramyxoviruses showed that some viral proteins are consistently present as covalent complexes. In isolated Sendai virus the hemagglutinating protein HN is present in homodimeric and homotetrameric forms, and the minor nucleocapsid protein P exists partly as a monomer and partly as a disulfide-linked homotrimer. Similar disulfide-linked complexes were observed in Newcastle disease virus (strain HP-16), in which HN exists as a homodimer and some of the major nucleocapsid protein NP exists as a homotrimer. Noncovalent intermolecular interactions between proteins were studied with the reversible chemical cross-linkers dimethyl-3,3'-dithiobispropionimidate and methyl 3-[(p-azidophenyl)dithio]propionimidate, which contain disulfide bridges and a 1.1-nm separation between their functional groups. The same results were achieved with both reagents. The conditions of preparation, isolation, and storage of the viruses affected the protein-protein interactions observed upon cross-linking. Homooligomers of the glycoprotein F, the matrix protein M, and the major nucleocapsid protein NP were produced in both Sendai and Newcastle disease viruses after mild cross-linking of all viral preparations examined, but NP-M heterodimer formation in both viruses was most prevalent in early harvest preparations that were cross-linked soon after isolation. The ability of NP and M to form a heterodimer upon cross-linking indicates that the matrix protein layer lies in close proximity (within 1.1 nm) to the nucleocapsid in the newly formed virion. Some noncovalent intermolecular protein interactions in Sendai and Newcastle disease viruses, i.e., those leading to the formation of F, NP, and M homooliogmers upon cross-linking, are more stable to virus storage than others, i.e., those leading to the formation of an NP-M heterodimer upon cross-linking. The storage-induced loss of the ability of NP and M to form a heterodimer is not accompanied by any apparent loss of infectivity. This indicates that some spacial relationships which form during virus assembly can alter after particle formation and are not essential for the ensuing stages of the infectious process.  相似文献   

18.
The fusion (F) proteins of Newcastle disease virus (NDV) and Nipah virus (NiV) are both triggered by binding to receptors, mediated in both viruses by a second protein, the attachment protein. However, the hemagglutinin-neuraminidase (HN) attachment protein of NDV recognizes sialic acid receptors, whereas the NiV G attachment protein recognizes ephrinB2/B3 as receptors. Chimeric proteins composed of domains from the two attachment proteins have been evaluated for fusion-promoting activity with each F protein. Chimeras having NiV G-derived globular domains and NDV HN-derived stalks, transmembranes, and cytoplasmic tails are efficiently expressed, bind ephrinB2, and trigger NDV F to promote fusion in Vero cells. Thus, the NDV F protein can be triggered by binding to the NiV receptor, indicating that an aspect of the triggering cascade induced by the binding of HN to sialic acid is conserved in the binding of NiV G to ephrinB2. However, the fusion cascade for triggering NiV F by the G protein and that of triggering NDV F by the chimeras can be distinguished by differential exposure of a receptor-induced conformational epitope. The enhanced exposure of this epitope marks the triggering of NiV F by NiV G but not the triggering of NDV F by the chimeras. Thus, the triggering cascade for NiV G-F fusion may be more complex than that of NDV HN and F. This is consistent with the finding that reciprocal chimeras having NDV HN-derived heads and NiV G-derived stalks, transmembranes, and tails do not trigger either F protein for fusion, despite efficient cell surface expression and receptor binding.  相似文献   

19.
Highly virulent Newcastle disease virus (NDV) isolates are List A pathogens for commercial poultry, and reports of their isolation among member nations must be made to the Office of International Epizootes (OIE). The virus is classified as a member of the order Mononegavirales in the family Paramyxoviridae of the subfamily Paramyxovirinae. Two interactive surface glycoproteins, the fusion (F) and hemagglutinin-neuraminidase (HN) proteins, play essential roles in NDV attachment and fusion of cells during infection. Antibodies to the F or HN proteins are capable of virus neutralization; however, no full-length sequences are available for these genes from recently obtained virulent isolates. Therefore, nucleotide and predicted amino acid sequences of the F and HN protein genes from 16 NDV isolates representing highly virulent viruses from worldwide sources were obtained for comparison to older virulent isolates and vaccine strains. The F protein amino acid sequence was relatively conserved among isolates maintaining potential glycosylation sites and C residues for disulfide bonds. A dibasic amino acid motif was present at the cleavage site among more virulent isolates, while the low virulence viruses did not have this sequence. However, a Eurasian collared dove virus had a K114Q substitution at the F cleavage site unique among NDV isolates. The HN protein among NDV isolates maintained predicted catalytic and active site residues necessary for neuraminidase activity and hemagglutination. Length of the HN for the Eurasian collared dove isolate and a previously reported heat resistant virulent isolate were longer relative to other more recent virulent isolates. Phylogenetically NDV isolates separated into four groups with more recent virulent isolates forming a diverse branch, while all the avian paramyxoviruses formed their own clade distinct from other members of the Paramyxoviridae.  相似文献   

20.
M蛋白是新城疫病毒(Newcastle disease virus,NDV)基因组编码的一种非糖基化膜相关蛋白,主要位于病毒囊膜内表面,构成病毒囊膜与核衣壳连接的支架。研究表明,M蛋白是一种细胞核-细胞质穿梭蛋白,在抑制细胞基因转录和蛋白质合成以及协助病毒粒子组装和出芽方面发挥了重要作用。目前,国内外对NDV毒力和复制的关系研究主要集中在病毒的F、HN和V蛋白以及RNP复合体,但是近年来研究人员利用反向遗传操作技术研究发现M蛋白与NDV毒力和复制也存在一定的联系。因此,本文主要对NDV M蛋白的结构特征、M蛋白对NDV毒力和复制的影响及其作用机制进行综述,以期为NDV M蛋白的功能研究提供新的理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号