首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The multicellular development of the single celled eukaryote Dictyostelium discoideum is induced by starvation and consists of initial aggregation of the isolated amoebae, followed by their differentiation into viable spores and dead stalk cells. These stalk cells retain their structural integrity inside a stalk tube that support the spores in the fruiting body. Terminal differentiation into stalk cells has been shown to share several features with programmed cell death (Cornillon et al. (1994), J. Cell Sci. 107, 2691-2704). Here we report that, in the absence of aggregation and differentiation, D. discoideum can undergo another form of programmed cell death that closely resembles apoptosis of most mammalian cells, involves loss of mitochondrial transmembrane potential, phosphatidylserine surface exposure, and engulfment of dying cells by neighboring D. discoideum cells. This death has been studied by various techniques (light microscopy and scanning or transmission electron microscopy, flow cytometry, DNA electrophoresis), in two different conditions inhibiting D. discoideum multicellular development. The first one, corresponding to an induced unicellular cell death, was obtained by starving the cells in a "conditioned" cell-free buffer, prepared by previous starvation of another D. discoideum cell population in potassium phosphate buffer (pH 6.8). The second one, corresponding to death of D. discoideum after axenic growth in suspension, was obtained by keeping stationary cells in their culture medium. In both cases of these unicellular-specific cell deaths, microscopy revealed morphological features known as hallmarks of apoptosis for higher eukaryotic cells and apoptosis was further corroborated by flow cytometry. The occurrence in D. discoideum of programmed cell death with two different phenotypes, depending on its multicellular or unicellular status, is further discussed.  相似文献   

2.
Pre-starvation amoebae of Dictyostelium discoideum exhibit random movements. Starved cells aggregate by directed movements (chemotaxis) towards cyclic AMP and differentiate into live spores or dead stalk cells. Many differences between presumptive spore and stalk cells precede differentiation. We have examined whether cell motility-related factors are also among them. Cell speeds and localisation of motility-related signalling molecules were monitored by live cell imaging and immunostaining (a) in nutrient medium during growth, (b) immediately following transfer to starvation medium and (c) in nutrient medium that was re-introduced after a brief period of starvation. Cells moved randomly under all three conditions but mean speeds increased following transfer from nutrient medium to starvation medium; the transition occurred within 15 min. The distribution of speeds in starvation medium was bimodal: about 20% of the cells moved significantly faster than the remaining 80%. The motility-related molecules F-actin, PTEN and PI3 kinase were distributed differently in slow and fast cells. Among starved cells, the calcium content of slower cells was lower than that of the faster cells. All differences reverted within 15 min after restoration of the nutrient medium. The slow/fast distinction was missing in Polysphondylium pallidum, a cellular slime mould that lacks the presumptive stalk and spore cell classes, and in the trishanku (triA(-)) mutant of D. discoideum, in which the classes exist but are unstable. The transition from growth to starvation triggers a spontaneous and reversible switch in the distribution of D. discoideum cell speeds. Cells whose calcium content is relatively low (known to be presumptive spore cells) move slower than those whose calcium levels are higher (known to be presumptive stalk cells). Slow and fast cells show different distributions of motility-related proteins. The switch is indicative of a bistable mechanism underlying cell motility.  相似文献   

3.
Dictyopyrones A and B (DpnA and B), whose function(s) is not known, were isolated from fruiting bodies of Dictyostelium discoideum. In the present study, to assess their function(s), we examined the effects of Dpns on in vitro cell differentiation in D. discoideum monolayer cultures with cAMP. Dpns at 1-20 microM promoted stalk cell formation to some extent in the wild-type strain V12M2. Although Dpns by themselves could hardly induce stalk cell formation in a differentiation-inducing factor (DIF)-deficient strain HM44, both of them dose-dependently promoted DIF-1-dependent stalk cell formation in the strain. In the sporogenous strain HM18, Dpns at 1-20 microM suppressed spore formation and promoted stalk cell formation in a dose-dependent manner. Analogs of Dpns were less effective in affecting cell differentiation in both HM44 and HM18 cells, indicating that the activity of Dpns should be chemical structure specific. It was also shown that DpnA at 2-20 microM dose-dependently suppressed spore formation induced with 8-bromo cAMP and promoted stalk cell formation in V12M2 cells. Interestingly, it was shown by the use of RT-PCR that DpnA at 10 microM slightly promoted both prespore- and prestalk-specific gene expressions in an early phase of V12M2 and HM18 in vitro differentiation. The present results suggest that Dpns may have functions (1) to promote both prespore and prestalk cell differentiation in an early stage of development and (2) to suppress spore formation and promote stalk cell formation in a later stage of development in D. discoideum.  相似文献   

4.
Cell differentiation, cell determination and pattern formation in the pseudoplasmodium of Dictyostelium discoideum , was investigated using the prespore specific vacuole (PV) as a morphological marker. Concomitantly, measurements of cell movement within the pseudoplasmodium were made by tracing radioactively labelled cells. The main results indicate that 1) prespore cells appear first during late aggregation and occur randomly throughout the pseudoplasmodium with the exception of the very tip which stays free of prespore cells throughout development; 2) after late aggregation the number of prespore cells increases over a period of several hours; 3) each prespore cell takes on a progressively more prespore-like character as judged by the increase in number of PVs it contains; 4) establishment of the distribution pattern of prespore and prestalk cells takes place within the first 2 h, mainly by a sorting out mechanism; 5) presumptive spore areas are likely to contain a small proportion of cells lacking PVs (prestalk-cells?) while presumptive stalk cell areas are homogeneous throughout; 6) maintenance of the pattern during migration may be facilitated by a circulation at low level of prestalk cells between prestalk and prespore areas; and 7) during the development of this organism the events of cell determination, cell differentiation and pattern formation overlap substantially in time.  相似文献   

5.
Ultramicrochemical techniques were utilized to assay glycogen synthetase (EC 2.4.1.11) activity in cell samples of Dictyostelium discoideum as small as 0.01 mug (dry weight) in reaction volumes of 0.1 mul. The activity was assayed by an amplification procedure employing the enzymatic cycling of pyridine nucleotides. These techniques were used to determine the extent of localization of glycogen synthetase in the two cell types during differentiation of D. discoideum. Localization studies in developing spore cells revealed decreasing enzyme activity to the culmination stage. During this phase of development, the enzyme required the presence of soluble glycogen for activity. From culmination to sorocarp stage, enzyme activity increased and was independent of the soluble glycogen. In developing stalk cells, synthetase showed a decreasing gradient of activity. In sorocarps, the cells in the stalk apex showed synthetase activity similar to that of the spores. The cells at the bottom of the stalk had no detectable activity.  相似文献   

6.
Efficient transformation of Dictyostelium discoideum amoebae.   总被引:6,自引:2,他引:4       下载免费PDF全文
We have transformed Dictyostelium discoideum amoebae by using derivatives of a plasmid, pAG60, which was designed for transformation of mammalian cells. The plasmid carries the promoter region of the herpes simplex virus type 1 thymidine kinase gene linked to the bacterial gene kan, which codes for the enzyme aminoglycoside 3'-phosphotransferase. kan is derived from the Tn5 transposon. Expression of the phosphotransferase permits direct selection of transformed cells by their resistance to the antibiotic G-418. pAG60 is incapable of transforming D. discoideum but is made transformation proficient by cloning D. discoideum sequences into the tetracycline resistance gene. The majority of transformed cells grow and develop normally and differentiate to give G-418-resistant spores. These transformants are unstable and rapidly lose their G-418-resistance during growth in the absence of antibiotic selection. Southern blots show that these unstable G-418-resistant transformants carry the pBR322 and kan sequences of pAG60. The pAG60-D. discoideum recombinant plasmids used for transformation were constructed in a way that might make them mutagenic. We have isolated several developmental mutants after transformation of D. discoideum with libraries of pAG60-D. discoideum recombinant plasmids. These mutants are G-418 resistant and carry pAG60 in their nuclear DNA. We recovered a pAG60-D. discoideum recombinant plasmid from several developmental mutants. This plasmid transforms D. discoideum at an elevated frequency and integrates into the nuclear genome. We speculate that integration can result in insertional inactivation of genes that are essential for differentiation but not for growth. Mutagenic transformation occurred only if the transforming plasmid had homology with D. discoideum nuclear DNA. A mammalian cell transformation vector, pSV2-neo, carried no D. discoideum sequences and was able to transform. However, pSV2-neo transformation was not mutagenic. These results suggest that direct inactivation and recovery of genes that are essential for differentiation of D. discoideum will be possible.  相似文献   

7.
Rapidly developing (rde) mutants of Dictyostelium discoideum, in which cells precociously differentiated into stalk and spore cells without normal morphogenesis, were investigated genetically and biochemically. Genetic complementation tests demonstrated that the 16 rde mutants isolated could be classified into at least two groups (groups A and C) and that the first described rde mutant FR17 (D. R. Sonneborn, G. J. White, and M. Sussman, 1963, Dev. Biol. 7, 79-93) belongs to group A. Morphological studies revealed several differences in development and final morphology between group A and group C mutants. In group A mutants, the time required for cell differentiation from vegetative cells to aggregation competent cells is reduced, whereas the time required for spore and stalk cell differentiation following the completion of aggregation is shortened in group C mutants. This suggests that group C mutants represent a new class of rde mutants and that there exist at least two mechanisms involved in regulating the timing of development in D. discoideum. Measurements of cell-associated and extracellular phosphodiesterase activities, and intracellular and total cAMP levels revealed that cAMP metabolism in both groups is significantly altered during development. Group A mutants showed precocious and excessive production of phosphodiesterase and cAMP during the entire course of development; intracellular cAMP levels in group C mutants were extremely low, and spore and stalk cell differentiation occurred without an apparent increase in these levels. Thus, while cAMP metabolism is abnormal in all the rde mutants studied, there exist several distinct types of derangement, not necessarily involving the overproduction of cAMP.  相似文献   

8.
We have compared the pattern of enzyme expression in cyclic AMP-induced monolayer cultures of Dictyostelium discoideum with that found during normal development. We find that both the temporal and quantitative pattern of enzyme expression are initially similar in the two situations, although the developmental sequence is more protracted and terminal cell differentiation is delayed in the monolayer situation. We describe differentiation conditions that permit the expression of only one terminal phenotype, which may be useful for further biochemical studies. Enzyme accumulation patterns under these conditions indicate that UDP gal transferase is not required for stalk cell differentiation (i.e., it is a prespore enzyme). We have shown that, when cell monolayers are incubated with cAMP, the presence of a weak acid at low extracellular pH favors stalk-cell differentiation, while a weak base at high extracellular pH favors spore differentiation. Finally, we show that variations in the monovalent cation content of the buffer, or the addition of an ion transport inhibitor (scillaren), or an ionophore (valinomycin) all affect the ratio of stalk cells to spores. Taken together, these results suggest that intracellular H+ and/or other cations may play an important role in regulating differentiation of specific cell types in D. discoideum.  相似文献   

9.
Abstract. The effects of migration and culmination on patterning of presumptive (prespore and prestalk) cells and mature (spore and stalk) cells of D. discoideum were investigated. The ratio of prespore to total cells, as determined by staining with fluorescein-conjugated antispore globulin, was constant (77%) up until 8 h of slug migration, but then decreased to a level (64%) which thereafter remained unchanged during migration. Cells which lost prespore antigen during migration were located in the posterior (prespore) part next to the agar surface.
Upon induction of culmination, however, the ratio of prespore cells quickly increased to the normal level (77%) within 1–2 h. During the transition between migration and culmination prestalk and prespore cells were considerably intermixed within the cell mass, before the normal prestalk-prespore pattern was reestablished at the preculmination (Mexican hat) stage. Spore: stalk ratios within fruiting bodies were normal irrespective of the lengths of slug migration.  相似文献   

10.
Abstract. We have compared the pattern of enzyme expression in cyclic AMP-induced monolayer cultures of Dictyostelium discoideum with that found during normal development. We find that both the temporal and quantitative pattern of enzyme expression are initially similar in the two situations, although the developmental sequence is more protracted and terminal cell differentiation is delayed in the monolayer situation. We describe differentiation conditions that permit the expression of only one terminal phenotype, which may be useful for further biochemical studies. Enzyme accumulation patterns under these conditions indicate that UDP gal transferase is not required for stalk cell differentiation (i.e., it is a prespore enzyme). We have shown that, when cell monolayers are incubated with CAMP, the presence of a weak acid at low extracellular pH favors stalk-cell differentiation, while a weak base at high extracellular pH favors spore differentiation. Finally, we show that variations in the monovalent cation content of the buffer, or the addition of an ion transport inhibitor (scillaren), or an ionophore (valinomycin) all affect the ratio of stalk cells to spores. Taken together, these results suggest that intracellular H+ and or other cations may play an important role in regulating differentiation of specific cell types in D. discoideum .  相似文献   

11.
12.
Cyclic AMP and DIF-1 (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)-1-hexanone) together induce stalk cell differentiation in vitro in Dictyostelium discoideum strain V12M2. The induction can proceed in two stages: in the first, cyclic AMP brings cells to a DIF-responsive state; in the second, DIF-1 alone can induce stalk cell formation. We report here that during the DIF-1-dependent stage, cyclic AMP is a potent inhibitor of stalk cell differentiation. Addition of cyclic AMP at this stage to V12M2 cells appreciably delays, but does not prevent, stalk cell formation. In contrast, stalk cell differentiation in the more common strain NC4 is completely suppressed by the continued presence of cyclic AMP. This fact explains earlier failures to induce stalk cells in vitro in NC4. We now consistently obtain efficient stalk cell induction in NC4 by removing cyclic AMP in the DIF-1-dependent stage. Cyclic AMP also inhibits the production of a stalk-specific protein (ST310) in both NC4 and a V12M2 derivative. Adenosine, a known antagonist of cyclic AMP action, does not relieve this inhibition by cyclic AMP and does not itself promote stalk cell formation. Finally, stalk cell differentiation of NC4 cells at low density appears to require factors in addition to cyclic AMP and DIF-1, but their nature is not yet known. The inhibition of stalk cell differentiation by cyclic AMP may be important in establishing the prestalk/prespore pattern during normal development, and in preventing the maturation of prestalk into stalk cells until culmination.  相似文献   

13.
Mitochondria play a pivotal role in apoptosis in multicellular organisms by releasing apoptogenic factors such as cytochrome c that activate the caspases effector pathway, and apoptosis-inducing factor (AIF) that is involved in a caspase-independent cell death pathway. Here we report that cell death in the single-celled organism Dictyostelium discoideum involves early disruption of mitochondrial transmembrane potential (DeltaPsim) that precedes the induction of several apoptosis-like features, including exposure of the phosphatidyl residues at the external surface of the plasma membrane, an intense vacuolization, a fragmentation of DNA into large fragments, an autophagy, and the release of apoptotic corpses that are engulfed by neighboring cells. We have cloned a Dictyostelium homolog of mammalian AIF that is localized into mitochondria and is translocated from the mitochondria to the cytoplasm and the nucleus after the onset of cell death. Cytoplasmic extracts from dying Dictyostelium cells trigger the breakdown of isolated mammalian and Dictyostelium nuclei in a cell-free system, and this process is inhibited by a polyclonal antibody specific for Dictyostelium discoideum apoptosis-inducing factor (DdAIF), suggesting that DdAIF is involved in DNA degradation during Dictyostelium cell death. Our findings indicate that the cell death pathway in Dictyostelium involves mitochondria and an AIF homolog, suggesting the evolutionary conservation of at least part of the cell death pathway in unicellular and multicellular organisms.  相似文献   

14.
Doxylstearic acid spin labels are used to study the fluidity of the membranes of the cellular slime mold, Dictyostelium discoideum. The tau omicron value of the wild-type cell membrane is close to that of egg lecithin indicating a rather fluid membrane. No detectable change in the fluidity of the bulk lipids at the 16-carbon depth occurs during differentiation of the myxamoebae into stalk and spore cells despite reported changes in the individual lipid components. The results of studies on temperature-sensitive and aggregationless mutants are also presented.  相似文献   

15.
The P4 variant of Dictyostelium discoideum is characterized by the production of fruiting structures in which the overall proportion of stalk to spore material is increased, relative to the wild type. The altered morphology of the mutant is due to increased sensitivity to cyclic AMP which promotes stalk cell differentiation. In the presence of 10-4 M-cyclic AMP the entire population of P4 amoebae forms clumps of stalk cells on the surface of the dialysis membrane support. Measurement of changes in activity of a range of developmentally-regulated enzymes during the development of P4 in the presence and absence of cyclic AMP has allowed us to identify three classes of enzyme: (i) Those, such as beta-glucosidase II, trehalose-6-phosphate synthetase and uridine diphosphogalactose-4-epimerase, which are required for the production of spores. (ii) Enzymes, primarily but perhaps not exclusively, required during stalk cell formation. Typical of these are N-acetylglucosaminidase and alkaline phosphatase. (iii) General enzymes, such as threonine dehydrase, alpha-mannosidase and uridine diphosphoglucose pyrophyosphorylase, which are present inboth pre-stalk and pre-spore cells and appear to be necessary for the development of both cell types.  相似文献   

16.
The social amoeba Dictyostelium discoideum is a widely used model organism for studying basic functions of protozoan and metazoan cells, such as osmoregulation and cell motility. There is evidence from other species that cellular water channels, aquaporins (AQP), are central to both processes. Yet, data on D. discoideum AQPs is almost absent. Despite cloning of two putative D. discoideum AQPs, WacA, and AqpA, water permeability has not been shown. Further, WacA and AqpA are expressed at the late multicellular stage and in spores but not in amoebae. We cloned a novel AQP, AqpB, from amoeboidal D. discoideum cells. Wild-type AqpB was impermeable to water, glycerol, and urea when expressed in Xenopus laevis oocytes. Neither stepwise truncation of the N terminus nor selected point mutations activated the water channel. However, mutational truncation by 12 amino acids of an extraordinary long intracellular loop induced water permeability of AqpB, hinting at a novel gating mechanism. This AqpB mutant was inhibited by mercuric chloride, confirming the presence of a cysteine residue in the selectivity filter as predicted by our structure model. We detected AqpB by Western blot analysis in a glycosylated and a non-glycosylated form throughout all developmental stages. When expressed in D. discoideum amoebae, AqpB-GFP fusion constructs localized to vacuolar structures, to the plasma membrane, and to lamellipodia-like membrane protrusions. We conclude that the localization pattern in conjunction with channel gating may be indicative of AqpB functions in osmoregulation as well as cell motility of D. discoideum.  相似文献   

17.
We have identified a novel gene, trishanku (triA), by random insertional mutagenesis of Dictyostelium discoideum. TriA is a Broad complex Tramtrack bric-a-brac domain-containing protein that is expressed strongly during the late G2 phase of cell cycle and in presumptive spore (prespore (psp)) cells. Disrupting triA destabilizes cell fate and reduces aggregate size; the fruiting body has a thick stalk, a lowered spore: stalk ratio, a sub-terminal spore mass and small, rounded spores. These changes revert when the wild-type triA gene is re-expressed under a constitutive or a psp-specific promoter. By using short- and long-lived reporter proteins, we show that in triA(-) slugs the prestalk (pst)/psp proportion is normal, but that there is inappropriate transdifferentiation between the two cell types. During culmination, regardless of their current fate, all cells with a history of pst gene expression contribute to the stalk, which could account for the altered cell-type proportion in the mutant.  相似文献   

18.
DIF is an endogenous extracellular signal that may control differentiation of D. discoideum cells. It is a dialyzable, lipid-like factor that induces stalk cell formation among isolated amebae incubated in vitro with cAMP. To examine the consequences of DIF deprivation, we have isolated several mutant strains that are impaired in DIF accumulation, and whose inability to make stalk cells in vitro and during normal development on agar can be corrected by the addition of exogenous DIF. Little DIF is made by the mutants, and morphological development on agar stops after the cells have aggregated, but before a slug forms. In these DIF-deprived conditions, prespore cells can differentiate, but prestalk cells cannot.  相似文献   

19.
SUMMARY Multicellular development in the social amoeba Dictyostelium discoideum is triggered by starvation. It involves a series of morphogenetic movements, among them being the rising of the spore mass to the tip of the stalk. The process requires precise coordination between two distinct cell types—presumptive (pre-) spore cells and presumptive (pre-) stalk cells. Trishanku ( triA ) is a gene expressed in prespore cells that is required for normal morphogenesis. The triA mutant shows pleiotropic effects that include an inability of the spore mass to go all the way to the top. We have examined the cellular behavior required for the normal ascent of the spore mass. Grafting and mixing experiments carried out with tissue fragments and cells show that the upper cup, a tissue that derives from prestalk cells and anterior-like cells (ALCs), does not develop properly in a triA background. A mutant upper cup is unable to lift the spore mass to the top of the fruiting body, likely due to defective intercellular adhesion. If wild-type upper cup function is provided by prestalk and ALCs, trishanku spores ascend all the way. Conversely, Ax2 spores fail to do so in chimeras in which the upper cup is largely made up of mutant cells. Besides proving that under these conditions the wild-type phenotype of the upper cup is necessary and sufficient for terminal morphogenesis in D. discoideum , this study provides novel insights into developmental and evolutionary aspects of morphogenesis in general. Genes that are active exclusively in one cell type can elicit behavior in a second cell type that enhances the reproductive fitness of the first cell type, thereby showing that morphogenesis is a cooperative process.  相似文献   

20.
盘基网柄菌细胞分化和凋亡的形态特征   总被引:2,自引:0,他引:2  
本文用透射电镜和DAPI荧光染色法研究了盘基网柄菌(Dictyosteliumdiscoideum)细胞分化和柄细胞的凋亡特征,结果显示:细胞丘中绝大部分细胞的线粒体内出现一小空泡,随着发育进程,空泡逐渐增大,线粒体的嵴随之变少,直至线粒体完全空泡化,最后形成单层膜的空泡。据此我们推测前孢子细胞特有的空泡来源于线粒体,并且这种细胞器水平上的内自噬现象与前孢子细胞分化密切相关。在前柄细胞分化阶段,前柄细胞中出现数个自噬泡,最初吞噬的线粒体嵴结构完整;随着前柄细胞进一步分化,部分线粒体内出现类似于前孢子细胞中的内自噬现象,并且自噬泡只吞噬这种线粒体。在凋亡后期,细胞核内核仁消失,染色体固缩形成高电子密度斑块,自噬泡采用与细胞核膜融合的方式来完成核的清除,最后柄细胞完全空泡化且包被一层纤维素壁。作者认为前柄细胞凋亡过程实质上是一种分化过程,所以有其鲜明特点:细胞出现自噬泡,标志着凋亡开始,用自噬而不是凋亡小体来清除胞内各种细胞器,直到分化最后阶段才清除细胞核和形成纤维素壁。这些特点不仅是前柄细胞凋亡的形态学指标,也和细胞发育和分化相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号