首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A study has been conducted to determine the ionic and metabolic requirements for full expression of the hydroosmotic response to antidiuretic hormone in the toad urinary bladder. By appropriate manipulation of incubation conditions it can be shown that there is a pool of serosal sodium necessary for a full hormone response. This serosal sodium pool is not related to the transepithelial sodium transport pool. A full hydroosmotic response also requires serosal potassium; however, no specific anion requirement was demonstrated. Additionally, anaerobic or aerobic metabolism support a full hydroosmotic response equally well.  相似文献   

2.
The uptake of C14-urea into everted and noneverted bladder sacs was compared, over short time periods (up to 2 min), with the transepithelial urea fluxes. This method allowed the study of the time course of urea uptake and distribution, while previously this problem was only studied in steady-state conditions. When mucosal uptake was studied no accumulation of C14-urea inside the tissue was observed, indicating that the mucosal border could be the limiting step. Comparative studies of urea and inulin uptake from the serosal side showed that urea equilibrated with the water epithelial cells in less than 30 sec. This accumulation suggested again that the mucosal border is an effective barrier for urea translocation. The kinetics of the increase in urea permeability induced by antidiuretic hormone was also studied and it was similar (T1/2:4.3 min) to the kinetics of the increase in water permeability induced by the hormone (T1/2:5.6 min). A strong parallelism was also observed between the time course of the increases in water and urea permeabilities induced by medium hypertonicity (T1/2 25 and 26 min, respectively). The values obtained for the permeability coefficient ktrans), either at rest or under ADH were similar to those previously reported employing steady-state techniques (28+/-8 and 432+/-25 cm-sec-1-10(-7), respectively).  相似文献   

3.
Summary The uptake of C14-urea into everted and noneverted bladder sacs was compared, over short time periods (up to 2 min), with the transepithelial urea fluxes. This method allowed the study of the time course of urea uptake and distribution, while previously this problem was only studied in steady-state conditions. When mucosal uptake was studied no accumulation of C14-urea inside the tissue was observed, indicating that the mucosal border could be the limiting step. Comparative studies of urea and inulin uptake from the serosal side showed that urea equilibrated with the water epithelial cells in less than 30 sec. This accumulation suggested again that the mucosal border is an effective barrier for urea translocation. The kinetics of the increase in urea permeability induced by antidiuretic hormone was also studied and it was similar (T1/2:4.3 min) to the kinetics of the increase in water permeability induced by the hormone (T1/2:5.6 min). A strong parallelism was also observed between the time course of the increases in water and urea permeabilities induced by medium hypertonicity (T1/2 25 and 26 min, respectively). The values obtained for the permeability coefficientk trans), either at rest or under ADH were similar to those previously reported employing steady-state techniques (28±8 and 432±25 cm·sec–1·10–7, respectively).  相似文献   

4.
Active sodium transport by the isolated toad bladder   总被引:33,自引:17,他引:33       下载免费PDF全文
Studies were made of the active ion transport by the isolated urinary bladder of the European toad, Bufo bufo, and the large American toad, Bufo marinus. The urinary bladder of the toad is a thin membrane consisting of a single layer of mucosal cells supported on a small amount of connective tissue. The bladder exhibits a characteristic transmembrane potential with the serosal surface electrically positive to the mucosal surface. Active sodium transport was demonstrated by the isolated bladder under both aerobic and anaerobic conditions. Aerobically the mean net sodium flux across the bladder wall measured with radioactive isotopes, Na24 and Na22, just equalled the simultaneous short-circuit current in 42 periods each of 1 hour's duration. The electrical phenomenon exhibited by the isolated membrane was thus quantitatively accounted for solely by active transport of sodium. Anaerobically the mean net sodium flux was found to be slightly less than the short-circuit current in 21 periods of observation. The cause of this discrepancy is not known. The short-circuit current of the isolated toad bladder was regularly stimulated with pure oxytocin and vasopressin when applied to the serosal surface under aerobic and anaerobic conditions. Adrenaline failed to stimulate the short-circuit current of the toad bladder.  相似文献   

5.
Summary Urinary bladders ofBufo marinus were depolarized, by raising the serosal K concentration, to facilitate voltage-clamping of the apical membrane. Passive Na transport across the apical membrane was then studied with near-instantaneous current-voltage curves obtained before and after eliciting a natriferic response with oxytocin. Fitting with the constant-field equation showed that the natriferic effect is accounted for by an increase in the apical Na permeability. It is accompanied by a small increase in cellular Na activity. Furthermore, fluctuation analysis of the amiloride-induced shot-noise component of the short-circuit current indicated that the permeability increase is not due to increased Na translocation through those Na channels which were already conducting prior to hormonal stimulation. Rather, the natriferic effects is found to be based on an increase in the population of transporting channels. It appears that, in response to the hormone, Na channels are rapidly recruited from a pool of electrically silent channels.  相似文献   

6.
7.
Summary Antidiuretic hormone (ADH) increases the apical (external facing) membrane water permeability of granular cells that line the toad urinary bladder. In response to ADH, cytoplasmic vesicles called aggrephores fuse with the apical plasma membrane and insert particle aggregates which are visualized by freeze-fracture electron microscopy. Aggrephores contain particle aggregates within their limiting membranes. It is generally accepted that particle aggregates are or are related to water channels. High rates of transepithelial water flow during ADH stimulation and subsequent hormone removal decrease water permeability and cause the endocytosis of apical membrane and aggrephores which retrieve particle aggregates. We loaded the particle aggregate-rich endocytic vesicles with horseradish peroxidase (HRP) during ADH stimulation and removal. Epithelial cells were isolated and homogenized, and a subcellular fraction was enriched for sequestered HRP obtained. The HRP-enriched membrane fraction was subjected to a density shifting maneuver (Courtoy et al.,J. Cell Biol. 98:870, 1984), which yielded a purified membrane fraction containing vesicles with entrapped HRP. The density shifted vesicles were composed of approximately 20 proteins including prominent species of 55, 17 and 7 kD. Proteins of these molecular weights appear on the apical surface of ADH-stimulated bladders, but not the apical surface of control bladders. Therefore, we believe these density shifted vesicles contain proteins involved in the ADH-stimulated water permeability response, possibly components of particle aggregates and/or water channels.  相似文献   

8.
A technique for estimating effective transepithelial capacitance in vitro was used to investigate changes in epithelial cell membrane area in response to antidiuretic hormone (ADH) exposure in toad bladder. The results indicate that transepithelial capacitance increases by about 30% within 30 min after serosal ADH addition and decreases with ADH removal. This capacitance change is not blocked by amiloride and occurs whether or not there is a transepithelial osmotic gradient. It is blocked by methohexital, a drug which specifically inhibits the hydro-osmotic response of toad bladder to ADH. We conclude that the hydro-osmotic response of toad bladder to ADH is accompanied by addition of membrane to the plasmalemma of epithelial cells. This new membrane may contain channels that are permeable to water. Stimulation of Na+ transport by ADH is not related to membrane area changes, but appears to reflect activation of Na+ channels already present in the cell membrane before ADH challenge.  相似文献   

9.
3,3'-diallyldiethylstilbestrol (DADES), a blocker of the facilitated diffusion of glucose, was found to interfere markedly with the hydrosmotic response to antidiuretic hormone and its related agonists. Frog urinary bladders were isolated and monitored for transmural net water flow. DADES was added either to the serosal or to the apical medium at concentrations ranging from 10(-4) M to 10(-6) M. Pretreatment for 30 min with apical 10(-4) M DADES drastically reduced the subsequent hydrosmotic response: (a) to oxytocin (4.4 x 10(-8) M) by 91.7 +/- 17.6% versus 6.2 +/- 7.8 in control; (b) to 8-bromo 3',5'-cyclic AMP by 93.5 +/- 19.4% versus 19.4 +/- 11.4%; (c) to serosal hyperosmolarity (mannitol 220 mOsm) by 99.3 +/- 0.5% versus 12.3 +/- 18.2%. This effect was dose-dependent. Inhibitory action of DADES was more effective on the apical side than on the serosal side (97.0 +/- 1.5 versus 45.8 +/- 10.8). Freeze-fracture studies revealed a modified distribution of the particles and unusual endocytotic pits and vesicles in the apical membrane of both granular and mitochondria-rich epithelial cells. These observations point to multiple and complex effects of the drug. Thus, it seems that DADES has numerous effects on urinary epithelium, which makes it a nonspecific inhibitor of water permeation. Conclusions on its use should therefore be drawn with suitable caution.  相似文献   

10.
Responses of isolated aorta and toad skin from Bufo arenarum to angiotensin II (AT II) and antidiuretic hormone (ADH) were examined. Inhibitory effects on both responses were obtained either by AT II antagonist or ADH (ADHant). Contractile responses to AT II and AVT were inhibited in a similar way by both Leu8 AT II and ADHant. No blocking effect could be obtained against norepinephrine. Leu8 AT II, ADHant and an oxytocin antagonist were able to inhibit osmotic water permeability (Posm) and short-circuit current (SCC) response in toad skin. The inhibitor not only blocked its own agonist response but also other peptide agonistics' responses. No antagonist affected Posm response to isoproterenol (Isop). The striking similarities among ADH and AT II receptors in amphibian tissues suggest a common peptide hormone receptor.  相似文献   

11.
To test the effects of colchicine and cytochalasin B on the ADH-induced response, unidirectional and net water fluxes were measured at one or two minutes intervals in frog urinary bladder. The action of these agents on the appearance of intramembrane particles aggregates in the luminal membrane of target cells under oxytocin stimulation and the changes in the tissue ultrastructure induced by cytochalasin B were also studied. It was observed that: the time-course of the response to oxytocin was strongly slowed by colchicine while the washout was not affected; the time-course of the 'on and off' of the response to oxytocin was not modified by cytochalasin B; cytochalasin B pretreatment proportionally reduced unidirectional and net water fluxes measured after glutaraldehyde fixation; the combined action of colchicine and cytochalasin B proportionally reduced the net water flux and the number of intramembrane particles aggregates, observed in freeze-fracture studies; after cytochalasin B action the dilation of intercellular spaces classically observed under oxytocin stimulation is strongly reduced. It is concluded that: microtubules probably play an important role in the water channels plug-in, but not in their removal; microfilaments integrity is necessary for the mechanisms inducing intercellular space dilation and the observed results confirm that water permeability is controlled by the number of permeation units present in the luminal border of granular cells and probably represented by the intramembrane particle aggregates.  相似文献   

12.
13.
14.
15.
In artificial lipid bilayer membranes, the ratio of the water permeability coefficient (Pd(water)) to the permeability coefficient of an arbitrary nonelectrolyte such as n-butyramide (Pd(n-butyramide)) remains relatively constant with changes in lipid composition and temperature, even though the individual Pd's increase more than 100- fold. I propose that this is a general rule that also holds for the lipid bilayers of cells and tissues, and that therefore if Pd(water)/Pd(solute greatly exceeds the value found for artifical lipid bilayers (where "solute" is a molecule, such as 1,6 hexanediol or n- butyramide, that crosses the cell membrane by a solubility-diffusion mechanism without the aid of a special transporting system), then water crosses the cell membrane via aqueous pores. Applying this criterion to the toad urinary bladder, we find that even in the unstimulated bladder, water probably crosses the luminal membrane primarily through small aqueous pores, and that this almost certainly the case after antidiuretic hormone (ADH) stimulation. I suggest that ADH stimulation ultimately leads either to formation (or enlargement) of pores, by the rearrangement of preexisting subunits, or to an unplugging of these pores.  相似文献   

16.
Radioactive tracer and electrical techniques were used to study the transport of nonelectrolytes and sodium, respectively, across toad urinary bladders in the presence and absence of ADH. The permeability of lipophilic molecules was roughly proportional to bulk phase oil/water partition coefficients both in the presence and absence of hormone; i.e., ADH elicited a general nonselective increase in the permeation of all nine solutes tested. The branched nonelectrolyte, isobutyramide, was less permeable than its straight-chain isomer, n-butyramide, in control tissues. ADH reduced the discrimination between these structural isomers. Hydrophilic solutes permeated more rapidly than expected. In the presence of hormone, there was no change in the permeation of large hydrophilic solutes considered to move via an extracellular pathway, but there was a marked increase in the permeability of water and other small hydrophilic solutes. Collectively, these results suggest that ADH acts to increase the motional freedom or fluidity of lipids in the cell membrane which is considered to be the preferred pathway for the permeation of lipophilic and small hydrophilic molecules. At concentrations of cAMP and ADH which elicit equivalent increments in the shortcircuit current, the effects of these agents on nonelectrolyte transport and membrane electrical conductance are divergent. Such observations suggest that some membrane effects of ADH may not be directly dependent upon cAMP. ADH in the mucosal solution increased the permeability of the toad bladder when the surface charge on the outer surface of the apical membrane was screened with the polyvalent cation, La-3+. These experiments emphasize that interaction of ADH with membranes of toad urinary bladder may account for at least some effects of this hormone.  相似文献   

17.
In this work we present data which show stimulation of Cl- transport in the isolated toad skin by four agonists: L-isoproterenol, L-adrenalin, angiotensin II and ADH. This response was demonstrated by raising mucosal amiloride concentration to block the sodium transport in the skin. With transepithelial sodium influx almost completely inhibited, it was likely that the response reflected transport events in the glands. Inhibition of the bioelectric parameters by removing chloride from the serosal bathing medium in the amiloride-inhibited preparation eliminated the response to all four agents, indicating that these responses are chloride dependent. The similarity of the bioelectric responses of the amiloride-treated preparation to db cAMP and to the four agents tested in this work add further evidence that this second messenger may account largely for the Cl- transport mechanism in the toad skin glands by increasing the apical membrane permeability to Cl-.  相似文献   

18.
Summary The microviscosity of cellular membranes (or membrane fluidity) was measured in suspensions of single mucosal cells isolated from the urinary bladder of the toad,Bufo marinus, by the technique of polarized fluorescence emission spectroscopy utilizing the hydrophobic fluorescent probe, perylene. At 23°C, 5mm dibutyryl cyclic 3,5-AMP decreased the apparent microviscosity of the cell membranes from 3.31 to 3.07 P, a minimum decrease of 7.3% (P<0.001) with a physiological time course. Direct visualization of the cell suspension indicated that 98% of the cells were viable, as indicated by Trypan Blue dye exclusion. The fluorescent perylene could be seen only in plasma membranes, suggesting that the measured viscosity was that of plasma membrane with little contribution from the membranes of cellular organelles. Addition of antidiuretic hormone to intact hemibladders stained with perylene produced changes in fluorescence consistent with a similar 7% decrease in apparent microviscosity with a physiological time course. However, finite interpretation of the findings in intact tissue cannot be made because the location and the fluorescent lifetime of the probe could only be conducted on the isolated cells. Comparison with previously determined relationships between water permeability and microviscosity in artificial bilayers suggests that the 7% (a lower limit) decrease in microviscosity would produce only a 6.5% increase in water permeability.  相似文献   

19.
20.
The rate of active sodium transport as measured by short-circuit current across the isolated skin of the toad, Scaphiopus couchi, was elevated following vasopressin (0.2 units/ml) or arginine vasotocin (0.1 units/ml) treatment of skins from active animals at all times of the year tested. Skins from dormant animals showed no such elevation at any time of the year. The rate of active sodium transport was elevated following treatment with dibutyryl cyclic AMP (2.5mM) plus theophylline (10 mM) in all skins tested. The hydraulic conductivity of isolated skins from both active and dormant animals showed no significant change following treatment with vasopressin (0.2 units/ml) or arginine vasotocin (0.1 units/ml except on the first day following emergence from dormancy in the field. A correlation was, therefore, observed between the occurrence of a hydroosmotic response to antidiuretic hormones and the seasonal exposure of S. couchi to standing water. A small but significant elevation of hydraulic conductivity was observed across the skins of dormant toads following treatment with dibutyryl cyclic AMP (2.5 mM) plus theophylline (10 mM) whereas a substantial elevation was observed with the skins of active animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号