首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The bivalent cation ionophore A23187 was used to increase the intracellular concentration of Ca2+ in pigeon erythrocytes to investigate whether the increase in cyclic AMP content caused by adrenaline might be influenced by a change in intracellular Ca2+ in intact cells. 2. Incubation of cells with adrenaline, in the concentration range 0.55--55 muM, resulted in an increase in the concentration of cyclic AMP over a period of 60 min. The effect of adrenaline was inhibited by more than 90% with ionophore A23187 (1.9 muM) in the presence of 1 mM-Ca2+. This inhibition could be decreased by decreasing either the concentration of the ionophore or the concentration of extracellular Ca2+, and was independent of the concentration of adrenaline. 3. The effect of ionophore A23187 depended on the time of incubation. Time-course studies showed that maximum inhibition by ionophore A23187 was only observed when the cells were incubated with the ionophore for at least 15 min before the addition of adrenaline. 4. The inhibition by ionophore A23187 depended on the concentration of extracellular Ca2+. In the absence of Mg2+, ionophore A23187 (1.9 muM) inhibited the effect of adrenaline by approx. 30% without added Ca2+, by approx. 66% with 10 muM-Ca2+ and by more than 90% with concentrations of added Ca2+ greater than 30 muM. However, even in the presence of EGTA [ethanedioxybis(ethylamine)tetra-acetate](0.1--10 mM), ionophore A23187 caused an inhibition of the cyclic AMP response of at least 30%, which may have been due to a decrease in cell Mg2+ concentration. 5. The addition of EGTA after incubation of cells with ionophore A23187 resulted in a partial reversal of the inhibition of the effect of adrenaline. 6. Inclusion of Mg2+ (2 mM) in the incubation medium antagonized the inhibitory action of ionophore A23187. This effect was most marked when the ionophore A23187 was added to medium containing Mg2+ before the addition of the cells. 7. The cellular content of Mg2+ was decreased by approx. 50% after 20 min incubation with ionophore A23187 (1.9 muM) in the presence of Ca2+ (1 mM) but no Mg2+. When Mg2+ (2 mM) was also present in the medium, ionophore A23187 caused an increase of approx. 80% in cell Mg2+ content. Ionophore A23187 had no significant effect on cell K+ content. 8. Ionophore A23187 caused a decrease in cell ATP content under some conditions. Since effects on cyclic AMP content could also be shown when ATP was not significanlty lowered, it appeared that a decrease in ATP in the cells could not explain the effect of ionophore A23187 on cyclic AMP. 9. Ionophore A23187 (1.9 muM), with 1 mM-Ca2+, did not enhance cyclic AMP degradation in intact cells, suggesting that the effect of ionophore A23187 on cyclic AMP content was mediated through an inhibition of adenylate cyclase rather than a stimulation of cyclic AMP phosphodiesterase. 10. It was concluded that in intact pigeon erythrocytes adenylate cyclase may be inhibited by intracellular concentrations of Ca2+ in the range 1-10 muM.  相似文献   

2.
A method for preparing resealed turkey erythrocyte ghosts is described which utilizes hypotonic lysis and resealing following restoration of isotonicity. The resealed ghosts are isolated above 55% sucrose. The resealed ghosts are shown to be capable of maintaining high intracellular K+ concentrations in the presence of a low K+ extracellular environment. When ATP and an ATP-regenerating system are included during the resealing stage, (R)-(-)-epinephrine- and NaF-stimulated cyclic AMP accumulation, which is linear for 20 min, can be demonstrated. The concentration of (R)-(-)-epinephrine producing a half-maximal response in resealed ghosts is 1.0 +/- 0.4 X 10(-6) M. This is the same as that for (R)-(-)-epinephrine in the intact erythrocyte. The resealed ghosts are impermeable to Ca2+, but Ca2+ inhibition of cyclic AMP accumulation is noted if the divalent cation ionophore. A-23187, is present or if Ca2+ is included during the resealing stage.  相似文献   

3.
1. Obelin, the Ca(2+)-activated luminescent protein from the hydroid Obelia geniculata, was sealed inside pigeon erythrocyte ;ghosts' in order to investigate effects on their permeability of different methods of preparation and of the bivalent cation ionophore A23187. 2. Changes in free Ca(2+) within the ;ghosts' were studied by following the rate of luminescence of obelin. The possibility that the obelin might have been released from the ;ghosts' during an experiment was investigated by studying the release of inulin and pyruvate kinase from the ;ghosts'. Less than 10% of the inulin or pyruvate kinase sealed within the ;ghosts' was released under any of the experimental conditions. 3. Triton X-100 (0.1-10%, v/v) made the ;ghosts' highly permeable to Ca(2+). In the presence of 1mm-Ca(2+) and Triton, 95-100% of the obelin was utilized within 10-20s. 4. A time-course of resealing ;ghosts' at 37 degrees C showed that over a period of 90min, the ;ghosts' became gradually less permeable to Ca(2+). ;Ghosts' which remained at 0 degrees C retained only a small concentration of obelin and ATP, and were highly permeable to Ca(2+). 5. Erythrocyte ;ghosts' resealed for 30min at 20 degrees C rather than 37 degrees C were more permeable to Ca(2+), as shown by the fact that 92% of the obelin in the ;ghosts' was utilized during the first 60s after the addition of 1mm-Ca(2+), as opposed to 44% for ;ghosts' resealed at 37 degrees C. 6. Haemolysis at pH6.0 rather than 7.0 resulted in ;ghosts' which were highly permeable to Ca(2+) after resealing for 60min at 37 degrees C. Of the obelin in the ;ghosts', produced by haemolysis at pH6.0, 90% was utilized in the first 60s after the addition of 1mm-Ca(2+) compared with 23% for ;ghosts' produced at pH7.0. 7. The bivalent cation ionophore A23187 increased the permeability of the ;ghosts' to Ca(2+). Maximum effects of the ionophore (16mug/ml) were obtained by preincubating the ;ghosts' with the ionophore A23187 (16mug/ml) in the presence of a low concentration of Mg(2+) and in the absence of Ca(2+).  相似文献   

4.
1. The effect of rabbit anti-(pigeon erythrocyte) antibodies plus human complement on the concentration of intracellular free Ca2+ in sealed pigeon erythrocyte ''ghosts'' was investigated with the photoprotein obelin. 2. The addition of human serum, as a source of complement, to ''ghosts'' coated with antibody caused a rapid increase in intracellular free Ca2+ after a lag of 20-40 s, as detected by an increase in obelin luminescence. 3. The increase in obelin luminescence could not be explained by release of obelin into the medium. It was also Ca2+-dependent in that extracellular EGTA abolished the effect and intracellular EGTA inhibited it and required the complete terminal complex (C56789). No effect was seen with C5678. 4. The concentration of intracellular free Ca2+ before addition of complement was approx. 0.3 microM. This increased to a maximum of 5-30 microM after complement addition and then remained constant for at least 1-2 min. 5. Antibody plus complement induced a rapid increase in 42K+ efflux and an inhibition of cyclic AMP formation. 6. When partially purified complement components (C5b-9) were used in ''reactive lysis'' it was possible to inhibit the release of macromolecules from pigeon erythrocyte ''ghosts'' by extracellular EGTA. 7. It was concluded that the increase in intracellular free Ca2+ concentration caused by anti-cell antibody plus complement occurred before cell lysis and may be involved in the mechanism of complement-induced cell injury.  相似文献   

5.
Thrombin-induced release of arachidonic acid from human platelet phosphatidylcholine is found to be more than 90% impaired by incubation of platelets with 1 mM dibutyryl cyclic adenosine monophosphate (Bt2 cyclic AMP) or with 0.6 mM 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate (TMB-8), an intracellular calcium antagonist. Incorporation of arachidonic acid into platelet phospholipids is not enhanced by Bt2 cyclic AMP. The addition of external Ca2+ to thrombin-treated platelets incubated with Bt2 cyclic AMP or TMB-8 does not counteract the observed inhibition. However, when divalent cation ionophore A23187 is employed as an activating agent, much less inhibition is produced by Bt2 cyclic AMP or TMB-8. The inhibition which does result can be overcome by added Ca2+. Inhibition of arachidonic acid liberation by Bt2 cyclic AMP, but not by TMB-8, can be overcome by high concentrations of A23187. When Mg2+ is substituted for Ca2+, ionophore-induced release of arachidonic acid from phosphatidylcholine of inhibitor-free controls is depressed and inhibition by Bt2 cyclic AMP is slightly enhanced. The phospholipase A2 activity of platelet lysates is increased by the presence of added Ca2+, however, the addition of either A23187 or Bt2 cyclic AMP is without effect on this activity. We suggest that Bt2 cyclic AMP may promote a compartmentalization of Ca2+, thereby inhibiting phospholipase A activity. The compartmentalization may be overcome by ionophore. By contrast, TMB-8 may immobilize platelet Ca2+ stores in situ or restrict access of Ca2+ to phospholipase A in a manner not susceptible to reversal by high concentrations of ionophore.  相似文献   

6.
Ca2+ causes less than 2-fold elevations of guinea pig sperm cyclic AMP concentrations when cells are incubated in a minimal culture medium in the absence of bicarbonate (HCO3-). However, in the presence of HCO3-, Ca2+ increases cyclic AMP by as much as 25-fold within 1 min. The (Ca2+, HCO3-)-induced elevations occur in either the presence or absence of the permeant anions, pyruvate and lactate. In the absence of extracellular Ca2+, HCO3- elevates cyclic AMP only slightly. The effect of HCO3- is concentration-dependent, with maximal responses obtained at concentrations of greater than 25 mM. Ca2+ (25 mM HCO3-) at concentrations of less than 100 microM causes one-half-maximal elevations of cyclic AMP. The (Ca2+, HCO3-)-induced elevations of cyclic AMP are observed at various extracellular pH values (7.5-8.5) and in the presence or absence of extracellular Na+ or K+. NH4Cl does not elevate sperm cyclic AMP concentrations and does not greatly alter the (Ca2+, HCO3-)-induced elevations. the putative Ca2+ transport antagonist, D-600 (100 microM), completely blocks the (Ca2+, HCO3-)-induced elevations of cyclic AMP. A23187, in the presence but not in the absence of extracellular Ca2+, increases sperm cyclic AMP but does not further elevate cyclic AMP in HCO3(-)-treated cells. These studies establish that Ca2+-dependent elevations of cyclic AMp in guinea pig spermatozoa are dependent on the presence of HCO3- and suggest that HCO3- is required for the uptake (exchange) or membrane sequestration of small amounts of physiologically active Ca2+.  相似文献   

7.
1. A method is described for the isolation of rat parotid acinar cells by controlled digestion of the gland with trypsin followed by collagenase. As judged by Trypan Blue exclusion, electron microscopy, water, electrolyte and ATP concentrations and release of amylase and lactate dehydrogenase, the cells are morphologically and functionally intact. 2. A method was developed for perifusion of acinar cells by embedding them in Sephadex G-10. Release of amylase was stimulated by adrenaline (0.1-10muM), isoproternol (1 or 10 MUM), phenylephrine (1 muM), carbamoylcholine (0.1 or 1 muM), dibutyryl cycle AMP (2 MM), 3-isobutyl-1-methylxanthine (1mM) and ionophore A23187. The effects of phenylephrine, carbamoylcholine and ionophore A23187 required extracellular Ca2+, whereas the effects of adrenaline and isoproterenol did not. 3. The incorporation of 45Ca into parotid cells showed a rapidly equilibrating pool (1-2 min) corresponding to 15% of total Ca2+ and a slowly equilibrating pool (greater than 3h) of probably a similar dimension. Cholinergic and alpha-adrenergic effectors and ionophore A23187 and 2,4-dinitrophenol increased the rate of incorporation of 45Ca into a slowly equilibrating pool, whereas beta-adrenergic effectors and dibutyryl cyclic AMP were inactive. 4. The efflux of 45Ca from cells into Ca2+-free medium was inhibited by phenylephrine and carbamoylcholine and accelerated by isoproterenol, adrenaline (beta-adrenergic effect), dibutyryl cyclic AMP and ionophore A23187. 5. A method was developed for the measurement of exchangeable 45Ca in mitochondria in parotid pieces. Incorporation of 45Ca into mitochondria was decreased by isoproterenol, dibutyryl cyclic AMP or 2,4-dinitrophenol, increased by adrenaline, and not changed significantly by phenylephrine or carbamoylcholine. Release of 45Ca from mitochondria in parotid pieced incubated in a Ca2+-free medium was increased by isoproterenol, adrenaline, dibutyryl cyclic AMP or 2,4-dinitrophenol and unaffected by phenylephrine or carbamoylcholine. 6. These findings are compatible with a role for Ca2+ as a mediator of amylase-secretory responses in rat parotid acinar cells, but no definite conclusions about its role can be drawn in the absence of knowledge of the molecular mechanisms involved, their location, and free Ca2+ concentration in appropriate cell compartment(s).  相似文献   

8.
Addition of either vasoactive intestinal peptide (VIP) or the Ca2+ ionophore, A23187, to confluent monolayers of the T84 epithelial cell line derived from a human colon carcinoma increased the rate of 86Rb+ or 42K+ efflux from preloaded cells. Stimulation of the rate of efflux by VIP and A23187 still occurred in the presence of ouabain and bumetanide, inhibitors of the Na+,K+-ATPase and Na+,K+,Cl- cotransport, respectively. The effect of A23187 required extracellular Ca2+, while that of VIP correlated with its known effect on cyclic AMP production. Other agents which increased cyclic AMP production or mimicked its effect also increased 86Rb+ efflux. VIP- or A23187-stimulated efflux was inhibited by 5 mM Ba2+ or 1 mM quinidine, but not by 20 mM tetraethylammonium, 4 mM 4-aminopyridine, or 1 microM apamin. Under appropriate conditions, VIP and A23187 also increased the rate of 86Rb+ or 42K+ uptake. Stimulation of the initial rate of uptake by either agent required high intracellular K+ and was not markedly affected by the imposition of transcellular pH gradients. The effect of A23187, but not VIP or dibutyryl cyclic AMP, was refractory to depletion of cellular energy stores. A23187-stimulated uptake was not significantly affected by anion substitution, however, stimulation of uptake by VIP required the presence of a permeant anion. This result may be due to the simultaneous activation of a cyclic AMP-dependent Cl- transport system. The kinetics of both VIP- and A23187-stimulated uptake and efflux were consistent with a channel-rather than a carrier-mediated K+ transport mechanism. The results also suggest that cyclic AMP and Ca2+ may activate two different kinds of K+ transport systems. Finally, both transport systems have been localized to the basolateral membrane of T84 monolayers, a result compatible with their possible regulatory role in hormone-activated electrogenic Cl- secretion.  相似文献   

9.
The involvement of calcium, ATP, and cyclic AMP-dependent protein kinase activity in the release of amylase from rat parotid glands was examined. Pretreatment of the glandular tissue in 11.25 mM Ca2+ medium potentiated the secretory responses to: dibutyryl cyclic AMP, elevation of the extracellular K+ concentration, reduction of the H+ concentration, La3+, and caffeine. Uncoupling of oxidative phosphorylation blocked release induced by dibutyryl cyclic AMP, K+, and reduction of H+, but had no effect on La3+, caffeine or tolbutamide-stimulated release. Inhibition of cyclic AMP-dependent protein kinase activity blocked only dibutyryl cyclic AMP-induced release and did not inhibit the responses to K+, reduction of H+ or caffeine. The loss of lactate dehydrogenase was used to access the integrity of the tissue during amylase release. No significant increase in the release of lactate dehydrogenase was observed during the secretory responses to: dibutyryl cyclic AMP, La3+, caffeine, or tolbutamide. Triton X-100 and ethanol increased the efflux of both amylase and lactate dehydrogenase. The differential involvement of Ca2+, ATP, and cyclic AMP-dependent protein kinase activity in amylase release induced by the various secretagogues suggests that three types of reactions are involved in the release of amylase.  相似文献   

10.
Infusion of adenine nucleotides and adenosine into perfused rat livers resulted in stimulation of hepatic glycogenolysis, transient increases in the effluent perfusate [3-hydroxybutyrate]/[acetoacetate] ratio, and increased portal vein pressure. In livers perfused with buffer containing 50 microM-Ca2+, transient efflux of Ca2+ was seen on stimulation of the liver with adenine nucleotides or adenosine. ADP was the most potent of the nucleotides, stimulating glucose output at concentrations as low as 0.15 microM, with half-maximal stimulation at approx. 1 microM, and ATP was slightly less potent, half-maximal stimulation requiring 4 microM-ATP. AMP and adenosine were much less effective, doses giving half-maximal stimulation being 40 and 20 microM respectively. Non-hydrolysed ATP analogues were much less effective than ATP in promoting changes in hepatic metabolism. ITP, GTP and GDP caused similar changes in hepatic metabolism to ATP, but were 10-20 times less potent than ATP. In livers perfused at low (7 microM) Ca2+, infusion of phenylephrine before ATP desensitized hepatic responses to ATP. Repeated infusions of ATP in such low-Ca2+-perfused livers caused homologous desensitization of ATP responses, and also desensitized subsequent Ca2+-dependent responses to phenylephrine. A short infusion of Ca2+ (1.25 mM) after phenylephrine infusion restored subsequent responses to ATP, indicating that, during perfusion with buffer containing 7 microM-Ca2+, ATP and phenylephrine deplete the same pool of intracellular Ca2+, which can be rapidly replenished in the presence of extracellular Ca2+. Measurement of cyclic AMP in freeze-clamped liver tissue demonstrated that adenosine (150 microM) significantly increased hepatic cyclic AMP, whereas ATP (15 microM) was without effect. It is concluded that ATP and ADP stimulate hepatic glycogenolysis via P2-purinergic receptors, through a Ca2+-dependent mechanism similar to that in alpha-adrenergic stimulation of hepatic tissue. However, adenosine stimulates glycogenolysis via P1-purinoreceptors and/or uptake into the cell, at least partially through a mechanism involving increase in cyclic AMP. Further, the hepatic response to adenine nucleotides may be significant in regulating hepatic glucose output in physiological and pathophysiological states.  相似文献   

11.
We compared the action of K+ on aldosterone secretion from isolated bovine adrenal glomerulosa cells with that of ionophore A23187. Addition of either 50 nM-A23187 or 8 mM-K+ to perifused cells induces a similar initial aldosterone-secretory responses, and a similar sustained increases in Ca2+ entry. However, K+-induced secretion is more sustained than is A23187-induced secretion, even though each agonist appears to act by increasing Ca2+ entry into the cells. When [3H]inositol-labelled cells are stimulated by 8 mM-K+, a small decrease in phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is observed. This decrease is not accompanied by an increase in inositol trisphosphate (InsP3) concentration. Also, if [3H]arachidonic acid-labelled cells are exposed to 8 mM-K+, there is no increase in [3H]diacylglycerol production. When [3H]inositol-labelled cells are stimulated by 50 nM-A23187, a small decrease in PtdIns(4,5)P2 is observed. This decrease is not accompanied by an increase in InsP3. The cyclic AMP content of K+-treated cells was approximately twice that in A23187-treated cells. If cells are perifused simultaneously with 50 nM-forskolin and 50 nM-A23187, the initial aldosterone-secretory response is similar to that induced by A23187 alone, and the response is sustained rather than transient, and is similar to that seen during perifusion of cells with 8 mM-K+. This dose of forskolin (50 nM) causes an elevation of cyclic AMP concentration in A23187-treated cells, to a value similar to that in K+-treated cells. These results indicate that, in K+-treated cells, a rise in cyclic AMP content serves as a positive sensitivity modulator of the Ca2+ message, and plays a key role in mediating the sustained aldosterone-secretory response.  相似文献   

12.
It has been proposed that cyclic AMP inhibits platelet reactivity: by preventing agonist-induced phosphoinositide hydrolysis and the resultant formation of 1,2-diacylglycerol and elevation of cytosolic free Ca2+ concentration [( Ca2+]i); by promoting Ca2+ sequestration and/or extrusion; and by suppressing reactions stimulated by (1,2-diacylglycerol-dependent) protein kinase C and/or Ca2+-calmodulin-dependent protein kinase. We used the adenylate cyclase stimulant prostaglandin D2 to compare the sensitivity to cyclic AMP of the transduction processes (phosphoinositide hydrolysis and elevation of [Ca2+]i) and functional responses (shape change, aggregation and ATP secretion) that are initiated after agonist-receptor combination on human platelets. Prostaglandin D2 elicited a concentration-dependent elevation of platelet cyclic AMP content and inhibited platelet-activating-factor(PAF)-induced ATP secretion [I50 (concn. causing 50% inhibition) approximately 2 nM], aggregation (I50 approximately 3 nM), shape change (I50 approximately 30 nM), elevation of [Ca2+]i (I50 approximately 30 nM) and phosphoinositide hydrolysis (I50 approximately 10 nM). A 2-fold increase in cyclic AMP content resulted in abolition of PAF-induced aggregation and ATP secretion, whereas maximal inhibition of shape change, phosphoinositide hydrolysis and elevation of [Ca2+]i required a greater than 10-fold elevation of the cyclic AMP content. This differential sensitivity of the various responses to inhibition by cyclic AMP suggests that the mechanisms underlying PAF-induced aggregation and ATP secretion differ from those underlying shape change. Thus a major component of the cyclic AMP-dependent inhibition of PAF-induced platelet aggregation and ATP secretion is mediated by suppression of certain components of the activation process that occur distal to the formation of DAG or elevation of [Ca2+]i.  相似文献   

13.
The effect of calcium (Ca+2) on the respiration rate of mature rab bit epididymal sperm was studied. The addition of Ca+2 did not further stimulate the respiration rate of sperm already stimulated by glucose or pyruvate. Oligomycin, which inhibits mitochondrial ATP synthesis and slows respiration, did not inhibit the uptake of mitochond rial Ca+2. The addition of the ionophore A23187, which promotes selective permeability of cell membranes to Ca+2, caused a marked stimulation of respiration when Ca+2 was added, indicating that the sperm cell membrane is not permeable to Ca+2. The stimulation of the respiration rate by pyruvate, but not glucose, was enhanced by the addition of 45 mM HCO3, which did not affect the response to added Ca+2. With or without Ca+2, cyclic AMP and dibutyl cyclic AMP did not stimulate respiration in the presence of pyruvate or glucose. The results suggest that mature rabbit sperm from the cauda epididymis are intrinsically motile, and not dependent on Ca+2.  相似文献   

14.
Synaptosomal proteins isolated from rat cerebral cortex were phosphorylated endogeneously in the presence of [gamma-32P]ATP. The phosphorylated proteins were found to be membrane bound by differential and density gradient centrifugation. In contrast to the phosphorylation of all synaptosomal proteins, phosphorylation of one protein (C), 41 000--43 000 daltons, was inhibited by Mg2+ and stimulated by Ca2+. In addition, the ionophores X537A and A23187, as well as papaverine, selectively enhanced phosphorylation of protein C without affecting phosphorylation of the outer proteins. Cyclic AMP did not influence the phosphorylation of protein C but markedly affected the phosphorylation of other synaptosomal proteins. It appears that the phosphorylation of protein C is stimulated by agents which trigger the release of neurotransmitters (Ca2+, X537A, A23187 and papaverine), and is inhibited by Mg2+, which inhibits release. It is proposed that the phosphorylation of protein C is related to membranal events underlying the release of neurotransmitters.  相似文献   

15.
As demonstrated previously, digitonin-permeabilized Xenopus oocytes have a large internal pool of sodium pumps which are inaccessible to cytosolic ouabain [Schmalzing, Kröner & Passow (1989) Biochem. J. 260, 395-399]. Access to internal ouabain-binding sites required permeabilization of inner membranes with SDS. In the present study, micromolar free Ca2+ was found to stimulate ouabain binding in the digitonin-permeabilized cells (K0.5 0.5 microM-Ca2+, h 1.9, average of seven experiments) without disrupting intracellular membranes. Sustained incubation at 9 microM-Ca2+ was as effective as SDS in inducing access to the ouabain-binding sites of the internal sodium pumps. Omission of either Mg2+ or ATP completely abolished the Ca2+ effect. Half-maximal stimulation by Ca2+ required approx. 0.4 mM-MgATP. Of a variety of nucleotides tested, none was as effective as ATP (rank order ATP greater than ADP greater than ATP[S] (adenosine 5''-[gamma-thio]triphosphate) greater than CTP greater than UTP greater than ITP = XTP greater than GTP). Pi, AMP, cyclic AMP, cyclic GMP, GTP[S] (guanosine 5''-[gamma-thio]triphosphate) and a stable ATP analogue p[NH]ppA (adenosine 5''-[beta gamma-imido]triphosphate), were ineffective. The metalloendoproteinase inhibitor carbobenzoxy-Gly-Phe-amide reduced the Ca2+ effect by some 50%. Inhibitors of chymotrypsin and the Ca2+ proteinase calpain had no effect. Ca2+ ionophores (A23187 and ionomycin) and the polycations neomycin and polymixin B blocked the Ca2+ response entirely. Neomycin also abolished a Ca2(+)-independent stimulation of ouabain binding by the wasp venom mastoparan. The requirements for increasing the accessibility of ouabain-binding sites are remarkably similar to those for exocytosis in secretory cells, suggesting that oocytes and eggs possess a Ca2(+)-regulated pathway for the plasma membrane insertion of sodium pumps.  相似文献   

16.
Swine granulosa-luteal cells incubated in Ca2+-deficient medium (5 muM final Ca2+ concentration) for short time periods produced diminished quantities of progesterone in response to lutropin. Maximally stimulating effects of prostaglandin E2 and L-adrenaline were also impaired significantly. Diminished progesterone production could not be attributed to alterations in protein synthesis or cell viability. Under Ca2+-deprived conditions, the stimulatory actions of cholera toxin, 3-isobutyl-1-methylxanthine and 8-bromo cyclic AMP were also significantly impeded. Administration of a presumptive antagonist of transmembrane Ca2+ influx (verapamil) or of EGTA to chelate extracellular Ca2+, significantly decreased the total cellular content of Ca2+, and antagonized the actions of lutropin. Micromolar concentrations of trifluoperazine mimicked the suppressive effects of Ca2+ deprivation. Conversely, the bivalent-cation ionophore, ionophore A23187, significantly augmented the stimulation of progesterone produced by lutropin. Thus the present observations implicate Ca2+ in the modulation of hormonally stimulated progesterone production in isolated ovarian cells, and suggest that Ca2+ may influence one or more processes distal to, or independent of, cyclic AMP generation. In addition, the susceptibility of progesterone biosynthesis to inhibition by trifluoperazine suggests a possible role for calmodulin in the ovary.  相似文献   

17.
The effect of a lipophilic antibiotic, ionophore A23187, on the purified Ca2+-ATPase from sarcoplasmic reticulum was investigated. When the enzyme was pretreated with A23187 in the presence and absence of Ca2+, the Ca2+-dependent ATPase activity was inhibited almost completely, but the activity of the contaminating Mg2+-ATPase was unaffected. The steady state level of the phosphoenzyme (EP) from ATP or Pi was not substantially altered. When the pretreatment was performed in the presence of Ca2+, EP formation from ATP was only slightly retarded, but EP decomposition was strongly inhibited. Under these conditions, the accumulated EP was ADP-sensitive. EP formation from Pi after chelating of Ca2+ was quite slow, whereas EP once formed was in rapid equilibrium with Pi of the medium. On the other hand, when the pretreatment was performed in the absence of Ca2+, EP formation from ATP was extremely slow, but EP once formed was in rapid dynamic equilibrium with ATP of the medium. EP formation from Pi was very fast, and this EP was in rapid equilibrium with Pi of the medium. These results demonstrate that A23187 selectively inhibits isomerization of the enzyme between the high Ca2+-affinity form and the low Ca2+-affinity form in the catalytic cycle, whether or not the enzyme is phosphorylated. This suggests that interactions between the enzyme protein and the surrounding lipids could play a crucial role in this isomerization.  相似文献   

18.
Ca2+, Mg2+-ionophores X537A and A23,187 (10(-7)-10(-6) M) induced the release of adenine nucleotides adenosine diphosphate (ADP, adenosine triphosphate (ATP), serotonin, beta-glucuronidase, Ca2+, and Mg2+ from washed human platelets. Enzymes present in the cytoplasm or mitochondria, and Zn2+ were not released. The rate of ATP and Ca2+ release measured by firefly lantern extract and murexide dye, respectively, was equivalent to that produced by the physiological stimulant thrombin. Ionophore-induced release of ADP, and serotonin was substantially (approximately 60%) but not completely inhibited by EGTA, EDTA, and high extracellular Mg2+, without significant reduction of Ca2+ release. The ionophore-induced release reaction is therefore partly dependent upon uptake of extracellular Ca2+ (demonstrated using 45Ca), but also occurs to a significant extent due to release into the cytoplasm of intracellular Ca2+. The ionophore-induced release reaction and aggregation of platelets could be blocked by prostaglandin E1 (PGE1) or dibutyryl cyclic AMP. The effects of PGE1, and N6, O2-dibutyryl adenosine 3':5'-cyclic monophosphoric acid (dibutyryl cAMP) were synergistically potentiated by the phosphodiesterase inhibitor theophylline. It is proposed that Ca2+ is the physiological trigger for platelet secretion and aggregation and that its intracellular effects are strongly modulated by adenosine 3':5'-cyclic monophosphoric acid (cyclic AMP).  相似文献   

19.
The stability constants of complexes of 3', 5'-cyclic AMP with Mg2+, Ca2+, Mn2+, Ni2+ and Co2+ were estimated at 30 degrees C in solutions of ionic strength about 0.15 containing about 130 mM K+ or tetramethylammonium ions. Values between 13 and 22 M-1 were obtained, indicating that only about 2% of cyclic AMP is present as metal complexes in vivo, but that at commonly used in vitro concentrations of 10 mM bivalent metal ions, 10--20% of cyclic AMP is present as metal complexes. The possible significance of these metal complexes, for example as competitive inhibitors, is discussed.  相似文献   

20.
Two isoenzymes (Forms I and II) of starch phosphorylase (1,4-alpha-D-glucan: orthophosphate alpha-glucosyltransferase, EC 2.4.1.1) were found in cotyledons of germinating seeds of Voandzeia subterranea L. Thouars. Phosphorylase I, which was the major component, had a pH optimum of 5.5--5.6, whereas phosphorylase II had a pH optimum of 6.1--6.3. Phosphorylase I had a molecular weight of 204 000 +/- 4000 and a subunit molecular weight of about 95 000. Phosphorylase I was stimulated by Mg2+, Mn2+, AMP, cyclic AMP, pyruvate and EDTA, but inhibited by Fe2+, Cu2+, Zn2+ and ATP. Stimulation of phosphorulase I by AMP was accompanied by changes in the affinity of the enzyme for glucose-1-phosphate in the presence of increasing AMP concentrations, and of AMP in the presence of increasing glucose-1-phosphate concentrations. Double-reciprocal plots of initial velocity data were non-linear (convex up) at low glucose-1-phosphate concentrations but became linear in the presence of AMP or ATP. Double-reciprocal plots were linear at high glucose-1-phosphate concentrations in the absence or presence of modifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号