首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
An impedentiometric electronic tongue based on the combination of a composite sensor array and chemometric techniques aimed at the discrimination of soluble compounds able to elicit different gustative perceptions is presented. A composite array consisting of chemo-sensitive layers based on carbon nanotubes or carbon black dispersed in polymeric matrices and doped polythiophenes was used. The electrical impedance of the sensor array was measured at a frequency of 150 Hz by means of an impedance meter. The experimental set-up was designed in order to allow the automatic selection of a test solution and dipping of the sensor array following a dedicated measurement protocol. Measurements were carried out on 15 different solutions eliciting 5 different tastes (sodium chloride, citric acid, glucose, glutamic acid and sodium dehydrocholate for salty, sour, sweet, umami and bitter, respectively) at 3 concentration levels comprising the human perceptive range. In order to avoid over-fitting, more than 100 repetitions for each sample were carried in a 4-month period. Principal component analysis (PCA) was used to detect and remove outliers. Classification was performed by linear discriminant analysis (LDA). A fairly good degree of discrimination was obtained.  相似文献   

2.
Bacteria classification using Cyranose 320 electronic nose   总被引:1,自引:0,他引:1  

Background  

An electronic nose (e-nose), the Cyrano Sciences' Cyranose 320, comprising an array of thirty-two polymer carbon black composite sensors has been used to identify six species of bacteria responsible for eye infections when present at a range of concentrations in saline solutions. Readings were taken from the headspace of the samples by manually introducing the portable e-nose system into a sterile glass containing a fixed volume of bacteria in suspension. Gathered data were a very complex mixture of different chemical compounds.  相似文献   

3.
An array of individually addressable nanoplate field-effect capacitive (bio-)chemical sensors based on an SOI (silicon-on-insulator) structure has been developed. The isolation of the individual capacitors was achieved by forming a trench in the top Si layer with a thickness of 350 nm. The realized sensor array allows addressable biasing and electrical readout of multiple nanoplate EISOI (electrolyte-insulator-silicon-on-insulator) capacitive biosensors on the same SOI chip as well as differential-mode measurements. The feasibility of the proposed approach has been demonstrated by realizing sensors for the pH and penicillin concentration detection as well as for the label-free electrical monitoring of polyelectrolyte multilayers formation and DNA (deoxyribonucleic acid)-hybridization event. A potential change of ~ 120 mV has been registered after the DNA hybridization for the sensor immobilized with perfectly matched single-strand DNA, while practically no signal changes have been observed for a sensor with fully mismatched DNA. The realized examples demonstrate the potential of the nanoplate SOI capacitors as a new basic structural element for the development of different types of field-effect biosensors.  相似文献   

4.
A novel sensitive and selective imprinted electrochemical sensor for the determination of oleanic acid was constructed on a carbon electrode by stepwise modification of functional multi-walled carbon nanotubes, cobalt hexacyanoferrate nanoparticles and a thin imprinted sol-gel film. The fabrication of a homogeneous porous poly (sodium 4-styrenesulfonate-co-acrylic acid)-grafted multi-walled carbon nanotubes/SiO(2)-chitosan nanocomposite film was conducted by controllable electrodeposition technology. The surface morphologies of the modified electrodes were characterized by scanning electron microscope. The performance of the imprinted sensor was investigated by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy in detail. The imprinted sensor displayed high sensitivity and selectivity towards oleanic acid. A linear relationship between the sensor response signal and the logarithm of oleanic acid concentrations ranging from 1.0×10(-8) to 1.0×10(-3) mol L(-1) was obtained with a detection limit of 2.0×10(-9) mol L(-1). It was applied to the determination of oleanic acid in real capsule samples successfully.  相似文献   

5.
As an objective method, taste evaluation with an instrument is able to supplement the subjective sensory evaluation and to be applied to the optimization of food processing. Kimchi, a Korean traditional pickle fermented with lactic acid bacteria, is expanding its consumption worldwide. The fermentation control of it has been routinely done by measuring titratable acidity and pH. In this study, an eight-channel taste evaluation system was prepared, followed by an application to the monitoring of Kimchi fermentation. Eight polymer membranes which individually responded to cationic or anionic substances were prepared by mixing electroactive materials such as tri-n-octylmethylammonium chloride, bis(2-ethylhexyl)sebacate as the plasticizer and polyvinyl chloride in the ratio of 1:66:33. Each membrane prepared was separately installed onto the sensitive area of an ion-selective electrode to produce the respective taste sensor. The eight-channel sensor array and a double junction reference electrode were connected to a 16-channel high input impedance amplifier. The amplified sensor signals were stored to a personal computer via a multi-channel A/D converter. Two sensor groups composed of the cation-selective and anion-selective polymer membrane electrodes showed characteristic concentration-dependency to various artificial taste substances. As a whole, the response potentials of the sensor array increased during the fermentation period at 4, 10 and 25 degrees C. Even the response potentials of the anion-selective taste sensors slightly increased possibly due to the protonation of anions by liberated H+ ions, thereby leading to a decrease in the anion concentration. When the signal data were interpreted by principal component analysis (PCA), the first PC at 4 degrees C explained most of the total data variance. A close correlation was found between the values of titratable acidity and the first PC, which indicated a possible applicability of the multi-channel taste sensor of this study to the process monitoring of various pickle.  相似文献   

6.
A simple and novel electrochemical biosensor based approach is described for differentiating between differing species of fish on the basis of DNA hybridisation events. Screen-printed carbon electrodes modified with a variety of polymers were used to immobilise commercially available DNA in a single-stranded form. AC impedimetric measurements were firstly carried out on these systems and then upon exposure to single-stranded DNA solutions. When the electrode and solution DNA were complementary, a large drop in impedance was measured; this did not occur for non-matching DNA exposures. DNA hybridisation sensors for closely related species of fish were in the first instance developed as a demonstration for this approach. Species of fish such as herrings and salmon could be differentiated by this method. This sensor format offers great promise for many DNA hybridisation applications and lends itself to mass fabrication due to the simplicity and inexpensiveness of the materials and methods used. The hybridisation results were confirmed by use of ellipsometry to measure the characteristics of similar films deposited on silicon substrates.  相似文献   

7.
When a chemical fuel at a certain position in a hybrid composite of the fuel and a micro/nanostructured material is ignited, chemical combustion occurs along the interface between the fuel and core materials. Simultaneously, dynamic changes in thermal and chemical potentials across the micro/nanostructured materials result in concomitant electrical energy generation induced by charge transfer in the form of a high-output voltage pulse. We demonstrate the entire procedure of a thermopower wave experiment, from synthesis to evaluation. Thermal chemical vapor deposition and the wet impregnation process are respectively employed for the synthesis of a multi-walled carbon nanotube array and a hybrid composite of picric acid/sodium azide/multi-walled carbon nanotubes. The prepared hybrid composites are used to fabricate a thermopower wave generator with connecting electrodes. The combustion of the hybrid composite is initiated by laser heating or Joule-heating, and the corresponding combustion propagation, direct electrical energy generation, and real-time temperature changes are measured using a high-speed microscopy system, an oscilloscope, and an optical pyrometer, respectively. Furthermore, the crucial strategies to be adopted in the synthesis of hybrid composite and initiation of their combustion that enhance the overall thermopower wave energy transfer are proposed.  相似文献   

8.
Carbon dots (CDs), as an attractive zero-dimensional carbon nanomaterial with unique photoluminescent merits, have recently exhibited significant application potential in gas sensing as a result of their excellent optical/electronic characteristics, high chemical/thermal stability, and tunable surface states. CDs exhibit strong light absorption in the ultraviolet range and tunable photoluminescence characteristics in the visible range, which makes CDs an effective tool for optical sensing applications. Optical gas sensor based on CDs have been investigated, which generally responds to the target gas by corresponding changes in optical absorption or fluorescence. Moreover, electrical gas sensor and quartz crystal microbalance sensor whose sensing layer involves CDs have also been designed. Electrical gas sensor exhibits an increase or a decrease in electrical current, capacitance, or conductance once exposed to the target gas. Quartz crystal microbalance sensor responds to the target gas with a frequency shift. CDs greatly promote the absorption of the target gas and improve the sensitivity of both sensors. In this review, we aim to summarize different types of gas sensors involving CDs, and sensing performances of these sensors for monitoring diverse gases or vapors, as well as the mechanisms of CDs in different types of sensors. Moreover, this review provides the prospect of the potential development of CDs based gas sensors.  相似文献   

9.
Field-effect-based capacitive electrolyte-insulator-semiconductor (EIS) sensors have been utilised for the deoxyribonucleic acid (DNA) immobilisation and hybridisation detection as well as for monitoring the layer-by-layer adsorption of polyelectrolytes (anionic poly(sodium 4-styrene sulfonate) (PSS) and cationic poly(allylamine hydrochloride) (PAH)). The EIS sensors with charged macromolecules have been systematically characterised by capacitance-voltage, constant-capacitance, impedance spectroscopy and atomic-force microscopy methods. The effect of the number and polarity of the polyelectrolyte layers on the shift of the capacitance-voltage curves has been investigated. Alternating potential shifts of about 30-90 mV have been observed after the adsorption of each polyanion and polycation layer, respectively. The DNA immobilisation and hybridisation signals were 35-55 and 24-33 mV, respectively. The possible mechanisms for the sensor responses are discussed.  相似文献   

10.
In a European collaboration, a joint project to conduct an experimental and clinical investigation of recently developed sensors from three centres (Amsterdam, Cambridge and Edinburgh) has been carried out. The Amsterdam sensor was based on an inductive principle whereas the Cambridge and Edinburgh transducers used a piezo-electric material (PVDF) as tranducing element. Nine patients with varying gestational age (29–38 weeks) were measured in a clinical investigation. Recordings of fetal heart sounds (FHS) and fetal breathing movements (FBM) were made using three sensors; one from each centre. These recordings were digitized directly into a computer using a purpose-built data acquisition system. For each patient 3 min of FBM data, and 1 min of FHS data were recorded by each sensor. The FBM recordings were carried out simultaneously with ultrasound, so as to enable a correlation to be made between both recordings. The FHS recordings were carried out simultaneously with the maternal heart pulse, to discount any maternal heart influences on the resulting signals. Of the nine patients analysed, FHS were recorded in seven patients. On the other hand, it appeared difficult to identify fetal breathing movements in the FBM recordings due to the dominance of the maternal breathing component. The analysis of the FBM signals and its correlation with ultrasound could not be carried out due to the relatively poor quality of the signals detected by the sensors, given the present techniques of analysis. The evaluation of the FHS recordings showed that although there is relatively little difference between the sensors, the inductive sensor performed best.  相似文献   

11.
Comprehensive identification of chemical contaminants in Army field water supplies can be a lengthy process, but rapid analytical methods suitable for field use are limited. A complementary approach is to directly measure toxicity instead of individual chemical constituents. Ten toxicity sensors utilizing enzymes, bacteria, or vertebrate cells were tested to determine the minimum number of sensors that could rapidly identify toxicity in water samples containing one of 12 industrial chemicals. The ideal sensor would respond at a concentration just exceeding the Military Exposure Guideline (MEG) level for the chemical (an estimated threshold for adverse effects) but below the human lethal concentration. Chemical solutions were provided to testing laboratories as blind samples. No sensors responded to deionized water blanks, and only one sensor responded to a hard water blank. No single toxicity sensor responded to more than six chemicals in the desired response range, and one chemical (nicotine) was not detected by any sensor with the desired sensitivity. A combination of three sensors (Microtox, the Electric Cell Substrate Impedance Sensing (ECIS) test, and the Hepatocyte low density lipoprotein (LDL) uptake test) responded appropriately to nine of twelve chemicals. Adding a fourth sensor (neuronal microelectrode array) to the test battery allowed detection of two additional chemicals (aldicarb and methamidophos), but the neuronal microelectrode array was overly sensitive to paraquat. Evaluating sensor performance using a standard set of chemicals and a desired sensitivity range provides a basis both for selecting among available toxicity sensors and for evaluating emerging sensor technologies. Recommendations for future toxicity sensor evaluations are discussed.  相似文献   

12.
The applicability of employing a carbon fibre mesh as an electrochemical sensing substructure for assessing urate transformations within wound exudates is evaluated. Prototype sensor assemblies have been designed and their response characteristics towards uric acid and other common physiological components are detailed. Modification of the carbon fibre sensor through surface anodization and the application of cellulose acetate permselective barriers have been shown to lead to optimized responses and much greater sensitivity (1440% increase) and specificity. These could enable the accurate periodic monitoring of uric acid in wound fluid. The performance characteristics of the composite sensors in whole blood, serum and blister fluid have been investigated.  相似文献   

13.
Impedance measurements of cell-based sensors are a primary characterization route for detection and analysis of cellular responses to chemical and biological agents in real time. The detection sensitivity and limitation depend on sensor impedance characteristics and thus on cell patterning techniques. This study introduces a cell patterning approach to bind cells on microarrays of gold electrodes and demonstrates that single-cell patterning can substantially improve impedance characteristics of cell-based sensors. Mouse fibroblast cells (NIH3T3) are immobilized on electrodes through a lysine-arginine-glycine-aspartic acid (KRGD) peptide-mediated natural cell adhesion process. Electrodes are made of three sizes and immobilized with either covalently bound or physically adsorbed KRGD (c-electrodes or p-electrodes). Cells attached to c-electrodes increase the measurable electrical signal strength by 48.4%, 24.2%, and 19.0% for three electrode sizes, respectively, as compared to cells attached to p-electrodes, demonstrating that both the electrode size and surface chemistry play a key role in cell adhesion and spreading and thus the impedance characteristics of cell-based sensors. Single cells patterned on c-electrodes with dimensions comparable to cell size exhibit well-spread cell morphology and substantially outperform cells patterned on electrodes of other configurations.  相似文献   

14.
A novel design and fabrication method of glucose sensors based on high aspect ratio carbon post-microarrays is reported in this paper. Apart from the fact that carbon has a wide electrochemical stability window, a major advantage of using carbon post-microarrays as working electrodes for an amperometric glucose sensor is the large reactive surface per unit footprint substrate area, improving sensitivity of the glucose sensor. The carbon post-microarrays were fabricated by carbon-microelectromechanical systems (C-MEMS) technology. Immobilization of enzyme onto the carbon post-electrodes was carried out through co-deposition of glucose oxidase (GOx) and electrochemically polymerized polypyrrole (PPy). Sensing performance of the glucose sensors with different post-heights and various post-densities was tested and compared. The carbon post-glucose sensors show a linear range from 0.5 mM to 20 mM and a response time of about 20 s, which are comparable to the simulation result. Sensitivity per unit footprint substrate area as large as 2.02 mA/(mM cm2) is achieved with the 140 μm high (aspect ratio around 5:1) carbon post-samples, which is two times the sensitivity per unit footprint substrate area of the flat carbon films. This result is consistent with the hypothesis that the number of reaction sites scales with the reactive surface area of the sensor. Numerical simulation based on enzymatic reaction and glucose diffusion kinetics gives the optimum geometric design rules for the carbon post-glucose sensor. Glucose sensors with even higher sensitivity can be achieved utilizing higher carbon post-microarrays when technology evolution will permit it.  相似文献   

15.
Weifen Niu 《Luminescence》2013,28(2):239-243
In recent years, electronic tongue and nose devices have been developed that consist of an array of cross‐responsive sensors. In this study, we report a chemiluminescence (CL) sensor array based on oxidation at twelve different catalytic nanomaterial locations for the discrimination of eight teas. CL response patterns or “fingerprints” were obtained for a given compound on the sensor array and then discriminated through linear discriminant analysis. The experiments demonstrate that the sensor array had excellent differentiability and reversibility. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Humans can detect and differentiate the presence of different odours even at trace levels of these odorous compounds. The odour quantification of any particular samples is normally based on conventional panel decisions. Other analytical instruments could be used to detect trace levels of odorous molecules. This study presents the results of a biological sensor system subject to different odorants. The system consists of a sensor in which the isolated olfactory receptor proteins (ORPs) from bullfrogs (Rana spp.) were coated onto the surface of a piezoelectric (PZ) electrode, similar to the mechanism of human olfaction. The PZ crystal served as a signal transducer. The results indicate rapid (about 400 s), reversible, and longterm (up to 3 months) stable responses to different volatile compounds such as n-caproic acid, isoamyl acetate, n-decyl alcohol, beta-ionone, linalool, and ethyl caporate. The sensitivity of the sensor ranges from 10(-6)-10(-7) g, fully correlated with the olfactory threshold values of human noses. An array of six sensors consisting of five fractionated ORPs and one referenced phospholipid probe is able to respond to different odorants and form a typical fingerprint for each odorant.  相似文献   

17.
A PDMS-glass based micro-device was designed and fabricated with 12 coplanar impedance sensors integrated for electrical cell-substrate impedance sensing (ECIS). The sensitivity and frequency characteristics of the sensors were investigated both theoretically (equivalent circuit model) and experimentally for the commonly used micro-electrode dimension scale (20-80 microm). The experimental results matched well with the theoretical model analysis and revealed that, within this micro-electrode dimension scale, as the electrode width decreased or as the total electrode length decreased the sensitivity of sensor increased over the whole sensing frequency range, whilst electrode to electrode distance had no influence on sensitivity. Through our frequency characteristics analysis, the whole frequency range could be divided into four parts. New functions describing the dominant components in each frequency range were defined and validated experimentally, and could be used to explain the phenomenon of an ECIS sensing frequency window. The contribution to the impedance measurement of cells growing on the edges of the electrodes was determined for the first time. Finally, novel proposals for ECIS sensor design and ECIS measurements were presented.  相似文献   

18.
The use of a multisensor array based on chemical gas sensors to monitor plant cell cultures is described. The multisensor array, also referred to as an electronic nose, consisted of 19 different metal oxide semiconductor sensors and one carbon dioxide sensor. The device was used to continuously monitor the off-gas from two plant cell suspension cultures, Morinda citrifolia and Nicotiana tabacum, cultivated under batch conditions. By analyzing the multiarray responses using two pattern recognition methods, principal component analysis and artificial neural networks, it was possible to monitor the course of the cultivations and, in turn, to predict (1) the biomass concentration in both systems and (2) the formation of the secondary metabolite, antraquinone, by M. citrifolia. The results identify the multisensor array method as a potentially useful analytical tool for monitoring plant process variables that are otherwise difficult to analyze on-line.  相似文献   

19.
Individual enzyme-based biosensors involving three-electrode systems were developed for the detection of analytes comprising markers of the stage of maturity and quality in selected fruits of economic importance to tropical countries. Importantly, a common fabrication format has been developed to simplify manufacture and allow future integration of the individual sensors into a single multi-sensor array. Specifically, sensors for beta-D-glucose, total D-glucose, sucrose and ascorbic acid have been developed. Pectin, a natural polysaccharide present in plant cells, was used as a novel matrix to enhance enzyme entrapment and stabilisation in the sensors. Except for ascorbic acid, all the sensors function via the detection of enzymatically generated H2O2 at rhodinised carbon electrodes. Since ascorbic acid is electrochemically active at the working potential chosen (+350 mV vs. Ag/AgCl), it was measured directly. Enzyme sensors demonstrated expected response with respect to their substrates, typically 0-0.8 microA/20 mm2 electrode area response over analyte ranges of 0-7 mM. Interferences related to electrochemically active compounds present in fruits under study were significantly reduced by inclusion of a suitable cellulose acetate (CA) membrane or by enzymatic inactivation with ascorbate oxidase. Initial development was carried out into production of biosensor arrays. CA membranes were used to improve the linear range of the sensors, producing up to a fivefold improvement in the detection range compared to sensors without an additional diffusion barrier.  相似文献   

20.
An apparatus for measuring the impedance of intact biological organs or parts of organs in the frequency range of 10 Hz to 10 MHz is described. In this range impedance exhibits a large dispersion, which is dependent on tissue structures. The time course of alterations of electrical impedance such as occur during ischemia can be recorded with this equipment. Five specimens in five measuring chambers can be examined simultaneously at different temperatures. In the second part of the article, a portable impedance meter for measuring the modulus of impedance near 200 Hz, the phase of impedance at 5 kHz and the local temperature at the measuring point, is described. These parameters permit an intra-operative evaluation of the changing state of ischemic organs. Sterilizable probes with four surface electrodes and an integrated temperature sensor permit atraumatic measurements at the organ surface. The measurement itself is harmless to the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号