首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Nonribosomal peptide natural products are biosynthesized from amino acid precursors by nonribosomal peptide synthetases (NRPSs), which are organized into modules. For a typical NRPS initiation module, an adenylation (A) domain activates an amino acid and installs it onto a peptidyl carrier protein (PCP) domain as a thioester; an elongation module, which has a condensation (C) domain located between every consecutive pair of A and PCP domains, catalyzes the formation of the peptide bond between the upstream aminoacyl/peptidyl-S-PCP and the free amino group of the downstream aminoacyl-S-PCP. D-amino acid constituents in peptide natural products usually arise from the L-enantiomers through the action of integral epimerization (E) domains of an NRPS. The biosynthetic gene cluster for leinamycin, a hybrid nonribosomal peptide/polyketide containing a D-alanine moiety, does not encode a typical NRPS initiation module with the expected A-PCP-E domains; instead, it has only an A protein (LnmQ) and a PCP (LnmP), both of which are encoded by separate genes. Here we show the results of biochemical experiments as follows: (i) we demonstrate that LnmQ directly activates D-alanine as D-alaninyl-AMP and installs it onto LnmP to generate a D-alaninyl-S-PCP intermediate; (ii) we confirm that aminoacylation of LnmP by LnmQ in trans is the result of specific communication between the separate A and PCP proteins; and (iii) we reveal that leinamycin production can be improved by supplementation of exogenous D-alanine in the fermentation broth of Streptomyces atroolivaceous S-140. These findings unveil an unprecedented NRPS initiation module structure that is characterized by a discrete D-alanine-specific A protein and a PCP.  相似文献   

2.
Nonribosomal peptide synthetases (NRPSs) are large, multidomain enzymes that biosynthesize medically important natural products. We report the crystal structure of the free-standing NRPS condensation (C) domain VibH, which catalyzes amide bond formation in the synthesis of vibriobactin, a Vibrio cholerae siderophore. Despite low sequence identity, NRPS condensation enzymes are structurally related to chloramphenicol acetyltransferase (CAT) and dihydrolipoamide acyltransferases. However, although the latter enzymes are homotrimers, VibH is a monomeric pseudodimer. The VibH structure is representative of both NRPS condensation and epimerization domains, as well as the condensation-variant cyclization domains, which are all expected to be monomers. Surprisingly, despite favorable positioning in the active site, a universally conserved histidine important in CAT and in other C domains is not critical for general base catalysis in VibH.  相似文献   

3.
Luo L  Kohli RM  Onishi M  Linne U  Marahiel MA  Walsh CT 《Biochemistry》2002,41(29):9184-9196
The cyclic decapeptide antibiotic tyrocidine has D-Phe residues at positions 1 and 4, produced during peptide chain growth from L-Phe residues by 50 kDa epimerase (E) domains embedded, respectively, in the initiation module (TycA) and the TycB3 module of the three-subunit (TycABC), 10-module nonribosomal peptide synthetase. While the initiation module clearly epimerizes the aminoacyl thioester Phe1-S-TycA intermediate, the timing of epimerization versus peptide bond condensation at internal E domains has been less well characterized in nonribosomal peptide synthetases. In this study, we use rapid quench techniques to evaluate a three-domain (ATE) and a four-domain version (CATE) of the TycB3 module and a six-domain fragment (ATCATE) of the TycB2(-3) bimodule to measure the ability of the E domain in the TycB3 module to epimerize the aminoacyl thioester Phe-S-TycB3 and the dipeptidyl-S-enzyme (L-Phe-L-Phe-S-TycB3 if L-Phe-D-Phe-S-TycB3). The chiralities of the Phe-S-enzyme and Phe-Phe-S-enzyme species over time were determined by hydrolysis and chiral TLC separations, allowing for the clear conclusion that epimerization in the internal TycB3 module occurs preferentially on the peptidyl-S-enzyme rather than the aminoacyl-S-enzyme, by a factor of about 3000/1. In turn, this imposes constraints on the chiral selectivity of the condensation (C) domains immediately upstream and downstream of E domains. The stereoselectivity of the upstream C domain was shown to be L-selective at both donor and acceptor sites ((L)C(L)) by site-directed mutagenesis studies of an E domain active site residue and using the small-molecule surrogate D-Phe-Pro-L-Phe-N-acetylcysteamine thioester (D-Phe-Pro-L-Phe-SNAC) and D-Phe-Pro-D-Phe-SNAC as donor probes.  相似文献   

4.
Linne U  Marahiel MA 《Biochemistry》2000,39(34):10439-10447
Product assembly by nonribosomal peptide synthetases (NRPS) is initiated by starter modules that comprise an adenylation (A) and a peptidyl carrier protein (PCP) domain. Elongation modules of NRPS have in addition a condensation (C) domain that is located upstream of the A domain. They cannot initiate peptide bond formation. To understand the role of domain arrangements and the influence of the domains present upstream of the A domains of the elongation modules of TycB on the initiation and epimerization activities, we constructed a set of proteins derived from the tyrocidine synthetases of Bacillus brevis, which represent several N-terminal truncations of TycB and the first module of TycC. The latter was fused with the thioesterase domain (Te) to give TycC(1)-CAT-Te and to ensure product turnover. TycB(2)(-)(3)-AT.CATE and TycB(3)-ATE, lacking an N-terminal C domain, were capable of initiating peptide synthesis and epimerizing. In contrast, the corresponding constructs with a cognate N-terminal C domain, TycB(2)(-)(3)-T.CATE and TycB(3)-CATE, were strongly reduced in initiation and epimerization. Evidence is also provided that this reduction is due to substrate binding in an enantioselective binding pocket at the acceptor position of the C domains. By using TycB(2)(-)(3)-AT.CATE and TycB(3)-ATE, we were able to turn an elongation module into an initiation module, and to establish an in-trans system for the formation of new di- and tripeptides with recombinant NRPS modules. We also show that epimerization domains of elongation modules can in principle epimerize both aminoacyl-S-Ppant (TycB(3)-ATE) and peptidyl-S-Ppant (TycB(2)(-)(3)-AT.CATE) substrates, although the efficiency for epimerizing the noncognate aminoacyl-S-Ppant substrates appears to be lowered.  相似文献   

5.
The initial condensation event in the nonribosomal biosynthesis of the peptide antibiotics gramicidin S and tyrocidine A takes place between a phenylalanine activating racemase GrsA/TycA and the first proline-activating module of GrsB/TycB. Recently we established a minimal in vitro model system for NRPS with recombinant His6-tagged GrsA (GrsAPhe-ATE; 127 kDa) and TycB1 (TycB1Pro-CAT; 120 kDa) and demonstrated the catalytic function of the C-domain in TycB1Pro-CAT to form a peptide bond between phenylalanine and proline during diketopiperazine formation (DKP). In this work we took advantage of this system to identify catalytically important residues in the C-domain of TycB1Pro-CAT using site-directed mutagenesis and peptide mapping. Mutations in TycB1Pro-CAT of 10 strictly conserved residues among 80 other C-domains with potential catalytic function, revealed that only R62A, H147R and D151N are impaired in peptide-bond formation. All other mutations led to either unaffected (Q19A, C154A/S, Y166F/W and R284A) or insoluble proteins (H146A, R67A and W202L). Although 100 nm of the serine protease inhibitors N-alpha-tosyl-l-phenylalanylchloromethane or phenylmethanesulfonyl fluoride completely abolished DKP synthesis, no covalently bound inhibitor derivatives in the C-domain could be identified by peptide mapping using HPLC-MS. Though the results do not reveal a particular mechanism for the C-domain, they exhibit a possible way of catalysis analogous to the functionally related enzymes chloramphenicol acetyltransferase and dihydrolipoyl transacetylase. Based on this, we propose a mechanism in which one catalytic residue (H147) and two other structural residues (R62 and D151) are involved in amino-acid condensation.  相似文献   

6.
Stein DB  Linne U  Marahiel MA 《The FEBS journal》2005,272(17):4506-4520
Many pharmacologically important agents are assembled on multimodular nonribosomal peptide synthetases (NRPSs) whose modules comprise a set of core domains with all essential catalytic functions necessary for the incorporation and modification of one building block. Very often, d-amino acids are found in such products which, with few exceptions, are generated by the action of NRPS integrated epimerization (E) domains that alter the stereochemistry of the corresponding peptidyl carrier protein (PCP) bound l-intermediate. In this study we present a quantitative investigation of substrate specificity of four different E domains (two 'peptidyl-' and two 'aminoacyl-'E domains) derived from different NRPSs towards PCP bound peptides. The respective PCP-E bidomain apo-proteins (TycB(3)-, FenD(2)-, TycA- and GrsA-PCP-E) were primed with various peptidyl-CoA precursors by utilizing the promiscuous phosphopantetheinyl transferase Sfp. PCP bound peptidyl-S-Ppant epimerization products were chemically cleaved and analyzed for their l/d-ratios by LCMS. We were able to show that all four E domains tolerate a broad variety of peptidyl-S-Ppant-substrates as evaluated by k(obs) values and final l/d-product equilibria determined for each reaction. The two C-terminal amino acids of the substrate seem to be recognized by 'peptidyl-'E domains. Interestingly, the 'aminoacyl-'E domains GrsA- and TycA-E were also able to convert the elongated intermediates. All four E domains accepted an N-methylated precursor as well and epimerized this substrate with high efficiency. Finally, we could demonstrate that the condensation (C) domain of TycB(1) is also able to process peptidyl substrates transferred by TycA. In conclusion, these findings are of great impact on future engineering attempts.  相似文献   

7.
8.
Marshall CG  Burkart MD  Keating TA  Walsh CT 《Biochemistry》2001,40(35):10655-10663
The iron-chelating peptide vibriobactin of the pathogenic Vibrio cholerae is assembled by a four-subunit nonribosomal peptide synthetase complex, VibE, VibB, VibH, and VibF, using 2,3-dihydroxybenzoate and L-threonine as precursors to two 2,3-dihydroxyphenyl- (DHP-) methyloxazolinyl groups in amide linkage on a norspermidine scaffold. We have tested the ability of the six-domain VibF subunit (Cy-Cy-A-C-PCP-C) to utilize various L-threonine analogues and found the beta-functionalized amino acids serine and cysteine can function as alternate substrates in aminoacyl-AMP formation (adenylation or A domain), aminoacyl-S-enzyme formation (A domain), acylation by 2,3-dihydrobenzoyl- (DHB-) S-VibB (heterocyclization or Cy domain), heterocyclization to DHP-oxazolinyl- and DHP-thiazolinyl-S-enzyme forms of VibF (Cy domain) as well as transfer to DHB-norspermidine at both N(5) and N(9) positions (condensation or C domain) to make the bis(oxazolinyl) and bis(thiazolinyl) analogues of vibriobactin. When L-threonyl-S-pantetheine or L-threonyl-S-(N-acetyl)cysteamine was used as a small-molecule thioester analogue of the threonyl-S-VibF acyl enzyme intermediate, the Cy domain(s) of a CyCyA fragment of VibF generated DHB-threonyl-thioester products of the condensation step but not the methyloxazolinyl thioesters of the heterocyclization step. This clean separation of condensation from cyclization validates a two-stage mechanism for threonyl, seryl, and cysteinyl heterocyclization domains in siderophore and antibiotic synthetases. Full heterocyclization activity could be restored by providing CyCyA with the substrate L-threonyl-S-peptidyl carrier protein (PCP)-C2, suggesting an important role for the protein scaffold component of the heterocyclization acceptor substrate. We also examined heterocyclization donor substrate specificity at the level of acyl group and protein scaffold and observed intolerance for substitution at either position.  相似文献   

9.
Roche ED  Walsh CT 《Biochemistry》2003,42(5):1334-1344
Nonribosomal peptide synthetases (NRPSs) make many natural products of clinical importance, but a deeper understanding of the protein domains that compose NRPS assembly lines is required before these megasynthetases can be effectively engineered to produce novel drugs. The N-terminal amide bond-forming condensation (C) domain of the enterobactin NRPS EntF was excised from the multidomain synthetase using endpoints determined from sequence alignments and secondary structure predictions. The isolated domain was well-folded when compared by circular dichroism to the vibriobactin NRPS VibH, a naturally free-standing C domain. The EntF domain was also fully functional in an assay based on a synthetic small-molecule substrate, seryl N-acetylcysteamine. Active site mutants of the EntF C domain were surprisingly inactive in vitro as compared to their VibH counterparts, yet maintained the overall domain structure. An in vivo assay was developed in the context of the full-length EntF protein to more sensitively probe the activity level of the C domain mutants, and this supported strong effects for the active site mutations. The crucial role of histidine-138 was confirmed by assay of the full-length protein in vitro. These results suggest a strong resemblance of catalysis by the EntF C domain to chloramphenicol acetyltransferase, including an active site organized by an arginine-aspartate salt bridge, a key histidine acting as a general base, and an asparagine instead of a serine stabilizing the proposed tetrahedral intermediate by hydrogen bonding. The precise definition of a functional C domain excised from a NRPS should aid efforts at swapping NRPS domains between assembly lines.  相似文献   

10.
Keating TA  Miller DA  Walsh CT 《Biochemistry》2000,39(16):4729-4739
The six domain, 229 kDa HMWP2 subunit of the Yersinia pestis yersiniabactin (Ybt) synthetase has been expressed in soluble, full-length form in E. coli as a C-terminal His8 construct at low growth temperatures and with attenuated induction. All six domains of this nonribosomal peptide synthetase subunit, three phosphopantetheinylatable carrier protein domains (ArCP, PCP1, PCP2), one adenylation (A) domain, and two cyclization domains (Cy1, Cy2), have been assayed and are functional. Mutants that convert the phosphopantetheinylatable serine residue to alanine in each of the carrier protein domains accumulate acyl-S-enzyme intermediates upstream of the blocked apo carrier protein site. The ArCP mutant cannot be salicylated by the adenylation protein YbtE; the PCP1 mutant releases salicyl-cysteine from thiolysis of the Sal-S-ArCP intermediate; and the PCP2 mutant releases hydroxyphenyl-thiazolinyl-cysteine from the HPT-S-PCP1 acyl enzyme intermediate, all of which demonstrates processivity and directionality of chain growth. Restoration of the ArCP mutant's function was accomplished with the native ArCP fragment added in trans. The wild-type HMWP2 subunit accumulates hydroxyphenyl-4, 2-bithiazolinyl-S-enzyme at its most downstream PCP2 carrier site, presumably for transfer to the next subunit, HMWP1. The A domain was found to activate and transfer to PCP1 and PCP2 not only the natural L-Cys but also S-2-aminobutyrate, L-beta-chloroalanine, and L-Ser, enabling testing of the substrate specificity of the Cy domain. Probes of Cy domain function include mutagenesis of the Cy1 domain's conserved signature motif DX(4)DX(2)S to show that both D residues but not the S are crucial for both amide bond formation and heterocyclization. Also the Cy1 domain would accept an alternate upstream electrophilic donor substrate (2,3-dihydroxybenzoyl-S-ArCP) but would not process any of the three alternate downstream nucleophilic acceptors in place of Cys-S-PCP1, even for the amide bond-forming step in chain elongation.  相似文献   

11.
The acyl carrier proteins (ACPs) of fatty acid synthase and polyketide synthase as well as peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases are modified by 4'-phosphopantetheinyl transferases from inactive apo-enzymes to their active holo forms by transferring the 4'-phosphopantetheinyl moiety of coenzyme A to a conserved serine residue of the carrier protein. 4'-Phosphopantetheinyl transferases have been classified into two types; the AcpS type accepts ACPs of fatty acid synthase and some ACPs of type II polyketide synthase as substrates, whereas the Sfp type exhibits an extraordinarily broad substrate specificity. Based on the previously published co-crystal structure of Bacillus subtilis AcpS and ACP that provided detailed information about the interacting residues of the two proteins, we designed a novel hybrid PCP by replacing the Bacillus brevis TycC3-PCP helix 2 with the corresponding helix of B. subtilis ACP that contains the interacting residues. This was performed for the PCP domain as a single protein as well as for the TycA-PCP domain within the nonribosomal peptide synthetase module TycA from B. brevis. Both resulting proteins, designated hybrid PCP (hPCP) and hybrid TycA (hTycA), were modified in vivo during heterologous expression in Escherichia coli (hPCP, 51%; hTycA, 75%) and in vitro with AcpS as well as Sfp to 100%. The designated hTycA module contains two other domains: an adenylation domain (activating phenylalanine to Phe-AMP and afterward transferring the Phe to the PCP domain) and an epimerization domain (converting the PCP-bound l-Phe to d-Phe). We show here that the modified PCP domain of hTycA communicates with the adenylation domain and that the co-factor of holo-hPCP is loaded with Phe. However, communication between the hybrid PCP and the epimerization domain seems to be disabled. Nevertheless, hTycA is recognized by the next proline-activating elongation module TycB1 in vitro, and the dipeptide is formed and released as diketopiperazine.  相似文献   

12.
Peptide bond formation on the ribosome is catalyzed by RNA. Kinetic studies using Escherichia coli ribosomes have shown that catalysis (>10(5)-fold overall acceleration) is due to a large part to substrate positioning. However, peptide bond formation is inhibited approximately 100-fold by protonation of a ribosomal group with pKa=7.5, indicating either a contribution of general acid-base catalysis or inhibition by a pH-dependent conformational change within the active site. The function of a general base has been attributed to A2451 of 23S rRNA, and a charge relay system involving G2447 has been postulated to bring about the extensive pKa shift of A2451 implied in the model. Using a rapid kinetic assay, we found that the G2447A mutation, which has essentially no effect on cell growth, lowers the rate of peptide bond formation about 10-fold and does not affect the ionization of the ribosomal group with pKa=7.5 taking part in the reaction. This result does not support the proposed charge relay mechanism involving G2447 and the role of A2451 as general base in the catalysis of peptide bond formation.  相似文献   

13.
The major enzymatic activity of the ribosome is the catalysis of peptide bond formation. The active site -- the peptidyl transferase center -- is composed of ribosomal RNA (rRNA), and interactions between rRNA and the reactants, peptidyl-tRNA and aminoacyl-tRNA, are crucial for the reaction to proceed rapidly and efficiently. Here, we describe the influence of rRNA interactions with cytidine residues in A-site substrate analogs (C-puromycin or CC-puromycin), mimicking C74 and C75 of tRNA on the reaction. Base-pairing of C75 with G2553 of 23S rRNA accelerates peptide bond formation, presumably by stabilizing the peptidyl transferase center in its productive conformation. When C74 is also present in the substrate analog, the reaction is slowed down considerably, indicating a slow step in substrate binding to the active site, which limits the reaction rate. The tRNA-rRNA interactions lead to a robust reaction that is insensitive to pH changes or base substitutions in 23S rRNA at the active site of the ribosome.  相似文献   

14.
Fumonisins are a group of polyketide-derived mycotoxins produced by Fusarium verticillioides, a filamentous fungus infecting corn and contaminating food and feeds. Fumonisins contain two tricarballylic esters that are critical for toxicity. Here, we present genetic and biochemical data for the esterification mechanism. FUM14 in F. verticillioides has been deleted by homologous recombination, and the resultant mutant lost the ability to produce fumonisins. Two new metabolites, HFB(3) and HFB(4), which are biosynthetic precursors of fumonisins lacking the tricarballylic esters, were detected in the mutant. The results suggest that FUM14 is required for the esterification of fumonisins. FUM14 was predicted to encode a nonribosomal peptide synthetase (NRPS) containing two domains, peptidyl carrier protein and condensation domain. Both the intact Fum14p and the condensation domain have been expressed in Escherichia coli and purified for activity assays. Fum14p was able to convert HFB(3) and HFB(4) to the tricarballylic esters-containing fumonisins, FB(3) and FB(4), respectively, when incubated with tricarballylic thioester of N-acetylcysteamine. In addition, the condensation domain was able to convert HFB(1) to FB(1). These data provide direct evidence for the role of Fum14p in the esterification of fumonisins. More interestingly, the results are the first example of an NRPS condensation domain catalyzing a C-O bond (ester) formation, instead of the typical C-N bond (amide) formation in nonribosomal peptides. The understanding of the esterification mechanism provides useful knowledge for mycotoxin reduction and elimination. The study also provides new insight into the reactions catalyzed by NRPS.  相似文献   

15.
Suo Z 《Biochemistry》2005,44(12):4926-4938
Multimodular enzymes, including polyketide synthases (PKSs), nonribosomal peptide synthetases (NRPSs), and mixed PKS/NRPS systems, contain functional domains with similar functions. Domain swapping and module fusion are potential powerful strategies for creating hybrid enzymes to synthesize modified natural products. To explore these strategies, yersiniabactin (Ybt) synthetase containing two subunits, HMWP2 [two NRPS modules (N-terminus-ArCP-Cy1-A-PCP1 and Cy2-PCP2-C-terminus)] and HMWP1 [one PKS (N-terminus-KS-AT-MT1-KR-ACP) one NRPS module (Cy3-MT2-PCP3-TE-C-terminus)], was used as a model system to study peptidyl carrier protein (PCP) domain swapping, thioesterase (TE) portability, and module-module fusion. The PCP1 domain of the N-terminal NRPS module of HMWP2 was swapped with either PCP2 or PCP3. The fusion proteins were 3-8-fold less active than the wild-type protein. The swapping of PCP2 of HMWP2 abolished the heterocyclization activity of the Cy2 domain while retaining its condensation function. When the two PCPs of HMWP2 were swapped by PCP3TE, it created two active fusion proteins: one or two NRPS modules fused to the TE domain. The internal TE domain of the two fusion proteins catalyzed the hydrolysis of enzyme-bound intermediates HPT-S-PCP3 to form HPT-COOH and HPTT-S-PCP3 to form HPTT-COOH. The TE activity was eliminated by the S2980A point mutation at its active site. Therefore, the three PCPs of the Ybt synthetase were swappable, and its lone TE domain was portable. The reasons for the observed low activities of the fusion proteins and lessons for protein engineering in generating novel modular enzymes were discussed.  相似文献   

16.
For the direct interrogation of peptides harboring covalently modified serines in nonribosomal peptide synthetases, streamlined methodologies described here employ proteolysis and reporter-coenzyme A analogues of four types. The chromophoric and fluorescent coenzyme A analogues pyrene-maleimidyl-S-CoA and BODIPY-FL-N-(2-aminoethyl)maleimidyl-S-CoA were enzymatically loaded onto the active site serines harbored in the ArCP, PCP1, and PCP2 thiolation domains of PchE and PchF, the nonribosomal peptide synthetases responsible for the biosynthesis of the siderophore pyochelin. During the chromatographic separation of cyanogen bromide digests, observation of the absorbance (at 338 and 504 nm) or fluorescence (after irradiation at 365 nm) enabled the selective detection of peptides containing each active site serine. This resulted in quick detection of each active site peptide by Fourier transform mass spectrometry in the fully reconstituted pyochelin system. The loading of short acyl chain reporters in equimolar quantities permitted further insights into digestion heterogeneity and side reactions by virtue of a mass shift signature on each active site peptide. The chromatographic shift of the reporter-loaded peptides relative to peptides carrying on pathway intermediates was 2 min at 7 kDa, providing a general strategy for efficient localization of "carrier" peptides in complex digests of thiotemplate enzymes. Also, the use of the affinity reporter, biotin-maleimidyl-S-coenzyme A, permitted the isolation of intact synthetases at high purity via removal of contaminating Escherichia coli proteins.  相似文献   

17.
The C-terminal thioesterase (TE) domains from nonribosomal peptide synthetases (NRPSs) catalyze the final step in the biosynthesis of diverse biologically active molecules. In many systems, the thioesterase domain is involved in macrocyclization of a linear precursor presented as an acyl-S-enzyme intermediate. The excised thioesterase domain from the tyrocidine NRPS has been shown to catalyze the cyclization of a peptide thioester substrate which mimics its natural acyl-S-enzyme substrate. In this work we explore the generality of cyclization catalyzed by isolated TE domains. Using synthetic peptide thioester substrates from 6 to 14 residues in length, we show that the excised TE domain from the tyrocidine NRPS can be used to generate an array of sizes of cyclic peptides with comparable kinetic efficiency. We also studied the excised TE domains from the NRPSs which biosynthesize the symmetric cyclic decapeptide gramicidin S and the cyclic lipoheptapeptide surfactin A. Both TE domains exhibit expected cyclization activity: the TE domain from the gramicidin S NRPS catalyzes head-to-tail cyclization of a decapeptide thioester to form gramicidin S, and the TE domain from the surfactin NRPS catalyzes stereospecific cyclization to form a macrolactone analogue of surfactin. With an eye toward generating libraries of cyclic molecules by TE catalysis, we report the solid-phase synthesis and TE-mediated cyclization of a small pool of linear peptide thioesters. These studies provide evidence for the general utility of TE catalysis as a means to synthesize a wide range of macrocyclic compounds.  相似文献   

18.
The catalytic mechanism of peptide bond formation on the ribosome is not known. The crystal structure of 50S ribosomal subunits shows that the catalytic center consists of RNA only and suggests potential catalytic residues. Here we report rapid kinetics of the peptidyl transferase reaction with puromycin at rates up to 50 s(-1). The rate-pH profile of the reaction reveals that protonation of a single ribosomal residue (pK(a) = 7.5), in addition to protonation of the nucleophilic amino group, strongly inhibits the reaction (>100-fold). The A2451U mutation within the peptidyl transferase center has about the same inhibitory effect. These results suggest a contribution to overall catalysis of general acid-base and/or conformational catalysis involving an ionizing group at the active site.  相似文献   

19.
Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP   总被引:2,自引:0,他引:2  
Jogl G  Tong L 《Biochemistry》2004,43(6):1425-1431
Acetyl-coenzyme A synthetase (ACS) belongs to the family of AMP-forming enzymes that also includes acyl-CoA synthetases, firefly luciferase, and nonribosomal peptide synthetases. ACS catalyzes the two-step activation of acetate to acetyl-CoA: formation of an acetyl-AMP intermediate from acetate and ATP and the transfer of the acetyl group to CoA. In mammals, the acetyl-CoA product is used for biosynthesis of long chain fatty acids as well as energy production. We have determined the crystal structure of yeast ACS in a binary complex with AMP at 2.3 A resolution. The structure contains a large, N-terminal domain and a small, C-terminal domain. AMP is bound at the interface between the two domains. This structure represents a new conformation for the ACS enzyme, which may be competent for catalyzing the first step of the reaction. A Lys residue that is critical for this step is located in the active site. A rotation of 140 degrees in the small domain is needed for the binding of CoA and the catalysis of the second step. In contrast to the monomeric bacterial enzyme, yeast ACS is a stable trimer.  相似文献   

20.
To engineer the substrate specificities of nonribosomal peptide synthetases (NRPS), we developed a method to display NRPS modules on M13 phages and select catalytically active adenylation (A) domains that would load azide functionalized substrate analogs to the neighboring peptidyl carrier protein (PCP) domains. Biotin conjugated difluorinated cyclooctyne was used for copper free cycloaddition with an azide substituted substrate attached to PCP. Biotin-labeled phages were selected by binding to streptavidin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号