首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB.  相似文献   

2.
Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB.  相似文献   

3.
Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction. In contrast, hNRB used all three organic acids with similar kinetics, while reducing nitrate to nitrite and nitrogen. Transient inhibition of VFA-utilizing SRB was observed with 0.5 mM nitrite and permanent inhibition with concentrations of 1 mM or more. The addition of nitrate to medium flowing into an upflow, packed-bed bioreactor with an established VFA-oxidizing SRB consortium led to a spike of nitrite up to 3 mM. The nitrite-mediated inhibition of SRB led, in turn, to the transient accumulation of up to 13 mM of acetate. The complete utilization of nitrate and the incomplete utilization of VFA, especially propionate, and sulfate indicated that SRB remained partially inhibited. Hence, in addition to lower sulfide concentrations, an increase in the concentration of acetate in the presence of sulfate in waters produced from an oil field subjected to nitrate injection may indicate whether the treatment is successful. The microbial community composition in the bioreactor, as determined by culturing and culture-independent techniques, indicated shifts with an increasing fraction of nitrate. With VFA and sulfate, the SRB genera Desulfobotulus, Desulfotignum, and Desulfobacter as well as the sulfur-reducing Desulfuromonas and the NR-SOB Arcobacter were detected. With VFA and nitrate, Pseudomonas spp. were present. hNRB/NR-SOB from the genus Sulfurospirillum were found under all conditions.  相似文献   

4.
Souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB) in oil reservoirs, can be controlled through nitrate or nitrite addition. To assess the effects of this containment approach on corrosion, metal coupons were installed in up-flow packed-bed bioreactors fed with medium containing 8 mM sulfate and 25 mM lactate. Following inoculation with produced water to establish biogenic H2S production, some bioreactors were treated with 17.5 mM nitrate or up to 20 mM nitrite, eliminating souring. Corrosion rates were highest near the outlet of untreated bioreactors (up to 0.4 mm year–1). Nitrate (17.5 mM) eliminated sulfide but gave pitting corrosion near the inlet of the bioreactor, whereas a high nitrite dose (20 mM) completely eliminated microbial activity and associated corrosion. More gradual, step-wise addition of nitrite up to 20 mM resulted in the retention of microbial activity and localized pitting corrosion, especially near the bioreactor inlet. We conclude that: (1) SRB control by nitrate or nitrite reduction shifts the corrosion risk from the bioreactor outlet to the inlet (i.e. from production to injection wells) and (2) souring treatment by continuous addition of a high inhibitory nitrite dose is preferable from a corrosion-prevention point of view.  相似文献   

5.
The effect of nitrate addition on microbial H2S production in a seawater-flooded oil reservoir model column with crude oil as carbon and energy source was investigated. Injection of 0.5 mM nitrate for 2.5-3.5 months led to complete elimination of H2S (initially 0.45-0.67 mM). The major decline in H2S level coincided with the first complete nitrate consumption and production of nitrite. When nitrate was excluded, H2S production resumed after approximately 2.5 months and reached previous levels after approximately 5 months. Using a fluorescent antibody technique, three populations each of sulfate-reducing bacteria (SRB) and nitrate-reducing bacteria (NRB) were monitored. SRB dominated the anoxic zone prior to nitrate addition, comprising 64-93% of the total bacterial population. The monitored NRB constituted less than 6% and no increase was observed during nitrate addition (indicating that other, unidentified, NRB populations were present). After 1-3 months without significant H2S production (3.5-5.5 months with nitrate), the SRB population collapsed, the fraction being reduced to 9-25%. The dominant SRB strain in the column, which constituted on average 94% of the monitored SRB population, was partly/completely inhibited by 50/75 microM nitrite in batch culture tests. Similar nitrite concentrations (50-150 microM) were detected in the column when the H2S level declined, indicating that nitrite inhibition was the main cause of H2S elimination. The results from this study indicate that nitrate/nitrite can be used to prevent detrimental SRB activity in oil reservoirs.  相似文献   

6.
Sulfate-reducing bacteria (SRB) are inhibited by nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) in the presence of nitrate. This inhibition has been attributed either to an increase in redox potential or to production of nitrite by the NR-SOB. Nitrite specifically inhibits the final step in the sulfate reduction pathway. When the NR-SOB Thiomicrospira sp. strain CVO was added to mid-log phase cultures of the SRB Desulfovibrio vulgaris Hildenborough in the presence of nitrate, sulfate reduction was inhibited. Strain CVO reduced nitrate and oxidized sulfide, with transient production of nitrite. Sulfate reduction by D. vulgaris resumed once nitrite was depleted. A DNA macroarray with open reading frames encoding enzymes involved in energy metabolism of D. vulgaris was used to study the effects of NR-SOB on gene expression. Shortly following addition of strain CVO, D. vulgaris genes for cytochrome c nitrite reductase and hybrid cluster proteins Hcp1 and Hcp2 were upregulated. Genes for sulfate reduction enzymes, except those for dissimilatory sulfite reductase, were downregulated. Genes for the membrane-bound electron transferring complexes QmoABC and DsrMKJOP were downregulated and unaffected, respectively, whereas direct addition of nitrite downregulated both operons. Overall the gene expression response of D. vulgaris upon exposure to strain CVO and nitrate resembled that observed upon direct addition of nitrite, indicating that inhibition of SRB is primarily due to nitrite production by NR-SOB.  相似文献   

7.
Microbial response to reinjection of produced water in an oil reservoir   总被引:1,自引:0,他引:1  
The microbial response to produced water reinjection (PWRI) in a North Sea oil field was investigated by a combination of cultivation and culture-independent molecular phylogenetic techniques. Special emphasise was put on the relationship between sulphate-reducing bacteria (SRB) and nitrate-reducing bacteria (NRB), and results were used to evaluate the possibility of nitrate treatment as a souring management tool during PWRI. Samples were collected by reversing the flow of the injection water, which provided samples from around the injection area. The backflowed samples were compared to produced water from the same platform and to backflowed samples from a biocide-treated seawater injector, which was the previous injection water treatment of the PWRI well. Results showed that reinjection of produced water promoted growth of thermophilic SRB. Thermophilic fatty acid oxidising NRB and potential nitrate-reducing sulphide-oxidising bacteria were also found. The finding of thermophilic NRB makes nitrate treatment during PWRI possible, although higher nitrate concentration will be necessary to compensate for the increased SRB activity.  相似文献   

8.
Microbial control of biogenic production of hydrogen sulfide in oil fields was studied in a model system consisting of pure cultures of the nitrate-reducing, sulfide-oxidizing bacterium (NR-SOB) Thiomicrospira sp. strain CVO and the sulfate-reducing bacterium (SRB) Desulfovibrio sp. strain Lac6, as well as in microbial cultures enriched from produced water of a Canadian oil reservoir. The presence of nitrate at concentrations up to 20 mM had little effect on the rate of sulfate reduction by a pure culture of Lac6. Addition of CVO imposed a strong inhibition effect on production of sulfide. In the absence of added nitrate SRB we were able to overcome this effect after an extended lag phase. Simultaneous addition of CVO and nitrate stopped the production of H2S immediately. The concentration of sulfide decreased to a negligible level due to nitrate-dependent sulfide oxidation activity of CVO. This was not prevented by raising the concentration of Na-lactate, the electron donor for sulfate reduction. Similar results were obtained with enrichment cultures. Enrichments of produced water with sulfide and nitrate were dominated by CVO, whereas enrichments with sulfate and Na-lactate were dominated by SRB. Addition of an NR-SOB enrichment to an SRB enrichment inhibited the production of sulfide. Subsequent addition of sufficient nitrate caused the sulfide concentration to drop to zero. A similar response was seen in the presence of nitrate alone, although after a pronounced lag time, it was needed for emergence of a sizable CVO population. The results of the present study show that two mechanisms are involved in microbial control of biogenic sulfide production. First, addition of NR-SOB imposes an inhibition effect, possibly by increasing the environmental redox potential to levels which are inhibitory for SRB. Second, in the presence of sufficient nitrate, NR-SOB oxidize sulfide, leading to its complete removal from the environment. Successful microbial control of H2S in an oil reservoir is crucially dependent on the simultaneous presence of NR-SOB (either indigenous population or injected) and nitrate in the environment.  相似文献   

9.
Microbial souring (production of hydrogen sulfide by sulfate-reducing bacteria, SRB) in crushed Berea sandstone columns with oil field-produced water consortia incubated at 60°C was inhibited by the addition of nitrate (NO3) or nitrite (NO 2 ). Added nitrate (as nitrogen) at a concentration of 0.71 mM resulted in the production of 0.57–0.71 mM nitrite by the native microbial population present during souring and suppressed sulfate reduction to below detection limits. Nitrate added at 0.36 mM did not inhibit active souring but was enough to maintain inhibition if the column had been previously treated with 0.71 mM or greater. Continuous addition of 0.71–0.86 mM nitrite also completely inhibited souring in the column. Pulses of nitrite were more effective than the same amount of nitrite added continuously. Nitrite was more effective at inhibiting souring than was glutaraldehyde, and SRB recovery was delayed longer with nitrite than with glutaraldehyde. It was hypothesized that glutaraldehyde killed SRB while nitrite provided a long-term inhibition without cell death. Removal of nitrate after as long as 3 months of continuous addition allowed SRB in a biofilm to return to their previous level of activity. Inhibition was achieved with much lower levels of nitrate and nitrite, and at higher temperatures, than noted by other researchers.  相似文献   

10.
Sulphate-reducing bacteria (SRB) can be inhibited by nitrate-reducing, sulphide-oxidizing bacteria (NR-SOB), despite the fact that these two groups are interdependent in many anaerobic environments. Practical applications of this inhibition include the reduction of sulphide concentrations in oil fields by nitrate injection. The NR-SOB Thiomicrospira sp. strain CVO was found to oxidize up to 15 mM sulphide, considerably more than three other NR-SOB strains that were tested. Sulphide oxidation increased the environmental redox potential (Eh) from -400 to +100 mV and gave 0.6 nitrite per nitrate reduced. Within the genus Desulfovibrio, strains Lac3 and Lac6 were inhibited by strain CVO and nitrate for the duration of the experiment, whereas inhibition of strains Lac15 and D. vulgaris Hildenborough was transient. The latter had very high nitrite reductase (Nrf) activity. Southern blotting with D. vulgaris nrf genes as a probe indicated the absence of homologous nrf genes from strains Lac3 and Lac6 and their presence in strain Lac15. With respect to SRB from other genera, inhibition of the known nitrite reducer Desulfobulbus propionicus by strain CVO and nitrate was transient, whereas inhibition of Desulfobacterium autotrophicum and Desulfobacter postgatei was long-lasting. The results indicate that inhibition of SRB by NR-SOB is caused by nitrite production. Nrf-containing SRB can overcome this inhibition by further reducing nitrite to ammonia, preventing a stalling of the favourable metabolic interactions between these two bacterial groups. Nrf, which is widely distributed in SRB, can thus be regarded as a resistance factor that prevents the inhibition of dissimilatory sulphate reduction by nitrite.  相似文献   

11.
Nitrate addition to oil field waters stops the biogenic formation of sulfide because the activities of nitrate-reducing bacteria (NRB) suppress the activities of sulfate-reducing bacteria (SRB). In general, there are two types of NRB — the heterotrophic NRB and the chemolithotrophic NRB. Within the latter group are the nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). To date, no study has specifically addressed the roles of these different NRB in controlling sulfide concentrations in oil field produced waters. This study used different culture media to selectively enumerate heterotrophic NRB and NR-SOB by most probable number (MPN) methods. Produced waters from three sulfide-containing western Canadian oil fields were amended with nitrate as an electron acceptor, but no exogenous electron donor was added to the serum bottle microcosms. Changes in the chemical and microbiological characteristics of the produced waters were monitored during incubation at 21°C. In less than 4 days, the sulfide was removed from the waters from two of the oil fields (designated P and C), whereas nearly 27 days were required for sulfide removal from the water from the third oil field (designated N). Nitrate addition stimulated large increases in the number of the heterotrophic NRB and NR-SOB in the waters from oil fields P and C, but only the NR-SOB were stimulated in the water from oil field N. These data suggest that stimulation of the heterotrophic NRB is required for rapid removal of sulfide from oil field-produced waters. Received 25 March 2002/ Accepted in revised form 10 June 2002  相似文献   

12.
Reservoir souring in offshore oil fields is caused by hydrogen sulphide (H2S) produced by sulphate-reducing bacteria (SRB), most often as a consequence of sea water injection. Biocide treatment is commonly used to inhibit SRB, but has now been replaced by nitrate treatment on several North Sea oil fields. At the Statfjord field, injection wells from one nitrate-treated reservoir and one biocide-treated reservoir were reversed (backflowed) and sampled for microbial analysis. The two reservoirs have similar properties and share the same pre-nitrate treatment history. A 16S rRNA gene-based community analysis (PCR-DGGE) combined with enrichment culture studies showed that, after 6 months of nitrate injection (0.25 mM NO3 ), heterotrophic and chemolithotrophic nitrate-reducing bacteria (NRB) formed major populations in the nitrate-treated reservoir. The NRB community was able to utilize the same substrates as the SRB community. Compared to the biocide-treated reservoir, the microbial community in the nitrate-treated reservoir was more phylogenetically diverse and able to grow on a wider range of substrates. Enrichment culture studies showed that SRB were present in both reservoirs, but the nitrate-treated reservoir had the least diverse SRB community. Isolation and characterisation of one of the dominant populations observed during nitrate treatment (strain STF-07) showed that heterotrophic denitrifying bacteria affiliated to Terasakiella probably contributed significantly to the inhibition of SRB. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Sulfide accumulation due to bacterial sulfate reduction is responsible for a number of serious problems in the oil industry. Among the strategies to control the activity of sulfate-reducing bacteria (SRB) is the use of nitrate, which can exhibit a variety of effects. We investigated the relevance of this approach to souring oil fields in Oklahoma and Alberta in which water flooding is used to enhance oil recovery. SRB and nitrate-reducing bacteria (NRB) were enumerated in produced waters from both oil fields. In the Oklahoma field, the rates of sulfate reduction ranged from 0.05 to 0.16 μM S day−1 at the wellheads, and an order of magnitude higher at the oil–water separator. Sulfide production was greatest in the water storage tanks in the Alberta field. Microbial counts alone did not accurately reflect the potential for microbial activities. The majority of the sulfide production appeared to occur after the oil was pumped aboveground, rather than in the reservoir. Laboratory experiments showed that adding 5 and 10 mM nitrate to produced waters from the Oklahoma and Alberta oil fields, respectively, decreased the sulfide content to negligible levels and increased the numbers of NRB. This work suggests that sulfate reduction control measures can be concentrated on aboveground facilities, which will decrease the amount of sulfide reinjected into reservoirs during the disposal of oil field production waters. Journal of Industrial Microbiology & Biotechnology (2001) 27, 80–86. Received 30 January 2001/ Accepted in revised form 30 June 2001  相似文献   

14.
The effect of microbial control of souring on the extent of corrosion was studied in a model system consisting of pure cultures of the nitrate-reducing, sulfide-oxidizing bacterium (NR-SOB) Thiomicrospira sp. strain CVO and the sulfate-reducing bacterium (SRB) Desulfovibrio sp. strain Lac6, as well as in an SRB consortium enriched from produced water from a Canadian oil reservoir. The average corrosion rate induced by the SRB consortium (1.4 g x m(-2) x day(-1)) was faster than that observed in the presence of strain Lac6 (0.2 g x m(-2) x day(-1)). Examination of the metallic coupons at the end of the tests indicated a uniform corrosion in both cases. Addition of CVO and 10 mM nitrate to a fully grown culture of Lac6 or the SRB consortium led to complete removal of sulfide from the system and a significant increase in the population of CVO, as determined by reverse sample genome probing. In the case of the SRB consortium addition of just nitrate (10 mM) had a similar effect. When grown in the absence of nitrate, the consortium was dominated by Desulfovibrio sp. strains Lac15 and Lac29, while growth in the presence of nitrate led to dominance of Desulfovibrio sp. strain Lac3. The addition of CVO and nitrate to the Lac6 culture or nitrate to the SRB consortium accelerated the average corrosion rate to 1.5 and 2.9 g x m(-2) x day(-1), respectively. Localized corrosion and the occurrence of pitting were apparent in both cases. Although the sulfide concentration (0.5-7 mM) had little effect on corrosion rates, a clear increase of the corrosion rate with increasing nitrate concentration was observed in experiments conducted with consortia enriched from produced water.  相似文献   

15.
Oil fields that use water flooding to enhance oil recovery may become sour because of the production of H2S from the reduction of sulfate by sulfate-reducing bacteria (SRB). The addition of nitrate to produced waters can stimulate the activities of nitrate-reducing bacteria (NRB) and control sulfide production. Many previous studies have focused on chemolithotrophic bacteria that can use thiosulfate or sulfide as energy sources while reducing nitrate. Little attention has been given to heterotrophic NRB in oil field waters. Three different media were used in this study to enumerate various types of planktonic NRB present in waters from five oil fields in western Canada. The numbers of planktonic SRB and bacteria capable of growth under aerobic conditions were also determined. In general, microbial numbers in the produced waters were very low (<10 ml−1) in samples taken near or at wellheads. However, the numbers increased in the aboveground facilities. No thiosulfate-oxidizing NRB were detected in the oil field waters, but other types of NRB were detected in 16 of 18 produced water samples. The numbers of heterotrophic NRB were equal to or greater than the number of sulfide-oxidizing, chemolithotrophic NRB in 12 of 15 samples. These results showed that each of the oil fields contained NRB, which might be stimulated by nitrate amendment to control H2S production by SRB. Journal of Industrial Microbiology & Biotechnology (2002) 29, 83–92 doi:10.1038/sj.jim.7000274 Received 20 February 2002/ Accepted in revised form 14 May 2002  相似文献   

16.
Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266–269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields.  相似文献   

17.
Samples were obtained from the Obigbo field, located onshore in the Niger delta, Nigeria, from which oil is produced by injection of low-sulfate groundwater, as well as from the offshore Bonga field from which oil is produced by injection of high-sulfate (2,200 ppm) seawater, amended with 45 ppm of calcium nitrate to limit reservoir souring. Despite low concentrations of sulfate (0–7 ppm) and nitrate (0 ppm), sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (NRB) were present in samples from the Obigbo field. Biologically active deposits (BADs), scraped from corrosion-failed sections of a water- and of an oil-transporting pipeline (both Obigbo), had high counts of SRB and high sulfate and ferrous iron concentrations. Analysis of microbial community composition by pyrosequencing indicated anaerobic, methanogenic hydrocarbon degradation to be a dominant process in all samples from the Obigbo field, including the BADs. Samples from the Bonga field also had significant activity of SRB, as well as of heterotrophic and of sulfide-oxidizing NRB. Microbial community analysis indicated high proportions of potentially thermophilic NRB and near-absence of microbes active in methanogenic hydrocarbon degradation. Anaerobic incubation of Bonga samples with steel coupons gave moderate general corrosion rates of 0.045–0.049 mm/year, whereas near-zero general corrosion rates (0.001–0.002 mm/year) were observed with Obigbo water samples. Hence, methanogens may contribute to corrosion at Obigbo, but the low general corrosion rates cannot explain the reasons for pipeline failures in the Niger delta. A focus of future work should be on understanding the role of BADs in enhancing under-deposit pitting corrosion.  相似文献   

18.
Thermophilic sulfate-reducing bacteria (tSRB) can be major contributors to the production of H2S (souring) in oil reservoirs. Two tSRB enrichments from a North Sea oil field, NS-tSRB1 and NS-tSRB2, were obtained at 58°C with acetate-propionate-butyrate and with lactate as the electron donor, respectively. Analysis by rDNA sequencing indicated the presence of Thermodesulforhabdus norvegicus in NS-tSRB1 and of Archaeoglobus fulgidus in NS-tSRB2. Nitrate (10 mM) had no effect on H2S production by mid-log phase cultures of NS-tSRB1 and NS-tSRB2, whereas nitrite (0.25 mM or higher) inhibited sulfate reduction. NS-tSRB1 did not recover from inhibition, whereas sulfate reduction activity of NS-tSRB2 recovered after 500 h. Nitrite was also effective in souring inhibition and H2S removal in upflow bioreactors, whereas nitrate was similarly ineffective. Hence, nitrite may be preferable for souring prevention in some high-temperature oil fields because it reacts directly with sulfide and provides long-lasting inhibition of sulfate reduction.  相似文献   

19.
Biogenic production of hydrogen sulphide (H2S) is a problem for the oil industry as it leads to corrosion and reservoir souring. Continuous injection of a low nitrate concentration (0.25–0.33 mM) replaced glutaraldehyde as corrosion and souring control at the Veslefrikk and Gullfaks oil field (North Sea) in 1999. The response to nitrate treatment was a rapid reduction in number and activity of sulphate-reducing bacteria (SRB) in the water injection system biofilm at both fields. The present long-term study shows that SRB activity has remained low at ≤0.3 and ≤0.9 μg H2S/cm2/day at Veslefrikk and Gullfaks respectively, during the 7–8 years with continuous nitrate injection. At Veslefrikk, 16S rRNA gene based community analysis by PCR–DGGE showed that bacteria affiliated to nitrate-reducing sulphide-oxidizing Sulfurimonas (NR–SOB) formed major populations at the injection well head throughout the treatment period. Downstream of deaerator the presence of Sulfurimonas like bacteria was less pronounced, and were no longer observed 40 months into the treatment period. The biofilm community during nitrate treatment was highly diverse and relative stable for long periods of time. At the Gullfaks field, a reduction in corrosion of up to 40% was observed after switch to nitrate treatment. The present study show that nitrate injection may provide a stable long-term inhibition of SRB in sea water injection systems, and that corrosion may be significantly reduced when compared to traditional biocide treatment.  相似文献   

20.
Representative microbial cultures from an oil reservoir and electrochemical techniques including potentiodynamic scan and linear polarization were used to investigate the time dependent corrosion rate associated with control of biogenic sulphide production through addition of nitrite, nitrate and a combination of nitrate-reducing, sulphide-oxidizing bacteria (NR-SOB) and nitrate. The addition of nitrate alone did not prevent the biogenic production of sulphide but the produced sulphide was eventually oxidized and removed from the system. The addition of nitrate and NR-SOB had a similar effect on oxidation and removal of sulphide present in the system. However, as the addition of nitrate and NR-SOB was performed towards the end of sulphide production phase, the assessment of immediate impact was not possible. The addition of nitrite inhibited the biogenic production of sulphide immediately and led to removal of sulphide through nitrite mediated chemical oxidation of sulphide. The real time corrosion rate measurement revealed that in all three cases an acceleration in the corrosion rate occurred during the oxidation and removal of sulphide. Amendments of nitrate and NR-SOB or nitrate alone both gave rise to localized corrosion in the form of pits, with the maximum observed corrosion rates of 0.72 and 1.4 mm year−1, respectively. The addition of nitrite also accelerated the corrosion rate but the maximum corrosion rate observed following nitrite addition was 0.3 mm year−1. Furthermore, in the presence of nitrite the extent of pitting was not as high as those observed with other control methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号