首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Light promotes the acropetal movement of 2-[14C]ABA through root segments of Phaseolus coccineus L. The promotion occurs only when the segments are irradited during the transport period. Red light and blue light are as effective as white light. There is no significant promotion when the segments are irradiated with green light or when they are kept in darkness during the transport period after preceding light treatment. Light has no effect on basipetal ABA-transport.
Abkürzungen ABA Abscisinsäure - D Dunkel - GA Gibberellinsäure - IAA Indolessigsäure - L Licht - PPO Diphenyloxazol  相似文献   

2.
K+ [86Rb+] uptake by Phaseolus aureus Roxb. hypocotyl segments cut immediately below the hook is inhibited by the active form of phytochrome (Pfr). Short load-short wash experiments indicate that the inhibition of uptake occurs across the plasmalemma. A maximal inhibition of short term uptake occurs in 10 to 50 millimolar KCI. Low temperature had only a small effect on influx and the inhibition of influx from 50 millimolar KCI. A consideration of the electrochemical gradient for K+ suggests that passive K+ fluxes may predominate under these conditions. Red light induces small depolarizations of membrane potential in subhook cells. Far red light antagonizes this effect. Pfr inhibits efflux of K+[86Rb+] from subhook segments. This effect is also relatively insensitive to low temperature. This inhibition of efflux may reflect inhibition of a K+ -K+ exchange process, or reduced passive permeability of the plasmalemma to K+. In contrast, Pfr enhances short term uptake of K+[86Rb+] in apical hypocotyl hook segments of Phaseolus aureus Roxb. Short load-short wash experiments indicate that fluxes across the plasmalemma are modified by Pfr. A maximal enhancement of short term influx occurs in 50 millimolar KCI. Influx and the red light enhancement of influx from 50 millimolar KCI are relatively insensitive to low temperature. Pfr also enhances efflux of K+[86Rb+] from preloaded apical hook segments. This increased influx may reflect enhancement of a K+ -K+ exchange process or increased passive permeability of the plasmalemma to K+.  相似文献   

3.
The possibility of an auxin effect on the permeability of pea (Pisum sativum L. ev. Alaska) segments to tritium-labeled water has been investigated by three separate laboratories, and the combined results are presented. We were unable to obtain any indication of a rapid effect of indoleacetic acid on the efflux of 3HHO when pea segments previously “loaded” for 90 minutes with 3HHO were transferred to unlabeled aqueous medium with indoleacetic acid. We were able to confirm that segments pretreated with 3HHO plus indoleacetic acid for 60 to 90 minutes can show an enhanced 3HHO release as compared with minus indoleacetic acid controls. However, this phenomenon appears to be due to an increased uptake of 3HHO during the prolonged indoleacetic acid pretreatment, and therefore we conclude that auxin does not alter the permeability of pea segments to 3HHO in either short term or long term tests. We confirm previous reports that the uptake of 3HHO in pea segments proceeds largely through the cut surfaces, and that the cuticle is a potent barrier to 3HHO flux.  相似文献   

4.
We have developed and characterized a system to analyze light effects on auxin transport independent of photosynthetic effects. Polar transport of [3H]indole-3-acetic acid through hypocotyl segments from etiolated cucumber (Cucumis sativus L.) seedlings was increased in seedlings grown in dim-red light (DRL) (0.5 μmol m−2 s−1) relative to seedlings grown in darkness. Both transport velocity and transport intensity (export rate) were increased by at least a factor of 2. Tissue formed in DRL completely acquired the higher transport capacity within 50 h, but tissue already differentiated in darkness acquired only a partial increase in transport capacity within 50 h of DRL, indicating a developmental window for light induction of commitment to changes in auxin transport. This light-induced change probably manifests itself by alteration of function of the auxin efflux carrier, as revealed using specific transport inhibitors. Relative to dark controls, DRL-grown seedlings were differentially less sensitive to two inhibitors of polar auxin transport, N-(naphth-1-yl) phthalamic acid and 2,3,5-triiodobenzoic acid. On the basis of these data, we propose that the auxin efflux carrier is a key target of light regulation during photomorphogenesis.  相似文献   

5.
Filipin, a polyene antibiotic known to induce leakage of materials from various cells, depresses K+ and NO3 uptake in etiolated pea epicotyl segments. Filipin concentrations which strongly reduce K+ influx have little effect on efflux; however, high concentrations enhance K+ efflux. Filipin has no effect on respiration rates or cell electropotentials; its action is presumed to be on the cell membranes. Cholesterol, but not a thiol-protecting agent (dithiothreitol), enhances K+ influx and counteracts the inhibition by filipin. Although this effect of cholesterol may be due to an interaction with filipin in the outer solution, there is reason to believe that its major effect is to impart stability to the membrane; filipin is believed to act by interfering with sterol stabilization of phospholipid layers. The predominant native sterols of etiolated pea stem (Pisum sativum L. var. Alaska), which cholesterol probably mimics, are β-sitosterol, campesterol, and stigmasterol.  相似文献   

6.
Apical segments of etiolated oat (Avena sativa L. cv. Victory) coleoptiles showed enhanced uptake of [86Rb+] when tested 30 minutes after a 5-minute red irradiation. The response was partly reversible by far red light. Uptake was sensitive to carbonyl cyanide m-chlorophenyl hydrazone, but not to isotonic mannitol. Indoleacetic acid (10−7 molar) caused a very pronounced and rapid stimulation of uptake. Basal coleoptile segments also exhibited a red light-enhanced uptake, but not an effect of red light on changes in the pH of the medium. The [86Rb+] uptake of third internode segments from etiolated peas (Pisum sativum L. cv. Alaska) was not affected by either red light or auxin. This tissue also showed no red light effect on acidification of the medium. It is concluded that alteration of [86Rb+] flux is not a general feature of phytochrome action.  相似文献   

7.
Levulinic acid (LA), a competitive inhibitor of δ-aminolevulinic acid (ALA) dehydratase (EC 4.2.1.24), has been used extensively in the study of ALA formation during greening. When [1-14C]LA is administered to etiolated barley (Hordeum vulgare L. var. Larker) shoots in darkness, 14CO2 is evolved. This process is accelerated when such tissues are incubated with 2 millimolar ALA or placed under continuous illumination. Label from the C-1 of LA becomes incorporated into organic acids, amino acids, sugars, lipids, and proteins during a 4-hour incubation in darkness or in the light. This metabolism is discussed in relation to the use of LA as a tool in the study of chlorophyll synthesis in higher plants.  相似文献   

8.
Gepstein S 《Plant physiology》1982,70(4):1120-1124
When abraded oat (Avena sativa L. cv Victory) leaf segments are floated on KCl solution, white light causes acidification of the solution external to leaf tissue. The presence of mannitol amplifies the light-induced proton secretion. Mature leaves as well as young ones acidify the medium in light, while senescing leaves (after 3 to 4 days incubated in water in the dark) lose the ability to produce this response to light. The decrease in H+ secretion is already measureable after as little as 30 minutes in darkness, while the increase in proteolysis rate was detected only after 6 hours in dark. The decrease in capacity to secrete protons is one of the symptoms of leaf senescence. Moreover, fusicoccin mimics light in stimulating H+ pumping and delaying the senescence in the dark. On the other hand vanadate, an apparent inhibitor of plasma membrane H+ ATPase, blocks the acidification and promotes the chlorophyll and protein degradation in leaf segments during the 2-day period of incubation. These results, which show a parallel between cessation of H+ secretion and acceleration of senescence, may suggest a regulatory role for H+ secretion in leaf senescence.  相似文献   

9.
Barley (Hordeum vulgare L.) plants at the three-leaf stage were water-stressed by flooding the rooting medium with polyethylene glycol 6000 with an osmotic potential of −19 bars, or by withholding water. While leaf water potential fell and leaf kill progressed, the betaine (trimethylglycine) content of the second leaf blade rose from about 0.4 micromole to about 1.5 micromoles in 4 days. The time course of betaine accumulation resembled that of proline accumulation. Choline levels in unstressed second leaf blades were low (<0.1 micromole per blade) and remained low during water stress. Upon relief of stress, betaine-like proline—remained at a high concentration in drought-killed leaf zones, but betaine did not disappear as rapidly as proline from viable leaf tissue during recovery.

When [methyl-14C]choline was applied to second leaf blades of intact plants in the growth chamber, water-stressed plants metabolized 5 to 10 times more 14C label to betaine than control plants during 22 hours. When infiltrated with tracer quantities of [14C]formate and incubated for various times in darkness or light, segments cut from water-stressed leaf blades incorporated about 2- to 10-fold more 14C into betaine than did segments from unstressed leaves. In segments from stressed leaves incubated with [14C]formate for about 18 hours in darkness, betaine was always the principal 14C-labeled soluble metabolite. This 14C label was located exclusively in the N-methyl groups of betaine, demonstrating that reducing equivalents were available in stressed leaves for the reductive steps of methyl group biosynthesis from formate. Incorporation of 14C from formate into choline was also increased in stressed leaf tissue, but choline was not a major product formed from [14C]formate.

These results are consistent with a net de novo synthesis of betaine from 1- and 2-carbon precursors during water stress, and indicate that the betaine so accumulated may be a metabolically inert end product.

  相似文献   

10.
Calcium flux in sunflower (Helianthus annuus L. cv Russian mammoth) hypocotyl was measured with a Ca2+ electrode as the increase or decrease in Ca2+ in an aqueous solution (10 micromolar CaCl2) in contact with either the basal or apical end of 20 millimeter segments. Ca2+ efflux was significantly higher at the apical end compared with the basal end; this apparent polarity was maintained even when the segments were inverted. No significant difference was observed in the cation exchange capacity of apical and basal cell walls that could explain the difference in Ca2+ efflux at opposite ends of the hypocotyl segment. The presence of exogenous indoleacetic acid (IAA) in the segment medium resulted in the promotion of both Ca2+ efflux and segment elongation. However, osmotic inhibition of the IAA-induced elongation did not result in inhibiting the IAA-induced Ca2+ efflux. Ca2+ efflux was inhibited by cyanide. Lowering the temperature from 25°C also caused the gradual reduction of Ca2+ efflux; at 5°C the hypocotyl segments showed a net absorption of Ca2+ from the segment medium. These findings support the suggestion that: (a) the observed Ca2+ efflux in hypocotyl segments is probably the manifestation of the system which maintains the transmembrane Ca2+ gradient at the cellular level. (b) The acropetal polarity of Ca2+ efflux may be the result of the involvement of Ca2+ in the basipetal transport of IAA.  相似文献   

11.
Salisbury FB 《Plant physiology》1981,67(6):1230-1238
Six experiments studied the effects of low levels of red and far-red light upon the initiation of measurement of the dark period in the photoperiodic induction of flowering in Xanthium strumarium L. (cocklebur), a short-day plant, and compared effects with those of comparable light treatments applied for 2 hours during the middle of a 16-hour inductive dark period. Red light, or red plus far-red, at levels that inhibit flowering when applied during the middle of the inductive dark period, either had no effect on the initiation of dark measurement (i.e., were perceived as darkness), or they delayed the initiation of dark measurement by various times up to the full interval of exposure (2 hours). Far-red light alone had virtually no effect either at the beginning or in the middle of the dark period. These results confirm that time measurement in the photoperiodic response of short-day Xanthium plants is not simply the time required for metabolic dark conversion of phytochrome. Results also suggest that the pigment system (phytochrome?) and/or responses to it may be significantly different as they function during twilight (initiation of dark measurement), and as they function during a light break several hours later. Possible mechanisms by which cocklebur plants detect the change from light to darkness are discussed.Comparing experimental results with spectral light measurements during twilight and with measurements of light from the full moon led to two conclusions: First, light levels pass from values perceived by the plant as full light to values perceived as complete darkness in only about 5.5 to 11.5 minutes, although twilight as perceived by the human eye lasts well over 30 minutes. Second, cocklebur plants probably do not respond to light from the full moon, even when most sensitive, 7 to 9 hours after the beginning of darkness.  相似文献   

12.
Maize (Zea mays L.) and pearl millet (Pennisetum americanum (L.) Leeke) seedlings were exposed to [15N]nitrate for 1-h periods at eight times during a 24-h period (16–8 h light-dark for maize; 14–10 h for millet). Influx of [15N]nitrate as well as its reduction and translocation were determined during each period. The efflux of previously absorbed [14N]nitrate to the uptake solution was also estimated. No marked diurnal changes in [14N]nitrate efflux or [15N]nitrate influx were evident in maize. In contrast, [14N]nitrate efflux from millet increased and eventually exceeded [15N]nitrate influx during the late dark and early light periods, resulting in net nitrate efflux from the roots. The dissimilarity of their diurnal patterns indicates that influx and efflux are independently regulated. In both species, [15N]nitrate reduction and 15N translocation to shoots were curtailed more by darkness than was [15N]nitrate influx. In the light, maize reduced 15% and millet 24% of the incoming [15N]nitrate. In darkness, reduction dropped to 11 and 17%, respectively. Since the accumulation of reduced-15N in shoots declined abruptly in darkness, whereas that in roots was little affected, it is suggested that in darkness [15N]nitrate reduction occurred primarily in roots. The decrease in nitrate uptake and reduction in darkness was not related to efflux, which remained constant in maize and did not respond immediately to darkness in pearl millet.Paper No. 6722 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh  相似文献   

13.
Salinity stress is known to modify the plasma membrane lipid and protein composition of plant cells. In this work, we determined the effects of salt stress on the lipid composition of broccoli root plasma membrane vesicles and investigated how these changes could affect water transport via aquaporins. Brassica oleracea L. var. Italica plants treated with different levels of NaCl (0, 40 or 80 mM) showed significant differences in sterol and fatty acid levels. Salinity increased linoleic (18:2) and linolenic (18:3) acids and stigmasterol, but decreased palmitoleic (16:1) and oleic (18:1) acids and sitosterol. Also, the unsaturation index increased with salinity. Salinity increased the expression of aquaporins of the PIP1 and PIP2 subfamilies and the activity of the plasma membrane H+-ATPase. However, there was no effect of NaCl on water permeability (Pf) values of root plasma membrane vesicles, as determined by stopped-flow light scattering. The counteracting changes in lipid composition and aquaporin expression observed in NaCl-treated plants could allow to maintain the membrane permeability to water and a higher H+-ATPase activity, thereby helping to reduce partially the Na+ concentration in the cytoplasm of the cell while maintaining water uptake via cell-to-cell pathways. We propose that the modification of lipid composition could affect membrane stability and the abundance or activity of plasma membrane proteins such as aquaporins or H+-ATPase. This would provide a mechanism for controlling water permeability and for acclimation to salinity stress.  相似文献   

14.
Sacher JA  Salminen SO 《Plant physiology》1969,44(10):1371-1377
The effects of ethylene on permeability and RNA and protein synthesis were assayed over a 6 to 26 hr period in tissue sections from avocado (Persea gratissima Gaertn. F., var. Fuerte), both pulp and peel of banana (Musa sapientum L., var. Gros Michel), bean endocarp (Phaseolus vulgaris L., var. Kentucky Wonder Pole beans) and leaves of Rhoeo discolor. Ethylene had no effect on permeability in 4 of the 5 tissues, but sometimes enhanced solute uptake in banana peel; it had either no effect or an inhibitory effect on synthesis of RNA and protein in sections from fruits of avocado and banana. Auxin (α-naphthalene acetic acid) stimulated synthesis of RNA and protein in bean endocarp and Rhoeo leaf sections, whereas ethylene inhibited both basal and auxin-induced synthesis. It is concluded that in these tissues the auxin effect is not an ethylene effect.  相似文献   

15.
Excised cucumber (Cucumis sativus L. cv 447 Wisconsin SMR 18) cotyledons were sensitive to acifluorfen-methyl (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate) and MC-15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). Injury was detected by monitoring efflux of 3-O-methyl-d-[U-14C]glucose from herbicide-treated tissue after exposure to light. Efflux kinetics of 3-O-methyl-[14C]glucose from cotyledons treated with either acifluorfen-methyl (AFM) or MC-15608 were similar. Neither herbicide was active in darkness.  相似文献   

16.
Ulva lactuca L. var. latissima (L.) DeCandolle has a circadian rhythm of visible light transmittance change which is caused by chloroplast orientation. With a continuously recording microphotometer system, clear rhythms could be monitored for up to 10 days. Measuring beam intensity effects on the free running period were seen down to 10−7 w cm−2. While these effects complicate the measuring process, they demonstrate that Ulva is very sensitive to light. The free running period in constant darkness at 20 C is 24 to 25 hours. The position in the cell occupied by the chloroplasts when the rhythm damps out can be influenced by light. A method is described by which the times of rhythm maxima can be calculated accurately and objectively from a relatively small number of points.  相似文献   

17.
Aslam M  Huffaker RC 《Plant physiology》1982,70(4):1009-1013
In vivo NO3 reduction in roots and shoots of intact barley (Hordeum vulgare L. var Numar) seedlings was estimated in light and darkness. Seedlings were placed in darkness for 24 hours to make them carbohydrate-deficient. During darkness, the leaves lost 75% of their soluble carbohydrates, whereas the roots lost only 15%. Detached leaves from these plants reduced only 7% of the NO3 absorbed in darkness. By contrast, detached roots from the seedlings reduced the same proportion of absorbed NO3, as did roots from normal light-grown plants. The rate of NO3 reduction in the roots accounted for that found in the intact dark-treated carbohydrate-deficient seedlings. The rates of NO3 reduction in roots of intact plants were the same for approximately 12 hours, both in light and darkness, after which the NO3 reduction rate in roots of plants placed in darkness slowly declined. In the dark, approximately 40% of the NO3 reduction occurred in the roots, whereas in light only 20% of the total NO3 reduction occurred in roots. A lesser proportion was reduced in roots because the leaves reduced more nitrate in light than in darkness.  相似文献   

18.
Gametophyte cells of Phaeoceros laevis (L.) Prosk. have vacuole electric potentials (PDs) of about −175 millivolts; the steady PD is not affected by light but small transient PDs result after changing from light to darkness or darkness to light. The PD is more negative than the Nernst potentials for any of the permeating ions. Changes in the concentration of any one of the external ions between 0.1 and 10 mm have only a very small effect on the PD. Increases in external pH cause the PD to depolarize by a few millivolts. Azide, 2,4-dinitrophenol, and NH4Cl each cause rapid and reversible depressions of the PD; the effects of these agents are similar in magnitude in the light and in the dark. Anoxia depolarizes the PD by about 30 millivolts in the light and by about 60 millivolts in the dark. Ouabain and 3-(3,4-dichlorophenyl)-1,1-dimethylurea have no effects on the PD. It is concluded that the membrane potential is controlled by an electrogenic efflux pump, possibly for H+. It is also concluded that the source of energy for the pump is respiration and not photosynthesis.  相似文献   

19.
The possible relationship between malate metabolism and photosynthetic activity in green tomato fruit tissues (Lycopersicum esculentum var. cerasiforme Dun A. Gray) was investigated. Initial experiments consisted of vacuum-infiltrating 14C-3 or 14C-4-malate into isolated tissues in darkness and then incubating the tissues under photosynthetic conditions. Other experiments involved a short pulse with 14C-bicarbonate in darkness to label the malate pool(s), followed by a chase in the light in the presence of nonradioactive bicarbonate. Both series of experiments were followed by the separation and identification of labeled metabolic intermediates.  相似文献   

20.
Chlorella vulgaris Beyerinck (Emerson's strain), fails to grow in the dark even when sugars are provided. This phenomenon was clearly demonstrated in the alga, C. vulgaris, for which the growth rate in darkness on a glucose medium remained constant for 2 days and then declined to approach zero. Pigment concentrations also declined in darkness. Changes in flow rate of 1% CO2-in-air from zero to 7 ml per minute caused a progressive increase in the dark growth rate over a 5-day period, but did not maintain growth in the dark. Rates above 7 ml per minute produced no changes in growth rates.

White light intensities below the compensation point of the alga maintained heterotrophic growth. The saturation value for this response was 0.8 μw/cm2. White light also initiated growth in nongrowing cultures transferred from darkness to light.

The action spectrum for heterotrophic growth indicated a porphyrin as the active pigment. Light in the 425 mμ region was 4 times as effective as white light in stimulating heterotrophic growth. A secondary peak of growth stimulation occurred in the 575 mμ region.

The respiration of glucose by the alga was stimulated by low intensities of white light. This response was not immediate, but was clearly present after the third day of incubation.

Malonate and cyanide were inhibitory to growth of C. vulgaris on inorganic medium or glucose medium under 300 ft-c of white light. These data suggested that succinic dehydrogenase and cytochrome oxidase systems were present.

Substances inhibitory to growth were excreted into the medium under dark-growth conditions, and 2 of these substances were indentified as formic and acetic acids.

The evidence suggested that respiration of glucose cannot proceed for an extended period of time in darkness. The reason for this is postulated to be the lack of a cytochrome or a cytochrome precursor.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号