首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conn KL  Hendzel MJ  Schang LM 《Journal of virology》2011,85(24):13234-13252
The infecting genomes of herpes simplex virus 1 (HSV-1) are assembled into unstable nucleosomes soon after nuclear entry. The source of the histones that bind to these genomes has yet to be addressed. However, infection inhibits histone synthesis. The histones that bind to HSV-1 genomes are therefore most likely those previously bound in cellular chromatin. In order for preexisting cellular histones to associate with HSV-1 genomes, however, they must first disassociate from cellular chromatin. Consistently, we have shown that linker histones are mobilized during HSV-1 infection. Chromatinization of HSV-1 genomes would also require the association of core histones. We therefore evaluated the mobility of the core histones H2B and H4 as measures of the mobilization of H2A-H2B dimers and the more stable H3-H4 core tetramer. H2B and H4 were mobilized during infection. Their mobilization increased the levels of H2B and H4 in the free pools and decreased the rate of H2B fast chromatin exchange. The histones in the free pools would then be available to bind to HSV-1 genomes. The mobilization of H2B occurred independently from HSV-1 protein expression or DNA replication although expression of HSV-1 immediate-early (IE) or early (E) proteins enhanced it. The mobilization of core histones H2B and H4 supports a model in which the histones that associate with HSV-1 genomes are those that were previously bound in cellular chromatin. Moreover, this mobilization is consistent with the assembly of H2A-H2B and H3-H4 dimers into unstable nucleosomes with HSV-1 genomes.  相似文献   

2.
3.
Eukaryotic chromatin is highly dynamic and turns over rapidly even in the absence of DNA replication. Here we show that the acidic histone chaperone nucleosome assembly protein 1 (NAP-1) from yeast reversibly removes and replaces histone protein dimer H2A-H2B or histone variant dimers from assembled nucleosomes, resulting in active histone exchange. Transient removal of H2A-H2B dimers facilitates nucleosome sliding along the DNA to a thermodynamically favorable position. Histone exchange as well as nucleosome sliding is independent of ATP and relies on the presence of the C-terminal acidic domain of yeast NAP-1, even though this region is not required for histone binding and chromatin assembly. Our results suggest a novel role for NAP-1 (and perhaps other acidic histone chaperones) in mediating chromatin fluidity by incorporating histone variants and assisting nucleosome sliding. NAP-1 may function either untargeted (if acting alone) or may be targeted to specific regions within the genome through interactions with additional factors.  相似文献   

4.
Nucleoplasmin (NP), a histone chaperone, acts as a reservoir for histones H2A-H2B in Xenopus laevis eggs and can displace sperm nuclear basic proteins and linker histones from the chromatin fiber of sperm and quiescent somatic nuclei. NP has been proposed to mediate the dynamic exchange of histones during the expression of certain genes and assists the assembly of nucleosomes by modulating the interaction between histones and DNA. Here, solution structural models of full-length NP and NP complexes with the functionally distinct nucleosomal core and linker histones are presented for the first time, providing a picture of the physical interactions between the nucleosomal and linker histones with NP core and tail domains. Small-angle X-ray scattering and isothermal titration calorimetry reveal that NP pentamer can accommodate five histones, either H2A-H2B dimers or H5, and that NP core and tail domains are intimately involved in the association with histones. The analysis of the binding events, employing a site-specific cooperative model, reveals a negative cooperativity-based regulatory mechanism for the linker histone/nucleosomal histone exchange. The two histone types bind with drastically different intrinsic affinity, and the strongest affinity is observed for the NP variant that mimicks the hyperphosphorylated active protein. The different “affinity windows” for H5 and H2A-H2B might allow NP to fulfill its histone chaperone role, simultaneously acting as a reservoir for the core histones and a chromatin decondensing factor. Our data are compatible with the previously proposed model where NP facilitates nucleosome assembly by removing the linker histones and depositing H2A-H2B dimers onto DNA.  相似文献   

5.
6.
Histone dynamics in living cells revealed by photobleaching   总被引:5,自引:0,他引:5  
Kimura H 《DNA Repair》2005,4(8):939-950
  相似文献   

7.
8.
Nucleoplasmin (NP) is a pentameric chaperone that regulates the condensation state of chromatin extracting specific basic proteins from sperm chromatin and depositing H2A-H2B histone dimers. It has been proposed that histones could bind to either the lateral or distal face of the pentameric structure. Here, we combine different biochemical and biophysical techniques to show that natural, hyperphosphorylated NP can bind five H2A-H2B dimers and that the amount of bound ligand depends on the overall charge (phosphorylation level) of the chaperone. Three-dimensional reconstruction of NP/H2A-H2B complex carried out by electron microscopy reveals that histones interact with the chaperone distal face. Limited proteolysis and mass spectrometry indicate that the interaction results in protection of the histone fold and most of the H2A and H2B C-terminal tails. This structural information can help to understand the function of NP as a histone chaperone.  相似文献   

9.
The protein composition of the liver chromatin has been studied by two techniques for fractionation of histones. The "lability" fraction of histones H2A-H2B is revealed. In these fractions histones H2B have many modified forms and they are not included into octamer (H3, H4, H2A, H2B)2. Young animals rather than old ones have much quantitative subfractions of histone H2B. The "lability" fraction of histones H2A-H2B is stated to be very significant in the activated and repressed chromatin structure.  相似文献   

10.
11.
12.
13.
14.
Analysis of the binding of C-reactive protein to chromatin subunits   总被引:17,自引:0,他引:17  
C-reactive protein (CRP) is an acute phase serum protein in man. The functional activities of CRP, like Ig, include complement activation and enhancement of phagocytosis. CRP binding to several substrates, including phosphocholine, individual denatured histones, and chromatin, has been demonstrated. We previously demonstrated that CRP binding to chromatin is dependent on the presence of histone H1, despite the fact that CRP binds to purified individual histones H2A and H2B, as well as to H1. In this report we examined the binding of CRP to native sub-nucleosomal chromatin fragments. CRP binding to the H2A-H2B dimer and (H3-H4)2 tetramer was demonstrated and these reactions were inhibited by phosphocholine. However, no binding to the subnucleosome complexes (H2A-H2B)-DNA and (H3-H4)2-DNA was seen. Similarly, CRP binding to H1 was eliminated when H1 was reconstituted with DNA. The reconstitution of H1-depleted chromatin with H1 restored CRP binding. CRP binding to nucleosome core particles, as previously demonstrated by others, was confirmed. Therefore, the interaction of CRP with individual core histones does not appear to be responsible for the binding of CRP to native chromatin. However, binding to core particles could be mediated by differentially exposed determinants on H2A and H2B.  相似文献   

15.
16.
The eukaryotic replisome disassembles parental chromatin at DNA replication forks, but then plays a poorly understood role in the re‐deposition of the displaced histone complexes onto nascent DNA. Here, we show that yeast DNA polymerase α contains a histone‐binding motif that is conserved in human Pol α and is specific for histones H2A and H2B. Mutation of this motif in budding yeast cells does not affect DNA synthesis, but instead abrogates gene silencing at telomeres and mating‐type loci. Similar phenotypes are produced not only by mutations that displace Pol α from the replisome, but also by mutation of the previously identified histone‐binding motif in the CMG helicase subunit Mcm2, the human orthologue of which was shown to bind to histones H3 and H4. We show that chromatin‐derived histone complexes can be bound simultaneously by Mcm2, Pol α and the histone chaperone FACT that is also a replisome component. These findings indicate that replisome assembly unites multiple histone‐binding activities, which jointly process parental histones to help preserve silent chromatin during the process of chromosome duplication.  相似文献   

17.
18.
Exchange of histones H1, H2A, and H2B in vivo   总被引:17,自引:0,他引:17  
L Louters  R Chalkley 《Biochemistry》1985,24(13):3080-3085
We have asked whether histones synthesized in the absence of DNA synthesis can exchange into nucleosomal structures. DNA synthesis was inhibited by incubating hepatoma tissue culture cells in medium containing 5.0 mM hydroxyurea for 40 min. During the final 20 min, the cells were pulsed with [3H]lysine to radiolabel the histones (all five histones are substantially labeled under these conditions). By two electrophoretic techniques, we demonstrate that histones H1, H2A, and H2B synthesized in the presence of hydroxyurea do not merely associate with the surface of the chromatin but instead exchange with preexisting histones so that for the latter two histones there is incorporation into nucleosome structures. On the other hand, H3 and H4 synthesized during this same time period appear to be only weakly bound, if at all, to chromatin. These two histones have been isolated from postnuclear washes and purified. Some possible implications of in vivo exchange are discussed.  相似文献   

19.
The genome of eukaryotic cells is packed into a compact structure called chromatin that consists of DNA as well as histone and non-histone proteins. Histone chaperones associate with histone proteins and play important roles in the assembly of chromatin structure and transport of histones in the cell. The recently discovered histone chaperone Chz1 associates with the variant histone H2A.Z of budding yeast and plays a critical role in the exchange of the canonical histone pair H2A-H2B for the variant H2A.Z-H2B. Here, we present an NMR approach that provides accurate estimates for the rates of association and dissociation of Chz1 and H2A.Z-H2B. The methodology exploits the fact that in a 1:1 mixture of Chz1 and H2A.Z-H2B, the small amounts of unbound proteins that are invisible in spectra produce line broadening of signals from the complex that can be quantified in terms of the thermodynamics and kinetics of the exchange process. The dissociation rate constant measured, 22 ± 2 s− 1, provides an upper bound for the rate of transfer of H2A.Z-H2B to the chromatin remodeling complex, and the faster-than-diffusion association rate, 108 ± 107 M− 1 s− 1, establishes the importance of attractive electrostatic interactions that form the chaperone-histone complex.  相似文献   

20.
S Malik  SR Bhaumik 《Biochemistry》2012,51(30):5873-5875
We have recently demonstrated the formation of an atypical histone H2A-H2B dimer-enriched chromatin at the coding sequence of the active gene in the absence of Rad26p in vivo. However, the mechanisms for such a surprising observation remain unknown. Here, using a ChIP assay, we demonstrate that Rad26p promotes the eviction of histone H2A-H2B dimer and prevents the reassociation of the dimer with naked DNA in the wake of elongating RNA polymerase II at the coding sequence of the active GAL1 gene. Thus, the absence of Rad26p leads to the generation of an atypical histone H2A-H2B dimer-enriched chromatin at the active coding sequence in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号