首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The size of the deoxyribonucleoside triphosphate pools of vitamin B-12-deficient cells of Euglena gracilis, and of vitamin B-12-deficient cells repleted with the vitamin, were measured. We found that the pools were very small, if they exist at all, in deficient cells but expand rapidly with the addition of the vitamin. The sizes of the pools decrease when DNA synthesis is completed, and are very small when the cells begin to divide.  相似文献   

2.
Two APRT- clones (V79-E3 and V79-E1A) were isolated from V79 hamster fibroblasts treated with ethyl methanesulfonate. Selection involved sequential exposure of the mutagenized cells to the adenine analogues 8-azaadenine and 2,6-diaminopurine. To examine the influence of APRT deficiency on cell metabolism we determined the size and turnover of adenine ribonucleotide pools, the deoxyribonucleoside triphosphate pools, the rate of DNA synthesis, and the length of the cell cycle. Clone V79-E3 was hemizygous for aprt and carried a new chromosome, 3p-. Clone V79-E1A was quasi-tetraploid with a cell volume more than twice that of the WT cells. When the difference in size was taken into account, both clones behaved similarly. While WT V79 cells released no adenine into the medium, they excreted adenine at a rate of 6 pmol/min. This did not affect the size of the ATP pool. The main change in the deoxynucleotide pools was a marked decrease of the concentration of dCTP. The rate of DNA synthesis was the same in WT cells and in the diploid V79-E3 clone. APRT is known to recycle adenine produced during polyamine synthesis, but the enzyme apparently contributes little to the maintenance of adenine ribonucleotide pools of V79 fibroblasts.  相似文献   

3.
We investigated deoxyribonucleoside triphosphate metabolism in S49 mouse T-lymphoma cells synchronized in different phases of the cell cycle. S49 wild-type cultures enriched for G1 phase cells by exposure to dibutyryl cyclic AMP (Bt2cAMP) for 24 h had lower dCTP and dTTP pools but equivalent or increased pools of dATP and dGTP when compared with exponentially growing wild-type cells. Release from Bt2cAMP arrest resulted in a maximum enrichment of S phase occurring 24 h after removal of the Bt2cAMP, and was accompanied by an increase in dCTP and dTTP levels that persisted in colcemid-treated (G2/M phase enriched) cultures. Ribonucleotide reductase activity in permeabilized cells was low in G1 arrested cells, increased in S phase enriched cultures and further increased in G2/M enriched cultures. In cell lines heterozygous for mutations in the allosteric binding sites on the M1 subunit of ribonucleotide reductase, the deoxyribonucleotide pools in S phase enriched cultures were larger than in wild-type S49 cells, suggesting that feedback inhibition of ribonucleotide reductase is an important mechanism limiting the size of deoxyribonucleoside triphosphate pools. The M1 and M2 subunits of ribonucleotide reductase from wild-type S49 cells were identified on two-dimensional polyacrylamide gels, but showed no significant change in intensity during the cell cycle. These data are consistent with allosteric inhibition of ribonucleotide reductase during the G1 phase of the cycle and release of this inhibition during S phase. They suggest that the increase in ribonucleotide reductase activity observed in permeabilized S phase-enriched cultures may not be the result of increased synthesis of either the M1 or M2 subunit of the enzyme.  相似文献   

4.
Ribonucleoside and deoxyribonucleoside triphosphate pools have been measured in Escherichia coli infected with bacteriophage T4 DNA polymerase mutator, wild type, and antimutator alleles during mutagenesis by the base analogue 2-aminopurine. ATP and GTP pools expand significantly during mutagenesis, while CTP and UTP pools contract slightly. The DNA polymerase (gene 43) alleles and an rII lesion perturb normal dNTP pools more than does the presence of 2-aminopurine. We find no evidence that 2-aminopurine induces mutations indirectly by causing an imbalance in normal dNTP pools. Rather, it seems likely that, by forming base mispairs with thymine and with cytosine, 2-aminopurine is involved directly in causing bidirectional A.T in equilibrium G.C transitions. The ratios for 2-aminopurine deoxyribonucleoside triphosphate/dATP pools are 5-8% for tsL56 mutator and 1-5% for tsL141 antimutator and 43+ alleles. We conclude that the significant differences observed in the frequencies of induced transition mutations in the three alleles can be attributed primarily to the properties of the DNA polymerases with their associated 3'-exonuclease activities in controlling the frequency of 2-aminopurine.cystosine base mispairs.  相似文献   

5.
The effect of 5-methoxymethyl-2'-deoxycytidine (MMdCyd), in combination with tetrahydrodeoxyuridine (H4dUrd) and 5-methoxymethyl-2'-deoxyuridine (MMdUrd) on deoxyribonucleoside triphosphate pools was assessed. The dNTP pool content was almost 5 times as high in herpes simplex virus (HSV) infected VERO cells compared with mock-infected cells. Significant differences in dNTP pool sizes were observed with the different treatments. Treatment of HSV-infected cells with MMdCyd and MMdUrd resulted in a massive expansion of the dTTP pool, whereas pools of dCTP and dGTP were not affected substantially. MMdUrd and MMdCyd produced dATP pools that were 4 and 2.5 times that of the controls, respectively. Treatment with H4dUrd resulted in the dCTP pool increasing 12 times and barely detectable levels of dTTP. MMdCyd in combination with H4dUrd resulted in a marked reduction of the total deoxyribonucleoside triphosphate level. These results indicate that during viral replication the bulk of the thymidine nucleotides are derived from the dCyd/dCMP deaminase de novo pathway.  相似文献   

6.
DNA precursor synthesis can be blocked specifically by the drug hydroxyurea (HU) which has therefore been used for anticancer therapy. High concentrations of HU, however, affect other processes than DNA synthesis; nevertheless, most studies on the biological action of HU have been made with concentrations at least one order of magnitude higher than those needed for cell-growth inhibition. In this study we characterized the effects of low concentrations of HU (i.e. concentrations leading to 50% inhibition of cell growth in 72 h) on cell cycle kinetics and nucleotide pools in mouse S49 cells with various defined alterations in DNA precursor synthesis. The effect of 50 microM HU on deoxyribonucleoside triphosphate pools was a 2-3-fold decrease in the dATP and dGTP pools, with no change in the dCTP pool and a certain increase in the dTTP pool. Addition of deoxycytidine or thymidine led to a partial reversal of the growth inhibition and cell-cycle perturbation caused by HU, and was accompanied by an increased level of the deoxyribonucleoside triphosphates. Addition of purine deoxyribonucleoside gave no protection, indicating that salvage of these nucleosides could not supply precursors for DNA synthesis in T-lymphoma cells. We observed a higher sensitivity to HU of cells lacking purine nucleoside phosphorylase or with a ribonucleotide reductase with altered allosteric regulation. Cells lacking thymidine kinase or deoxycytidine kinase were just as sensitive as wild-type cells.  相似文献   

7.
The deoxyribonucleoside triphosphate (dNTP) pools that support the replication of mitochondrial DNA are physically separated from the rest of the cell by the double membrane of the mitochondria. Perturbed homeostasis of mitochondrial dNTP pools is associated with a set of severe diseases collectively termed mitochondrial DNA depletion syndromes. The degree of interaction of the mitochondrial dNTP pools with the corresponding dNTP pools in the cytoplasm is currently not clear. We reviewed the literature on previously reported simultaneous measurements of mitochondrial and cytoplasmic deoxyribonucleoside triphosphate pools to investigate and quantify the extent of the influence of the cytoplasmic nucleotide metabolism on mitochondrial dNTP pools. We converted the reported measurements to concentrations creating a catalog of paired mitochondrial and cytoplasmic dNTP concentration measurements. Over experiments from multiple laboratories, dNTP concentrations in the mitochondria are highly correlated with dNTP concentrations in the cytoplasm in normal cells in culture (Pearson R = 0.79, p = 3 × 10(-7)) but not in transformed cells. For dTTP and dATP there was a strong linear relationship between the cytoplasmic and mitochondrial concentrations in normal cells. From this linear model we hypothesize that the salvage pathway within the mitochondrion is only capable of forming a concentration of approximately 2 μM of dTTP and dATP, and that higher concentrations require transport of deoxyribonucleotides from the cytoplasm.  相似文献   

8.
Two dimensional thin-layer chromatography on anion-exchange cellulose enables the separation of the normally occurring ribo- and deoxyribonucleoside triphosphates. This technique was applied to perchloric acid extracts of callus tissue of sycamore and tobacco and of pine pollen grown in 32P-orthophosphate labelled media to quantitate the nucleoside triphosphate pools under different growth conditions. The results showed that the ratio of the deoxyribonucleo-side triphosphates to their corresponding ribonucleoside triphosphates is low in plant cells, similar to the ratio previously found for animal cells. During the period of most rapid DNA synthesis in the callus tissue, the deoxyribonucleoside triphosphate pools reach their highest values. This effect is also demonstrated with cells of Escbericbia coli.  相似文献   

9.
Inhibition of ribonucleic acid synthesis in Escherichia coli 15 TAU bar with rifampin or streptolydigin leads to large increases in the sizes of cellular ribonucleoside and deoxyribonucleoside triphosphate pools. Inhibition of protein synthesis leads to increases in the sizes of all nucleoside triphosphate pools except the guanosine triphosphate and deoxyguanosine triphosphate pools; a decrease in the size of the latter pool may be responsible for the slowing of deoxyribonucleic acid replication fork movement observed in this strain in the absence of protein synthesis. Analysis of the kinetics of incorporation of labeled precursors into deoxyribonucleic acid and into cellular pools suggests that functional compartmentation of nucleotide pools exists, allowing the incorporation of exogenously supplied precursors into deoxyribonucleic acid without prior equilibration with the cellular pools.  相似文献   

10.
The deoxyribonucleoside triphosphate (dNTP) pools that support the replication of mitochondrial DNA are physically separated from the rest of the cell by the double membrane of the mitochondria. Perturbed homeostasis of mitochondrial dNTP pools is associated with a set of severe diseases collectively termed mitochondrial DNA depletion syndromes. The degree of interaction of the mitochondrial dNTP pools with the corresponding dNTP pools in the cytoplasm is currently not clear. We reviewed the literature on previously reported simultaneous measurements of mitochondrial and cytoplasmic deoxyribonucleoside triphosphate pools to investigate and quantify the extent of the influence of the cytoplasmic nucleotide metabolism on mitochondrial dNTP pools. We converted the reported measurements to concentrations creating a catalog of paired mitochondrial and cytoplasmic dNTP concentration measurements. Over experiments from multiple laboratories, dNTP concentrations in the mitochondria are highly correlated with dNTP concentrations in the cytoplasm in normal cells in culture (Pearson R = 0.79, p = 3 × 10?7) but not in transformed cells. For dTTP and dATP there was a strong linear relationship between the cytoplasmic and mitochondrial concentrations in normal cells. From this linear model we hypothesize that the salvage pathway within the mitochondrion is only capable of forming a concentration of approximately 2 μM of dTTP and dATP, and that higher concentrations require transport of deoxyribonucleotides from the cytoplasm.  相似文献   

11.
A method is described for distinguishing deoxyuridine and deoxythymidine di- and triphosphate pools. The method utilizes a DNA polymerase assay for triphosphate determination and a coupled assay in which the disphosphate is converted to its corresponding triphosphate by nucleoside-diphosphate kinase and the triphosphate is measured by the DNA polymerase assay. By including deoxyruidine-triphosphate nucleotidohydrolase in the reaction mixture, dUTP is removed as a substrate for the polymerase. By determining differences in labelled acid-insoluble product formed in the reaction it is possible to determine dUTP, dUDP, dTDP and dTTP pools. Ribonucleotide reductase activity was determined by converting either CDP or ADP to its corresponding deoxyribonucleoside disphosphate and then using the diphosphate assay described for deoxyribonucleoside pools.  相似文献   

12.
Deficiency of mitochondrial thymidine kinase (TK2) is associated with mitochondrial DNA (mtDNA) depletion and manifests by severe skeletal myopathy in infancy. In order to elucidate the pathophysiology of this condition, mitochondrial deoxyribonucleoside triphosphate (dNTP) pools were determined in patients' fibroblasts. Despite normal mtDNA content and cytochrome c oxidase (COX) activity, mitochondrial dNTP pools were imbalanced. Specifically, deoxythymidine triphosphate (dTTP) content was markedly decreased, resulting in reduced dTTP:deoxycytidine triphosphate ratio. These findings underline the importance of balanced mitochondrial dNTP pools for mtDNA synthesis and may serve as the basis for future therapeutic interventions.  相似文献   

13.
The optimal conditions and the effect of deoxyribonucleoside triphosphates were determined for CDP reductase activity in PHA-stimulated lymphocytes. The enzymatic reaction showed an absolute requirement for ATP. In the absence of ATP, only dATP showed a minor stimulation of the reduction of CDP to dCDP. During transformation the CDP reductase activity reached a maximum at the same time as the four deoxyribonucleoside triphosphate pools, corresponding to mid S-phase at about 50 h after PHA addition. The DNA polymerase activity reached a maximum at 57 h.  相似文献   

14.
2'-Azidocytidine is a specific inhibitor of DNA synthesis in cultured 3T6 mouse fibroblasts. Earlier work (Akerblom, L., Pontis, E., and Reichard, P. (1982) 257, 6776-6782) indicated that the nucleoside, after phosphorylation, acted by inhibiting both ribonucleotide reduction and DNA strand elongation. We now demonstrate that the effect on strand elongation was due to a contamination of azidocytidine with less than 0.3% of arabinosyl cytosine. Pure azidocytidine inhibits specifically ribonucleotide reductase and its effects on DNA synthesis are secondary to this inhibition. The results with azidocytidine concerning the size and turnover of deoxyribonucleoside triphosphate pools parallel those of hydroxyurea and are distinct from those of arabinosyl cytosine. Together with hydroxyurea, azidocytidine is a useful compound in studies aiming at a specific block of the production of deoxynucleoside triphosphates in intact cells. Comparisons of the effects of azidocytidine and arabinosyl cytosine complement earlier studies with hydroxyurea and aphidicolin concerning inter-relations between dNTP synthesis and DNA replication.  相似文献   

15.
Cells permeable to deoxyribonucleoside triphosphate were prepared from Micrococcus radiodurans, and DNA synthesis and rejoining of strand scissions induced by gamma-rays were investigated. DNA synthesis was stimulated by ATP at an optimal concentration of 1mM. This reaction requires four deoxyribonucleoside triphosphates and MgCl2. NAD inhibited the reaction, but no rejoining of primer DNA was observed. Even in the presence of NAD, DNA which was synthesized in the unirradiated permeable cells had a peak molecular weight of only 1.3 - 10(6). DNA synthesis was stimulated by irradiation of the permeable cells with gamma-rays, but this stimulatory effect was eliminated by the addition of NAD. Both primer and synthesized DNA in the irradiated permeable cells were rejoined in vitro in the presence of NAD and deoxyribonucleoside triphosphates, while those in the unirradiated permeable cells were not rejoined.  相似文献   

16.
JB3-B is a Chinese hamster ovary cell mutant previously shown to be temperature sensitive for DNA replication (J. J. Dermody, B. E. Wojcik, H. Du, and H. L. Ozer, Mol. Cell. Biol. 6:4594-4601, 1986). It was chosen for detailed study because of its novel property of inhibiting both polyomavirus and adenovirus DNA synthesis in a temperature-dependent manner. Pulse-labeling studies demonstrated a defect in the rate of adenovirus DNA synthesis. Measurement of deoxyribonucleoside triphosphate (dNTP) pools as a function of time after shift of uninfected cultures from 33 to 39 degrees C revealed that all four dNTP pools declined at similar rates in extracts prepared either from whole cells or from rapidly isolated nuclei. Ribonucleoside triphosphate pools were unaffected by a temperature shift, ruling out the possibility that the mutation affects nucleoside diphosphokinase. However, ribonucleotide reductase activity, as measured in extracts, declined after cell cultures underwent a temperature shift, in parallel with the decline in dNTP pool sizes. Moreover, the activity of cell extracts was thermolabile in vitro, consistent with the model that the JB3-B mutation affects the structural gene for one of the ribonucleotide reductase subunits. The kinetics of dNTP pool size changes after temperature shift are quite distinct from those reported after inhibition of ribonucleotide reductase with hydroxyurea. An indirect effect on ribonucleotide reductase activity in JB3-B has not been excluded since human sequences other than those encoding the enzyme subunits can correct the temperature-sensitive growth defect in the mutant.  相似文献   

17.
X Zhang  Q Lu  M Inouye    C K Mathews 《Journal of bacteriology》1996,178(14):4115-4121
Bacteriophage T4 encodes nearly all of its own enzymes for synthesizing DNA and its precursors. An exception is nucleoside diphosphokinase (ndk gene product), which catalyzes the synthesis of ribonucleoside triphosphates and deoxyribonucleoside triphosphates (dNTPs) from the corresponding diphosphates. Surprisingly, an Escherichia coli ndk deletion strain grows normally and supports T4 infection. As shown elsewhere, these ndk mutant cells display both a mutator phenotype and deoxyribonucleotide pool abnormalities. However, after T4 infection, both dNTP pools and spontaneous mutation frequencies are near normal. An E. coli strain carrying deletions in ndk and pyrA and pyrF, the structural genes for both pyruvate kinases, also grows and supports T4 infection. We examined anaerobic E. coli cultures because of reports that in anaerobiosis, pyruvate kinase represents the major route for nucleoside triphosphate synthesis in the absence of nucleoside diphosphokinase. The dNTP pool imbalances and the mutator phenotype are less pronounced in the anaerobic than in the corresponding aerobic ndk mutant strains. Anaerobic dNTP pool data, which have not been reported before, reveal a disproportionate reduction in dGTP, relative to the other pools, when aerobic and anaerobic conditions are compared. The finding that mutagenesis and pool imbalances are mitigated in both anaerobic and T4-infected cultures provides strong, if circumstantial, evidence that the mutator phenotype of ndk mutant cells is a result of the dNTP imbalance. Also, the viability of these cells indicates the existence of a second enzyme system in addition to nucleoside diphosphokinase for nucleoside triphosphate synthesis.  相似文献   

18.
The levels of the four deoxyribonucleoside triphosphate pools and the distribution of cells in the various phases of the cell cycle have been examined in Chinese hamster cells as thymidine, present as a regular constituent in the growth medium, was removed in stages. The results indicate that: 1. Duration of the DNA synthetic phase was lengthened when thymidine was removed from the growth medium. 2.Temporally correlated with lengthening of the DNA synthetic phase upon thymidine removal was a 7-fold increase in level of the dCTP pool, reduction in the dGTP pools, and little or no change in dATP pool. 3.Radioactive labeling procedures indicated that expansion of the dCTP pool could be completely accounted for by increased ribonucleotide reductase activity and that the dTTP pool switched from a largely exogenous thymidine source to endogenous dTTP synthesis as the extracellular thymidine concentration was reduced. 4.Deoxyuridine and thymidine were apparently transported by the same system in Chinese hamster cells, while deoxycytidine was transported by a different system. Although deoxycytidine transport was unaffected by thymidine, phosphorylation of intracellular deoxycytidine compounds to the triphosphate level was stimulated by thymidine. Cytidine transport was not significantly affected by thymidine.  相似文献   

19.
To investigate whether resting cells of 3T3 mouse fibroblasts carry out de novo synthesis of deoxyribonucleoside triphosphates, we determined the turnover of the thymidine triphosphate pool of G0 cells obtained by starvation of cultures for platelet-derived growth factor. These cells were contaminated by less than 1% S-phase cells. In the absence of deoxyribonucleosides in the medium one million G0 cells contained 5 pmole of dTTP with a turnover of 0.09 pmole/min. S-phase cells in comparison contained a 20 times larger dTTP pool with a more than 200-fold faster turnover. Our results suggest that G0 cells carry out a slow but finite de novo synthesis of deoxyribonucleoside triphosphates to satisfy the cells' requirement for DNA repair and mitochondrial DNA synthesis.  相似文献   

20.
Abstract

The effect of (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU) on deoxyribonucleoside 5′-triphosphate pools was studied in cells transfected with gene for thymidine kinase of herpes simplex virus type 1 and cells infected with the virus. When infected cells were treated with BVDU, the triphosphate form of the nucleoside analog was detected. When transfected cells were treated with BVDU, the triphosphate form was not detected and the pattern of changes in the pools was the same as after 5-fluoro-2′-deoxyuridine treatment. BVDU seems to inhibit DNA synthesis differently in the two cell lines and nucleotide metabolism in the transfected cells was not the same as in the infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号