首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p107 and p130: versatile proteins with interesting pockets   总被引:23,自引:0,他引:23  
  相似文献   

2.
3.
4.
5.
6.
7.
8.
Mitogenic stimulation leads to activation of G(1) cyclin-dependent kinases (CDKs), which phosphorylate pocket proteins and trigger progression through the G(0)/G(1) and G(1)/S transitions of the cell cycle. However, the individual role of G(1) cyclin-CDK complexes in the coordinated regulation of pocket proteins and their interaction with E2F family members is not fully understood. Here we report that individually or in concert cyclin D1-CDK and cyclin E-CDK complexes induce distinct and coordinated phosphorylation of endogenous pocket proteins, which also has distinct consequences in the regulation of pocket protein interactions with E2F4 and the expression of p107 and E2F1, both E2F-regulated genes. The up-regulation of these two proteins and the release of p130 and pRB from E2F4 complexes allows formation of E2F1 complexes not only with pRB but also with p130 and p107 as well as the formation of p107-E2F4 complexes. The formation of these complexes occurs in the presence of active cyclin D1-CDK and cyclin E-CDK complexes, indicating that whereas phosphorylation plays a role in the abrogation of certain pocket protein/E2F interactions, these same activities induce the formation of other complexes in the context of a cell expressing endogenous levels of pocket and E2F proteins. Of note, phosphorylated p130 "form 3," which does not interact with E2F4, readily interacts with E2F1. Our data also demonstrate that ectopic overexpression of either cyclin is sufficient to induce mitogen-independent growth in human T98G and Rat-1 cells, although the effects of cyclin D1 require downstream activation of cyclin E-CDK2 activity. Interestingly, in T98G cells, cyclin D1 induces cell cycle progression more potently than cyclin E. This suggests that cyclin D1 activates pathways independently of cyclin E that ensure timely progression through the cell cycle.  相似文献   

9.
The activity of the retinoblastoma protein pRB is regulated by phosphorylation that is mediated by G(1) cyclin-associated cyclin-dependent kinases (CDKs). Since the pRB-related pocket proteins p107 and p130 share general structures and biological functions with pRB, their activity is also considered to be regulated by phosphorylation. In this work, we generated phosphorylation-resistant p107 and p130 molecules by replacing potential cyclin-CDK phosphorylation sites with non-phosphorylatable alanine residues. These phosphorylation-resistant mutants retained the ability to bind E2F and cyclin. Upon introduction into p16(INK4a)-deficient U2-OS osteosarcoma cells, in which cyclin D-CDK4/6 is dysregulated, the phosphorylation-resistant mutants, but not wild-type p107 or p130, were capable of inhibiting cell proliferation. Furthermore, when ectopically expressed in pRB-deficient SAOS-2 osteosarcoma cells, the wild-type as well as the phosphorylation-resistant pRB family proteins were capable of inducing large flat cells. The flat cell-inducing activity of the wild-type proteins, but not that of the phosphorylation-resistant mutants, was abolished by coexpressing cyclin E. Our results indicate that the elevated cyclin D- or cyclin E-associated kinase leads to systemic inactivation of the pRB family proteins and suggest that dysregulation of the pRB kinase provokes an aberrant cell cycle in a broader range of cell types than those induced by genetic inactivation of the RB gene.  相似文献   

10.
The phosphorylation status of the pRB family of growth suppressor proteins is regulated in a cell cycle entry-, progression-, and exit-dependent manner in normal cells. We have shown previously that p130, a member of this family, exhibits patterns of phosphorylated forms associated with various cell growth and differentiation stages. However, human 293 cells, which are transformed cells that express the adenoviral oncoproteins E1A and E1B, exhibit an abnormal pattern of p130 phosphorylated forms. Here we report that, unlike pRB, the phosphorylation status of both p130 and p107 is not modulated during the cell cycle in 293 cells as it is in other cells. Conditional overexpression of individual G(1)/S cyclins in 293 cells does not alter the phosphorylation status of p130, suggesting that the expression of E1A and/or E1B blocks hyperphosphorylation of p130. In agreement with these observations, transient cotransfection of vectors expressing E1A 12S, but not E1B, in combination with pocket proteins into U-2 OS cells blocks hyperphosphorylation of both p130 and p107. However, the phosphorylation status of pRB is not altered by cotransfection of E1A 12S vectors. Moreover, MC3T3-E1 preosteoblasts stably expressing E1A 12S also exhibit a block in hyperphosphorylation of endogenous p130 and p107. Direct binding of E1A to p130 and p107 is not required for the phosphorylation block since E1A 12S mutants defective in binding to the pRB family also block hyperphosphorylation of p130 and p107. Our data reported here identify a novel function of E1A, which affects p130 and p107 but does not affect pRB. Since E1A does not bind the hyperphosphorylated forms of p130, this function of E1A might prevent the existence of "free" hyperphosphorylated p130, which could act as a CDK inhibitor.  相似文献   

11.
12.
The mammalian Retinoblastoma (RB) family including pRB, p107, and p130 represses E2F target genes through mechanisms that are not fully understood. In D. melanogaster, RB-dependent repression is mediated in part by the multisubunit protein complex Drosophila RBF, E2F, and Myb (dREAM) that contains homologs of the C. elegans synthetic multivulva class B (synMuvB) gene products. Using an integrated approach combining proteomics, genomics, and bioinformatic analyses, we identified a p130 complex termed DP, RB-like, E2F, and MuvB (DREAM) that contains mammalian homologs of synMuvB proteins LIN-9, LIN-37, LIN-52, LIN-54, and LIN-53/RBBP4. DREAM bound to more than 800 human promoters in G0 and was required for repression of E2F target genes. In S phase, MuvB proteins dissociated from p130 and formed a distinct submodule that bound MYB. This work reveals an evolutionarily conserved multisubunit protein complex that contains p130 and E2F4, but not pRB, and mediates the repression of cell cycle-dependent genes in quiescence.  相似文献   

13.
14.
Identification of target genes of the p16INK4A-pRB-E2F pathway   总被引:9,自引:0,他引:9  
  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号