首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated almost full-length cDNA clones corresponding to human erythrocyte membrane sialoglycoproteins alpha (glycophorin A) and delta (glycophorin B). The predicted amino acid sequence of delta differs at two amino acid residues from the sequence determined by peptide sequencing. The sialoglycoprotein delta clone we have isolated contains an interrupting sequence within the region that gives rise to the cleaved N-terminal leader sequence for the protein and represents a product that is unlikely to be inserted into the erythrocyte membrane. Comparison of the cDNA sequences of alpha and delta shows very strong homology at the DNA level within the coding regions. The two mRNA sequences are closely related and differ by a number of clearly defined insertions and deletions.  相似文献   

2.
Using human α glycophorin cDNA probe and six restriction enzymes, we examined the homologues of human glycophorin genes in genomic DNA of 11 unrelated chimpanzees. We show that, in contrast to the human, the chimpanzee exhibits an unusual array of nonrandomly distributed restriction fragment length polymorphisms (RFLP). No clear correlation was found between the RFLP and the V-A-B-D blood-group phenotypes of the subjects, with one possible exception. However, pairs of allelic RFLP occurring at a relatively high frequency were identified. In addition, the homology of chimpanzee glycophorin genes to the human genes was examined using as probes synthetic oligonucleotides specifying distinct regions of human glycophorin genes. We show that the glycophorin gene family in the chimpanzee consists of at least three members that are homologous to the human α, δ, and E genes (glycophorins A, B, and E) and may share a similar gross structure and overall organization. This research was supported by National Institutes of Health Grant GM 16389.  相似文献   

3.
We have developed methods for the preparative purification of two sialoglycoproteins (glycophorins B and C) from human erythrocyte membranes by high-performance ion exchange and gel permeation chromatography in the presence of Triton X-100. Glycophorin B was obtained without any detectable contaminants, and glycophorin C exhibited a purity of about 90-95%. The amino acid sequence of the intramembranous domain (residues 36-71) of glycophorin B was determined and found to be similar to that of the hydrophobic region of the major sialoglycoprotein (glycophorin A). The amino acid sequence of the hydrophobic domain (residues 49-88) of glycophorin C, that was also determined, agreed completely with the structure recently deduced from cDNA sequencing.  相似文献   

4.
Glycophorins A and B are homologous glycoproteins of the red cell membrane which carry the blood-group MN and Ss antigens, respectively, and are encoded by two distinct genes closely linked on chromosome 4, which are probably derived from each other by duplication during evolution. The lack of glycophorin A is associated with the rare phenotype En(a-), indicating individuals who are defective for MN antigens, as well as for the Ena antigens, also located on this glycoprotein. The En(a-) condition is heterogenous and includes two categories of variants exemplified by the Finnish and the English types referred to as En(Fin) and En(UK), respectively. By Southern blot and preliminary genomic clone analyzes we have compared the status of the genes for glycophorins A and B, as well as that of the gene encoding glycophorin C, another unrelated red cell membrane glycoprotein, in the En(a-) variants and in the En(a+) control donors. Our data indicate that the En(Fin) variant is homozygous for a complete deletion of the glycophorin A gene without any detectable abnormality of the genes encoding glycophorins B or C. In the genome of the En(UK) variant, with the presumed genotype Mk/En(UK), and where the Mk condition abolishes the expression of MN and Ss antigens, we have identified several abnormalities of the glycophorin A and B genes, but the glycophorin C gene was unaffected. Our results strongly support the view that in Mk chromosome the glycophorin A and B genes are largely deleted, whereas the En(UK) chromosome probably contains a gene fusion product encoding a hybrid glycoprotein AM-B, composed of the N-terminal portion of a blood group M-type glycophorin A and of the C-terminal portion of glycophorin B. The determination of the 5' and 3' limits of the hybrid gene and elucidation of the mechanism involved will require sequencing of the rearranged DNA of the variant and a full knowledge of the organization of the glycophorin A and B genes.  相似文献   

5.
A new gene closely related to the glycophorin A (GPA) and glycophorin B (GPB) genes has been identified in the normal human genome as well as in that of persons with known alterations of GPA and/or GPB expression. This gene, called glycophorin E (GPE), is transcribed into a 0.6-kb message which encodes a 78-amino-acid protein with a putative leader peptide of 19 residues. The first 26 amino acids of the mature protein are identical to those of M-type glycophorin A (GPA), but the C-terminal domain (residues 27-59) differs significantly from those of glycophorins A and B (GPA and GPB). The GPE gene consists of four exons distributed over 30 kb of DNA, and its nucleotide sequence is homologous to those of the GPA and GPB genes in the 5' region, up to exon 3. Because of branch and splice site mutations, the GPE gene contains a large intron sequence partially used as exons in GPA and GPB genes. Compared to its counterpart in the GPB gene, exon 3 of the GPE gene contains several point mutations, an insertion of 24 bp, and a stop codon which shortens the reading frame. Downstream from exon 3, the GPE and the GPB sequences are virtually identical and include the same Alu repeats. Thus, it is likely that the GPE and GPB genes have evolved by a similar mechanism. From the analysis of the GPA, GPB and GPE genes in glycophorin variants [En(a-), S-s-U- and Mk], it is proposed that the three genes are organized in tandem on chromosome 4. Deletion events within this region may remove one or two structural gene(s) and may generate new hybrid structures in which the promoter region of one gene is positioned upstream from the body of another gene of the same family. This model of gene organization provides a basis with which to explain the diversity of the glycophorin gene family.  相似文献   

6.
Y Matsui  S Natori  M Obinata 《Gene》1989,77(2):325-332
The cDNA clone for a major mouse glycophorin, transmembrane glycoprotein of erythrocytes has been isolated from a mouse spleen erythroblast cDNA library. The primary structure of a major glycophorin indicates that the protein is a single polypeptide chain of 168 amino acids (aa) clearly organized in three domains distinct in the glycophorin of other species. A strong homology of the mouse major glycophorin with human glycophorin A or B, but not with human glycophorin C is observed only in the hydrophobic stretch of 23 nonpolar aa, indicating that the major mouse glycophorin species cloned is similar to human glycophorin A. The glycophorin mRNA is absent in all non-erythroid organs or cell lines examined. The glycophorin mRNA is induced during the differentiation of murine erythroleukemia cells with dimethyl sulfoxide.  相似文献   

7.
1. Genomic DNA derived from individuals who lack glycophorin A (GPA), glycophorin B (GPB) or both of these proteins was subjected to Southern-blot analysis using GPA and GPB cDNA probes. 2. Bands on the Southern blots were assigned to the GPA gene, GPB gene or to a putative pseudogene. 3. Genomic DNA derived from an individual of the Mk phenotype was shown to have deletions in the GPA and GPB genes. The simplest model for the results obtained is that a single deletion spans the GPA and GPB genes in the individual studied.  相似文献   

8.
9.
Glycophorin A is the major membrane sialoglycoprotein of human erythrocytes and represents a typical example of a transmembrane glycoprotein. The functional role of this cell-surface component is not known but it represents a receptor for viruses, bacteria and parasites like Plasmodium falciparum. 1. Two cDNA clones encoding glycophorin A have been characterized from human fetal cDNA libraries. The longer cDNA extended from the coding region of glycophorin A (residues 4-131) to the 3' untranslated region which included two polyadenylation signals and a poly(A) tail. 2. The structural gene for glycophorin A is located on chromosome 4, q28-q31 as shown by in situ hybridization, thus confirming the previous localization by genetic linkage analysis. 3. Three distinct mRNA species (1.0 kb, 1.7 kb and 2.2 kb) have been identified in erythroid spleen. Northern blot analyses with a probe directed against the 3' untranslated region of the mRNAs indicated that all these species share a homologous 3' non-coding region and that the first polyadenylation signal downstream the stop codon is not used. 4. Preliminary studies by Southern blot analysis of the genomic DNA from normal En(a+) and rare En(a-) donors suggest that the glycophorin A gene has a complex organization and is largely deleted in donors of the En(a-) phenotype (Finnish type) who lack glycophorin A on their red cells.  相似文献   

10.
Using a cDNA for glycophorin A (MN), we screened 10 unrelated Caucasians using 22 restriction enzymes for RFLPs. A common StuI RFLP was identified and shown to be in marked linkage disequilibrium with both the MN and Ss blood-group antigens in a larger group of unrelated Caucasians. This provides a DNA marker for a locus that has been of major importance in genetic and population studies. The demonstrated disequilibrium will prove useful in localizing the gene for glycophorin B and in studies of genetic and physical distances on human chromosomes.  相似文献   

11.
Two cDNA clones for glycophorin C, a transmembrane glycoprotein of the human erythrocyte which carries the blood group Gerbich antigens, have been isolated from a human reticulocyte cDNA library. The clones were identified with a mixture of 32 oligonucleotide probes (14-mer) which have been synthetized according to the amino acid sequence Asp-Pro-Gly-Met-Ala present in the N-terminal tryptic peptide of the molecule. The primary structure of glycophorin C deduced from the nucleotide sequence of the 460 base-pair insert of the pGCW5 clone indicates that the complete protein is a single polypeptide chain of 128 amino acids clearly organized in three distinct domains. The N-terminal part (residues 1-57, approximately) which is N- and O-glycosylated is connected to a hydrophilic C-terminal domain (residues 82-128, approximately) containing 4 tyrosine residues by a hydrophobic stretch of nonpolar amino acids (residues 58-81, approximately) probably interacting with the membrane lipids and permitting the whole molecule to span the lipid bilayer. Northern blot analysis using a 265-base-pair restriction fragment obtained by DdeI digestion of the inserted DNA shows that the glycophorin C mRNA from human erythroblasts is approximately 1.4 kilobases long and is present in the human fetal liver and the human K562 and HEL cell lines which exhibit erythroid features. The glycophorin C mRNA, however, is absent from adult liver and lymphocytes, indicating that this protein represents a new erythrocyte-specific probe which might be useful to study erythroid differentiation.  相似文献   

12.
Group 1 CD1 genes in rabbit   总被引:2,自引:0,他引:2  
CD1 is an Ag-presenting molecule that can present lipids and glycolipids to T cells. The CD1 genes were first identified in the human, and since then, homologs have been identified in every mammalian species examined to date. Over a decade ago, CD1B and CD1D homologs were identified in the rabbit. We have extended this earlier study by identifying additional CD1 genes with the goal of developing the rabbit as an animal model to study the function of CD1 proteins. We constructed a thymocyte cDNA library and screened the library with CD1-specific probes. Based on nucleotide sequence analyses of the CD1(+) cDNA clones obtained from the library, we have identified two CD1A genes and one CD1E gene as well as determined the complete sequence of the previously identified CD1B gene. The CD1E(+) cDNA clones lacked the transmembrane and cytoplasmic domains and, if translated, would encode for a soluble or secreted CD1E protein. In addition, expression studies demonstrated that the CD1 genes were expressed in peripheral lymphoid tissues as well as in skin, gut, and lung. Of interest is the finding that CD1A2, CD1B, and CD1E genes were found to be expressed by rabbit B cell populations. The rabbit, with a complex CD1 locus composed of at least two CD1A genes, one CD1B gene, one CD1D gene, and one CD1E gene, is an excellent candidate as an animal model to study CD1 proteins.  相似文献   

13.
In order to isolate genes that may not be represented in current human brain cDNA libraries, we have sequenced about 20,000 sequence tags of cDNA clones derived from cerebellum and parietal lobe of cynomolgus monkeys (Macaca fascicularis). We determined the entire cDNA sequence of approximately 700 clones whose 5'-terminal sequences showed no homology to annotated putative genes or expressed sequence tags in current databases of genetic information. From this, 118 clones with sequences encoding novel open reading frames of more than 100 amino acid residues were selected for further analysis. To localize the genes corresponding to these 118 newly identified cDNA clones on human chromosomes, we performed a homology search using the human genome sequence and fluorescent in situ hybridization. In total, 108 of 118 clones were successfully assigned to specific regions of human chromosomes. This result demonstrates that genes expressed in cynomolgus monkey are highly conserved throughout primate evolution, and that virtually all had human homologs. Furthermore, we will be able to discover novel human genes in the human genome using monkey homologs as probes.  相似文献   

14.
Analysis of nucleotide sequences of the human glycophorin A (GPA) and glycophorin B (GPB) genes has indicated that the GPA gene most closely resembles the ancestral gene, whereas the GPB gene likely arose from the GPA gene by homologous recombination. To study the evolution of the glycophorin gene family in the hominoid primates, restricted DNA on Southern blots from man, pygmy chimpanzee, common chimpanzee, gorilla, orangutan, and gibbon was probed with cDNA fragments encoding the human GPA and GPB coding and 3-untranslated regions. This showed the presence in all of the hominoid primates of at least one GPA-like gene. In addition, at least one GPB-like gene was detected in man, both chimpanzee species, and gorilla, strongly suggesting that the event that produced the GPB gene occurred in the common ancestor of man-chimpanzee-gorilla. An unexpected finding in this study was the conservation ofEcoRI restriction sites relative to those of the other four enzymes used; the significance of this observation is unclear, but raises the question of nonrandomness ofEcoRI restriction sites in noncoding regions. Further analysis of the evolution of this multigene family, including nucleotide sequence analysis, will be useful in clarification of the evolutionary relationships of the hominoid primates, in correlation with the structure and function of the glycophorin molecules, and in assessment of the role of evolution in the autogenicity of glycophorin determinants.This work was supported in part by National Institutes of Health Grants AM33463 and CA33000.  相似文献   

15.
16.
17.
Creatine kinase (EC 2.7.3.2) isoenzymes play a central role in energy transduction. Nuclear genes encode creatine kinase subunits from muscle, brain, and mitochondria (MtCK). We have recently isolated a cDNA clone encoding MtCK from a human placental library which is expressed in many human tissues (Haas, R. C., Korenfeld, C., Zhang, Z., Perryman, B., Roman, D., and Strauss, A. W. (1989) J. Biol. Chem. 264, 2890-2897). With nontranslated and coding region probes, we demonstrated by RNA blot analysis that the MtCK mRNA in sarcomeric muscle is distinct from this placenta-derived, ubiquitous MtCK cDNA. To compare these different mRNAs, a MtCK cDNA clone was isolated from a human heart library and characterized by complete nucleotide sequence analysis. The chemically determined NH2-terminal 26 residues of purified human heart MtCK protein are identical to those predicted from this sarcomeric MtCK cDNA. The human sarcomeric and ubiquitous cDNAs share 73% nucleotide and 80% predicted amino acid sequence identities, but have less than 66% identity with the cytosolic creatine kinases. The sarcomeric MtCK cDNA encodes a 419-amino acid protein which contains a 39-residue transit peptide essential for mitochondrial import. Primer extension analysis predicts a 348-base pair 5'-nontranslated region. RNA blot analysis demonstrates that heart-derived MtCK is sarcomere-specific, but the ubiquitous MtCK mRNA is expressed in most tissues. Thus, separate nuclear genes encode two closely related, tissue-specific isoenzymes of MtCK. Our finding that multiple genes encode different mitochondrial protein isoenzymes is rare.  相似文献   

18.
19.
We have accumulated information of the coding sequences of uncharacterized human genes, which are known as KIAA genes, and the number of these genes exceeds 2000 at present. As an extension of this sequencing project, we recently have begun to accumulate mouse KIAA-homologous cDNAs, because it would be useful to prepare a set of human and mouse homologous cDNA pairs for further functional analysis of the KIAA genes. We herein present the entire sequences of 400 mouse KIAA cDNA clones and 4 novel cDNA clones which were incidentally identified during this project. Most of clones entirely sequenced in this study were selected by computer-assisted analysis of terminal sequences of the cDNAs. The average size of the 404 cDNA sequences reached 5.3 kb and that of the deduced amino acid sequences from these cDNAs was 868 amino acid residues. The results of sequence analyses of these clones showed that single mouse KIAA cDNAs bridged two different human KIAA cDNAs in some cases, which indicated that these two human KIAA cDNAs were derived from single genes although they had been supposed to originate from different genes. Furthermore, we successfully mapped all the mouse KIAA cDNAs along the genome using a recently published mouse genome draft sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号