首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Mammalian mitochondrial translational initiation factor 3 (IF3(mt)) binds to the small subunit of the ribosome displacing the large subunit during the initiation of protein biosynthesis. About half of the proteins in mitochondrial ribosomes have homologs in bacteria while the remainder are unique to the mitochondrion. To obtain information on the ribosomal proteins located near the IF3(mt) binding site, cross-linking studies were carried out followed by identification of the cross-linked proteins by mass spectrometry. IF3(mt) cross-links to mammalian mitochondrial homologs of the bacterial ribosomal proteins S5, S9, S10, and S18-2 and to unique mitochondrial ribosomal proteins MRPS29, MRPS32, MRPS36 and PTCD3 (Pet309) which has now been identified as a small subunit ribosomal protein. IF3(mt) has extensions on both the N- and C-termini compared to the bacterial factors. Cross-linking of a truncated derivative lacking these extensions gives the same hits as the full length IF3(mt) except that no cross-links were observed to MRPS36. IF3 consists of two domains separated by a flexible linker. Cross-linking of the isolated N- and C-domains was observed to a range of ribosomal proteins particularly with the C-domain carrying the linker which showed significant cross-linking to several ribosomal proteins not found in prokaryotes.  相似文献   

3.
Bacterial initiation factor 3 (IF3) is organized into N- and C-domains separated by a linker. Mitochondrial IF3 (IF3mt) has a similar domain organization, although both domains have extensions not found in the bacterial factors. Constructs of the N- and C-domains of IF3mt with and without the connecting linker were prepared. The Kd values for the binding of full-length IF3mt and its C-domain with and without the linker to mitochondrial 28S subunits are 30, 60, and 95 nM, respectively, indicating that much of the ribosome binding interactions are mediated by the C-domain. However, the N-domain binds to 28S subunits with only a 10-fold lower affinity than full-length IF3mt. This observation indicates that the N-domain of IF3mt has significant contacts with the protein-rich small subunit of mammalian mitochondrial ribosomes. The linker also plays a role in modulating the interactions between the 28S subunit and the factor; it is not just a physical connector between the two domains. The presence of the two domains and the linker may optimize the overall affinity of IF3mt for the ribosome. These results are in sharp contrast to observations with Escherichia coli IF3. Removal of the N-domain drastically reduces the activity of IF3mt in the dissociation of mitochondrial 55S ribosomes, although the C-domain itself retains some activity. This residual activity depends significantly on the linker region. The N-domain alone has no effect on the dissociation of ribosomes. Full-length IF3mt reduces the binding of fMet-tRNA to the 28S subunit in the absence of mRNA. Both the C-terminal extension and the linker are required for this effect. IF3mt promotes the formation of a binary complex between IF2mt and fMet-tRNA that may play an important role in mitochondrial protein synthesis. Both domains play a role promoting the formation of this complex.  相似文献   

4.
Mammalian mitochondrial translational initiation factor 3 (IF3mt) promotes initiation complex formation on mitochondrial 55S ribosomes in the presence of IF2mt, fMet-tRNA and poly(A,U,G). The mature form of IF3mt is predicted to be 247 residues. Alignment of IF3mt with bacterial IF3 indicates that it has a central region with 20–30% identity to the bacterial factors. Both the N- and C-termini of IF3mt have extensions of ~30 residues compared with bacterial IF3. To examine the role of the extensions on IF3mt, deletion constructs were prepared in which the N-terminal extension, the C-terminal extension or both extensions were deleted. These truncated derivatives were slightly more active in promoting initiation complex formation than the mature form of IF3mt. Mitochondrial 28S subunits have the ability to bind fMet-tRNA in the absence of mRNA. IF3mt promotes the dissociation of the fMet-tRNA bound in the absence of mRNA. This activity of IF3mt requires the C-terminal extension of this factor. Mitochondrial 28S subunits also bind mRNA independently of fMet-tRNA or added initiation factors. IF3mt has no effect on the formation of these complexes and cannot dissociate them once formed. These observations have lead to a new model for the function of IF3mt in mitochondrial translational initiation.  相似文献   

5.
Mammalian mitochondrial initiation factor 3 (IF3mt) has a central region with homology to bacterial IF3. This homology region is preceded by an N-terminal extension and followed by a C-terminal extension. The role of these extensions on the binding of IF3mt to mitochondrial small ribosomal subunits (28S) was studied using derivatives in which the extensions had been deleted. The Kd for the binding of IF3mt to 28S subunits is ~30 nM. Removal of either the N- or C-terminal extension has almost no effect on this value. IF3mt has very weak interactions with the large subunit of the mitochondrial ribosome (39S) (Kd = 1.5 μM). However, deletion of the extensions results in derivatives with significant affinity for 39S subunits (Kd = 0.120.25 μM). IF3mt does not bind 55S monosomes, while the deletion derivative binds slightly to these particles. IF3mt is very effective in dissociating 55S ribosomes. Removal of the N-terminal extension has little effect on this activity. However, removal of the C-terminal extension leads to a complex dissociation pattern due to the high affinity of this derivative for 39S subunits. These data suggest that the extensions have evolved to ensure the proper dissociation of IF3mt from the 28S subunits upon 39S subunit joining.  相似文献   

6.
Protein synthesis is initiated on ribosomal subunits. However, it is not known how 70S ribosomes are dissociated into small and large subunits. Here we show that 70S ribosomes, as well as the model post-termination complexes, are dissociated into stable subunits by cooperative action of three translation factors: ribosome recycling factor (RRF), elongation factor G (EF-G), and initiation factor 3 (IF3). The subunit dissociation is stable enough to be detected by conventional sucrose density gradient centrifugation (SDGC). GTP, but not nonhydrolyzable GTP analog, is essential in this process. We found that RRF and EF-G alone transiently dissociate 70S ribosomes. However, the transient dissociation cannot be detected by SDGC. IF3 stabilizes the dissociation by binding to the transiently formed 30S subunits, preventing re-association back to 70S ribosomes. The three-factor-dependent stable dissociation of ribosomes into subunits completes the ribosome cycle and the resulting subunits are ready for the next round of translation.  相似文献   

7.
Eukaryotic initiation factor eIF1 and the functional C-terminal domain of prokaryotic initiation factor IF3 maintain the fidelity of initiation codon selection in eukaryotes and prokaryotes, respectively, and bind to the same regions of small ribosomal subunits, between the platform and initiator tRNA. Here we report that these nonhomologous factors can bind to the same regions of heterologous subunits and perform their functions in heterologous systems in a reciprocal manner, discriminating against the formation of initiation complexes containing codon-anticodon mismatches. We also show that like IF3, eIF1 can influence initiator tRNA selection, which occurs at the stage of ribosomal subunit joining after eIF5-induced hydrolysis of eIF2-bound GTP. The mechanisms of initiation codon and initiator tRNA selection in prokaryotes and eukaryotes are therefore unexpectedly conserved and likely involve related conformational changes induced in the small ribosomal subunit by factor binding. YciH, a prokaryotic eIF1 homologue, could perform some of IF3's functions, which justifies the possibility that YciH and eIF1 might have a common evolutionary origin as initiation factors, and that IF3 functionally replaced YciH in prokaryotes.  相似文献   

8.
The bovine liver mitochondrial factor that promotes the binding of fMet-tRNA to mitochondrial ribosomes, initiation factor 2 (IF-2mt), has been identified in the postribosomal supernatant fraction of isolated liver mitochondria. This factor has been purified approximately 5,000-fold and present preparations are estimated to be about 10% pure. IF-2mt has an apparent molecular weight of about 140,000 as determined by gel filtration chromatography. IF-2mt is active in stimulating fMet-tRNA binding to Escherichia coli ribosomes but E. coli IF-2 is not active in promoting initiator tRNA binding to animal mitochondrial ribosomes. The IF-2mt-mediated binding of fMet-tRNAi(Met) to mitochondrial ribosomes is dependent on the presence of a message such as poly(A,U,G) and on GTP. Nonhydrolyzable analogs of GTP are 2-3-fold less effective in promoting initiation complex formation on mitochondrial ribosomes than is GTP suggesting that IF-2mt is capable of recycling to some extent under the current assay conditions.  相似文献   

9.
The translation system of mammalian mitochondria   总被引:2,自引:0,他引:2  
Oligoribonucleotides and mRNA were used to define properties of the bovine mitoribosomal mRNA binding site. The RNA binding domain on the 28 S subunit spans approx. 80 nucleotides of the template, based on ribosome protection experiments, but the major interaction with the ribosome occurs over a 30 nucleotide stretch. The binding site for E. coli IF3 is conserved in bovine mitoribosomes, but mitochondrial factors appear essential for proper interaction of mRNA with mitoribosomes. The small subunit of bovine mitoribosomes contains a high-affinity binding site for guanyl nucleotides, further indication of specialized mechanisms for initiation complex formation and function of mammalian mitochondrial ribosomes.  相似文献   

10.
Translation initiation factor IF3 is required for peptide chain initiation in Escherichia coli. IF3 binds directly to 30S ribosomal subunits ensuring a constant supply of free 30S subunits for initiation complex formation, participates in the kinetic selection of the correct initiator region of mRNA, and destabilizes initiation complexes containing noninitiator tRNAs. The roles that tyrosine 107 and lysine 110 play in IF3 function were examined by site-directed mutagenesis. Tyrosine 107 was changed to either phenylalanine (Y107F) or leucine (Y107L), and lysine 110 was converted to either arginine (K110R) or leucine (K110L). These single amino acid changes resulted in a reduced affinity of IF3 for 30S subunits. Association equilibrium constants (M-1) for 30S subunit binding were as follows: wild-type, 7.8 x 10(7); Y107F, 4.1 x 10(7); Y107L, 1 x 10(7); K110R, 5.1 x 10(6); K110L, < 1 x 10(2). The mutant IF3s were similarly impaired in their abilities to specifically select initiation complexes containing tRNA(fMet). Toeprint analysis indicated that 5-fold more Y107L or K110R protein was required for proper initiator tRNA selection. K110L protein was unable to mediate this selection even at concentrations up to 10-fold higher than wild type. The results indicate that tyrosine 107 and lysine 110 are critical components of the ribosome binding domain of IF3 and, furthermore, that dissociation of complexes containing noninitiator tRNAs requires prior binding of IF3 to the ribosomes.  相似文献   

11.
F H Zucker  J W Hershey 《Biochemistry》1986,25(12):3682-3690
The interaction of initiation factor IF1 with 30S ribosomal subunits was measured quantitatively by fluorescence polarization. Purified IF1 was treated with 2-iminothiolane and N-[[(iodoacetyl)-amino]ethyl]-5-naphthylamine-1-sulfonic acid in order to prepare a covalent fluorescent derivative without eliminating positive charges on the protein required for biochemical activity. The fluorescent-labeled IF1 binds to 30S subunits and promotes the formation of N-formylmethionyl-tRNA complexes with 70S ribosomes. Analyses of mixtures of fluorescent-labeled IF1 and 30S ribosomal subunits with an SLM 4800 spectrofluorometer showed little change in fluorescence spectra or lifetimes upon binding, but a difference in polarization between free and bound forms is measurable. Bound to free ratios were calculated from polarization data and used in Scatchard plots to determine equilibrium binding constants and number of binding sites per ribosomal subunit. Competition between derivatized and nonderivatized forms of IF1 was quantified, and association constants for the native factor were determined: (5 +/- 1) X 10(5) M-1 with IF1 alone; (3.6 +/- 0.4) X 10(7) M-1 with IF3; (1.1 +/- 0.2) X 10(8) M-1 with IF2; (2.5 +/- 0.5) X 10(8) M-1 with both IF2 and IF3. In all cases, 0.9-1.1 binding sites per 30S subunit were detected. Divalent cations have little effect on affinities, whereas increasing monovalent cations inhibit binding. On the basis of the association constants, we predict that greater than 90% of native 30S subunits are complexed with all three initiation factors in intact bacterial cells.  相似文献   

12.
A primer extension inhibition (toeprint) assay was developed using ribosomes and ribosomal subunits from Streptomyces lividans. This assay allowed the study of ribosome binding to streptomycete leaderless and leadered mRNA. Purified 30S subunits were unable to form a ternary complex on aph leaderless mRNA, whereas 70S ribosomes could form ternary complexes on this mRNA. 30S subunits formed ternary complexes on leadered aph and malE mRNA. The translation initiation factors (IF1, IF2, and IF3) from S. lividans were isolated and included in toeprint and filter binding assays with leadered and leaderless mRNA. Generally, the IFs reduced the toeprint signal on leadered mRNA; however, incubation of IF1 and IF2 with 30S subunits that had been washed under high-salt conditions promoted the formation of a ternary complex on aph leaderless mRNA. Our data suggest that, as reported for Escherichia coli, initiation complexes with leaderless mRNAs might use a novel pathway involving 70S ribosomes or 30S subunits bound by IF1 and IF2 but not IF3. Some mRNA-ribosome-initiator tRNA reactions that yielded weak or no toeprint signals still formed complexes in filter binding assays, suggesting the occurrence of interactions that are not stable in the toeprint assay.  相似文献   

13.
14.
15.
Mechanism of mRNA binding to bovine mitochondrial ribosomes   总被引:3,自引:0,他引:3  
The binding of mRNA to bovine mitochondrial ribosomes was investigated using triplet codons, homopolymers and heteropolymers of various lengths, and human mitochondrial mRNAs. In the absence of initiation factors and initiator tRNA, mitochondrial ribosomes do not bind triplet codons (AUG and UUU) or homopolymers (oligo(U] shorter than about 10 nucleotides. The RNA binding domain on the 28 S mitoribosomal subunit spans approximately 80 nucleotides of the mRNA, judging from the size of the fragments of poly(U,G) and natural mRNAs protected from RNase T1 digestion by this subunit, but the major binding interaction with the ribosome appears to occur over a 30-nucleotide stretch. Human mitochondrial mRNAs coding for subunits II and III of cytochrome c oxidase and subunit 1 of the NADH-ubiquinone oxidoreductase (complex I) were used in studying in detail the binding of mRNA to the small subunit of bovine mitochondrial ribosomes. We have determined that these mRNAs have considerable secondary structure in their 5'-terminal regions and that the initiation codon of each mRNA is sequestered in a stem structure. Little mRNA was bound to ribosomes in a manner conferring protection of the 5' termini from RNase T1 digestion, under standard conditions supporting the binding of artificial templates, but such binding was greatly stimulated by the addition of a mitochondrial extract. Initiation factors and tRNAs from Escherichia coli were unable to stimulate the 5' terminus protected binding of these mRNA molecules, demonstrating a requirement for homologous factors. Our results strongly suggest that mitochondrial initiation factors are required for the proper recognition and melting of the secondary structure in the 5'-terminal region of mitochondrial mRNAs, as a prerequisite for initiation of protein synthesis in mammalian mitochondria.  相似文献   

16.
Yeast mitochondrial initiation factor 2 (ymIF2) is encoded by the nuclear IFM1 gene. A His-tagged version of ymIF2, lacking its predicted mitochondrial presequence, was expressed in Escherichia coli and purified. Purified ymIF2 bound both E. coli fMet-tRNA(f)(Met) and Met-tRNA(f)(Met), but binding of formylated initiator tRNA was about four times higher than that of the unformylated species under the same conditions. In addition, the isolated ymIF2 was compared to E. coli IF2 in four other assays commonly used to characterize this initiation factor. Formylated and nonformylated Met-tRNA(f)(Met) were bound to E. coli 30S ribosomal subunits in the presence of ymIF2, GTP, and a short synthetic mRNA. The GTPase activity of ymIF2 was found to be dependent on the presence of E. coli ribosomes. The ymIF2 protected fMet-tRNA(f)(Met) to about the same extent as E. coli IF2 against nonenzymatic deaminoacylation. In contrast to E. coli IF2, the complex formed between ymIF2 and fMet-tRNA(f)(Met) was not stable enough to be analyzed in a gel shift assay. In similarity to other IF2 species isolated from bacteria or bovine mitochondria, the N-terminal domain could be eliminated without loss of initiator tRNA binding activity.  相似文献   

17.
Initiation factor IF3 is an essential protein that enhances the fidelity and speed of bacterial mRNA translation initiation. Here, we describe the dynamic interplay between IF3 domains and their alternative binding sites using pre-steady state kinetics combined with molecular modelling of available structures of initiation complexes. Our results show that IF3 accommodates its domains at velocities ranging over two orders of magnitude, responding to the binding of each 30S ligand. IF1 and IF2 promote IF3 compaction and the movement of the C-terminal domain (IF3C) towards the P site. Concomitantly, the N-terminal domain (IF3N) creates a pocket ready to accept the initiator tRNA. Selection of the initiator tRNA is accompanied by a transient accommodation of IF3N towards the 30S platform. Decoding of the mRNA start codon displaces IF3C away from the P site and rate limits translation initiation. 70S initiation complex formation brings IF3 domains in close proximity to each other prior to dissociation and recycling of the factor for a new round of translation initiation. Altogether, our results describe the kinetic spectrum of IF3 movements and highlight functional transitions of the factor that ensure accurate mRNA translation initiation.  相似文献   

18.
Rate constants for a number of the assembly reactions involved in forming Escherichia coli ribosome initiation complexes have been measured. These reactions were monitored in a stopped-flow device in which Rayleigh scattering and fluorescence anisotropy were followed as a function of time. Fluorescence was induced by laser excitation modulated at 50 kHz. Aminoacyl-tRNA, initiation factor 3 (IF3), and 70S ribosomes were labeled with fluorescent probes. The light-scattering and fluorescence data show that the antiassociation model for IF3 function cannot be correct. IF3 can be considered to act as an effector in an allosteric model for ribosome function. Fluorescence anisotropy stopped-flow experiments provided rate constants for the binding of IF3 to both 30S subunits and to the intact 70S ribosome. Aminoacyl-tRNA's and nucleotide triplets appear to bind rapidly to 70S ribosomes and then a slow first-order conformational change occurs.  相似文献   

19.
O'Brien TW 《IUBMB life》2003,55(9):505-513
Mammalian mitochondrial ribosomes (55S) differ unexpectedly from bacterial (70S) and cytoplasmic ribosomes (80S), as well as other kinds of mitochondrial ribosomes. Typical of mammalian mitochondrial ribosomes, the bovine mitochondrial ribosome has been developed as a model system for the study of human mitochondrial ribosomes, to address several questions related to the structure, function, biosynthesis and evolution of these interesting ribosomes. Bovine mitochondrial ribosomal proteins (MRPs) from each subunit have been identified and characterized with respect to individuality and electrophoretic properties, amino acid sequence, topographic disposition, RNA binding properties, evolutionary relationships and reaction with affinity probes of ribosomal functional domains. Several distinctive properties of these ribosomes are being elucidated, including their antibiotic susceptibility and composition. Human mitochondrial ribosomes lack several of the major RNA stem structures of bacterial ribosomes but they contain a correspondingly higher protein content (as many as 80 proteins), suggesting a model where proteins have replaced RNA structural elements during the evolution of these ribosomes. Despite their lower RNA content they are physically larger than bacterial ribosomes, because of the 'extra' proteins they contain. The extra proteins in mitochondrial ribosomes are 'new' in the sense that they are not homologous to proteins in bacterial or cytoplasmic ribosomes. Some of the new proteins appear to be bifunctional. All of the mammalian MRPs are encoded in nuclear genes (a separate set from those encoding cytoplasmic ribosomal proteins) which are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system.  相似文献   

20.
An inhibitor of elongation factor G (EF-G) GTPase isolated from the ribosome wash of Escherichia coli was shown to stimulate the poly(A,U,G)- and initiation factor 2 (IF2)-dependent binding of N-formyl-[35S]Met-tRNAfMet to ribosomes. In the presence of saturating amounts of the EF-G GTPase inhibitor, neither addition of initiation factor 1 (IF1) nor addition of initiation factor 3 (IF3) caused a further stimulation of the formation of N-formyl-[35S]Met-tRNAfMET/poly(A,U,G)/ribosome complexes. Both IF1 and IF3 were shown to inhibit ribosome-dependent EF-G GTPase, especially when both initiation factors were added either in absence or in the presence of initiation factor 2 (IF2), poly(A,U,G) and N-formyl-Met-tRNAfMet. Therefore, we conclude that the EF-G GTPase inhibitor consisting of two polypeptide subunits with apparent molecular masses of 23,000 and 10,000 Da is a complex of initiation factors IF1 and IF3. The inhibition of EF-G GTPAse by IF3, but not the effects of IF1 in the presence or absence of IF3 could be reversed by increasing the Mg(2+)-concentration as already shown for the EF-G GTPase inhibitor. Therefore, IF1 as well as the EF-G GTPase inhibitor do not influence the ribosome-dependent EF-G GTPase by affecting the association of ribosomal subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号