首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 641 毫秒
1.
Plant growth, chlorophyll (Chl) content, photosynthetic gas exchange, ribulose-1,5-bisphosphate carboxylase (RuBPCO) enzyme activity, and Chl fluorescence in radish (Raphanus sativus var. longipinnatus) plants were examined after turnip mosaic virus (TuMV) infection. Plant fresh mass, dry mass, Chl content, net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), and RuBPCO activity were significantly lower in infected plants after 5 weeks of virus infection as compared to healthy plants. The 5-week virus infection did not induce significant differences in intercellular CO2 concentration (C i, photochemical efficiency of photosystem 2, PS2 (Fv/Fm), excitation capture efficiency of open PS2 reaction centres (Fv'/Fm'), effective quantum efficiency of photosystem 2 (ΔF/Fm'), and photochemical quenching (qP), but non-photochemical quenching (qN) and alternative electron sink (AES) were significantly enhanced. Thus the decreased plant biomass of TuMV-infected plants might be associated with the decreased photosynthetic activity mainly due to reduced RuBPCO activity.  相似文献   

2.
The inhibition of photosynthetic electron transport and the activity of photosynthetic carbon reduction cycle (PCR) enzymes under long-term water stress after slow dehydration was studied in non-nodulated Casuarina equisetifolia Forst. & Forst. plants. Initially, drought increased the fraction of closed Photosystem II (PS II) reaction centres (lowered qP) and decreased the quantum yield of PS II electron transport (PSII) with no enhancement of non-radiative dissipation of light energy (qN) because it increased the efficiency of electron capture by open PS II centres (Fv/Fm). As drought progressed, Fv/Fm fell and the decrease in PSII was associated with an increased qN. The kinetics of dark relaxation of fluorescence quenching pointed to an increase in a slowly-relaxing component under drought, in association with increased contents of zeaxanthin and antheraxanthin. Total NADP-dependent malate dehydrogenase activity increased and total stromal fructose-1,6-bisphosphatase activity decreased under drought, while the activation state of these enzymes remained unchanged. Water stress did not alter the activity and the activation state of ribulose bisphosphate carboxylase oxygenase.  相似文献   

3.
The aim of this study was to investigate acclimation of micropropagated plants of Rhododendron ponticum subsp. baeticum to different irradiances and recovery after exposure to high irradiance. Plants grown under high (HL) or intermediate (IL) irradiances displayed higher values of maximum electron transport rate (ETRmax) and light saturation coefficient (Ek) than plants grown under low irradiance (LL). The capacity of tolerance to photoinhibition (as assessed by the response of photochemical quenching, qp) varied as follows: HL > IL > LL. Thermal energy dissipation (qN) was also affected by growth irradiance, with higher saturating values being observed in HL plants. Light-response curves suggested a gradual replacement of qp by qN with increasing irradiance. Following exposure to irradiance higher than 1500 μmol m−2 s−1, a prolonged reduction of the maximal photochemical efficiency of PS 2 (Fv/Fm) was observed in LL plants, indicating the occurrence of chronic photoinhibition. In contrary, the decrease in Fv/Fm was quickly reverted in HL plants, pointing to a reversible photoinhibition.  相似文献   

4.
The effect of water deficit on chlorophyll fluorescence, sugar content, and growth parameters of strawberry (Fragaria×ananassa Duch. cv. Elsanta) was studied. Drought stress caused significant reductions in leaf water potential, fresh and dry masses, leaf area, and leaf number. A gradual reduction of photochemical quenching (qP) and quantum efficiency (ΦPS2) was observed under drought stress while non-photochemical quenching (qN) increased. Maximum efficiency of photosystem 2 (Fv/Fm) was not affected by drought stress.  相似文献   

5.
Diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem 2 (PS2) as well as Chl content were analyzed in Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub during dehydration and rehydration. The net photosynthetic rate (P N), maximum photochemical efficiency of PS2 (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of non-cyclic electron transport of PS2, and Chl content decreased, but non-photochemical quenching of fluorescence and carotenoid content increased in stems with the increasing of drought stress. 6 d after re-hydration, new leaves budded from stems. In the re-watered plants, the chloroplast function was restored and Chl a fluorescence returned to a similar level as in the control plants. This improved hydraulic adjustment in plant triggered a positive effect on ion flow in the tissues and increased shoot electrical admittance. Thus R. soongorica plants are able to sustain drought stress through leaf abscission and keep part of Chl content in stems.  相似文献   

6.
Amalric  C.  Sallanon  H.  Monnet  F.  Hitmi  A.  Coudret  A. 《Photosynthetica》1999,37(1):107-112
The symbiotic association of endophyte fungus, Neotyphodium lolii, and ryegrass improves the ryegrass resistance to drought. This is shown by a 30 % increase in the number of suckers in infected plants (E+), compared to plants lacking endophyte (E−), and by a higher water potential in the E+ than E− plants. The E+ plants have higher stomatal conductance (g s), transpiration rate, net photosynthetic rate (P N), and photorespiratory electron transport rate than the E− plants. The maximal photochemical efficiency (Fv/Fm) and the actual photochemical efficiency (ΦPS2) are not affected by the endophyte fungus. The increase in P N of the E+ plants subjected to water stress was independent from internal CO2 concentration. An increased P N was observed in E+ plants also in optimal water supply. Hence the drought resistance of E+ plants results in increased g s, P N, and photorespiratory electron transport rate. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
To investigate how excess excitation energy is dissipated in a ribulose-1,5-bisphospate carboxylase/oxygenase activase antisense transgenic rice with net photosynthetic rate (P N) half of that of wild type parent, we measured the response curve of P N to intercellular CO2 concentration (C i), electron transport rate (ETR), quantum yield of open photosystem 2 (PS2) reaction centres under irradiation (Fv′/Fm′), efficiency of total PS2 centres (ΦPS2), photochemical (qP) and non-photochemical quenching (NPQ), post-irradiation transient increase in chlorophyll (Chl) fluorescence (PITICF), and P700+ re-reduction. Carboxylation efficiency dependence on C i, ETR at saturation irradiance, and Fv′/Fm′, ΦPS2, and qP under the irradiation were significantly lower in the mutant. However, NPQ, energy-dependent quenching (qE), PITICF, and P700+ re-reduction were significantly higher in the mutant. Hence the mutant down-regulates linear ETR and stimulates cyclic electron flow around PS1, which may generate the ΔpH to support NPQ and qE for dissipation of excess excitation energy.  相似文献   

8.
A gradual reduction in leaf water potential (Ψleaf), net photosynthetic rate (P N), stomatal conductance, and transpiration rate was observed in two drought tolerant (C 306 and K 8027) and two susceptible (RW 893 and 899) genotypes subjected to water stress. The extent of reduction was lower in K 8027 and C 306 and higher in RW 893 and RW 899. Rewatering the plants after 5 d of stress restored P N and other gas exchange traits in all four cultivars. Water stress had no significant effect on variable to maximum fluorescence ratio (Fv/Fm) indicating that water stress had no effect on primary photochemistry of photosystem 2 (PS2). However, water stress reduced the efficiency of excitation energy transfer (F′v/F′m) and the quantum yield of electron transport (ΦPS2). The reduction was more pronounced in susceptible cultivars. Water stress had no significant effect on photochemical quenching, however, the non-photochemical quenching increased by water stress.  相似文献   

9.
Jiang  Chuang-Dao  Gao  Hui-Yuan  Zou  Qi 《Photosynthetica》2003,41(2):267-271
Photosynthesis in iron-deficient soybean and maize leaves decreased drastically. The quantum yield of photosystem 2 (PS2) electron transport (ΦPS2), the efficiency of excitation energy capture by open PS2 reaction centres (Fv′/Fm′), and photochemical quenching coefficient (qP) under high irradiance were lowered significantly by iron deficiency, but non-photochemical quenching (NPQ) increased markedly. The analysis of the polyphasic rise of fluorescence transient showed that iron depletion induced a pronounced K step both in soybean and maize leaves. The maximal quantum yield of PS2 photochemistry (Φpo) decreased only slightly, however, the efficiency with which a trapped exciton can move an electron into the electron transport chain further than QA0) and the quantum yield of electron transport beyond QAEo) in iron deficient leaves decreased more significantly compared with that in control. Thus not only the donor side but also the acceptor of PS2 was probably damaged in iron deficient soybean and maize leaves. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Under severe water stress, leaf wilting is quite general in higher plants. This passive movement can reduce the energy load on a leaf. This paper reports an experimental test of the hypothesis that leaf wilting movement has a protective function that mitigates against photoinhibition of photosynthesis in the field. The experiments exposed cotton (Gossypium hirsutum L.) to two water regimes: water-stressed and well-watered. Leaf wilting movement occurred in water-stressed plants as the water potential decreased to −4.1 MPa, reducing light interception but maintaining comparable quantum yields of photosystem II (PS II; Yield for short) and the proportion of total PS II centers that were open (qP). Predrawn F v/F m (potential quantum yield of PS II) as an indicator of overnight recovery of PS II from photoinhibition was higher than or similar to that in well-watered plants. Compared with water-stressed cotton leaves for which wilting movement was permitted, water-stressed cotton leaves restrained from such movement had significantly increased leaf temperature and instantaneous CO2 assimilation rates in the short term, but reduced Yield, qP, and F v/F m. In the long term, predrawn F v/F m and CO2 assimilation capacity were reduced in water-stressed leaves restrained from wilting movement. These results suggest that, under water stress, leaf wilting movement could reduce the incident light on leaves and their heat load, alleviate damage to the photosynthetic apparatus due to photoinhibition, and maintain considerable carbon assimilation capacity in the long term despite a partial loss of instantaneous carbon assimilation in the short term.  相似文献   

11.
Characteristics of Photosynthetic Apparatus in Mn-Starved Maize Leaves   总被引:3,自引:0,他引:3  
Jiang  C.-D.  Gao  H.-Y.  Zou  Q. 《Photosynthetica》2002,40(2):209-213
The effects of Mn-deficiency on CO2 assimilation and excitation energy distribution were studied using Mn-starved maize leaves. Mn-deficiency caused about 70 % loss in the photon-saturated net photosynthetic rate (P N) compared to control leaves. The loss of P N was associated with a strong decrease in the activity of oxygen evolution complex (OEC) and the linear electron transport driven by photosystem 2 (PS2) in Mn-deficienct leaves. The photochemical quenching of PS2 (qP) and the maximum efficiency of PS2 photochemistry (Fv/Fm) decreased significantly in Mn-starved leaves under high irradiance, implicating that serious photoinhibition took place. However, the high-energy fluorescence quenching (qE) decreased, which was associated with xanthophyll cycle. The results showed that the pool of de-epoxidation components of the xanthophyll cycle was lowered markedly owing to Mn deficiency. Linear electron transport driven by PS2 de-creased significantly and was approximately 70 % lower in Mn-deficient leaves than that in control, indicating less trans-thylakoid pH gradient was built in Mn deficient leaves. We suggest that the decrease of non-radiative dissipation depending on xanthophyll cycle in Mn-starved leaves is a result of the deficiency of trans-thylakoid pH gradient.  相似文献   

12.
Sandy plains are characteristic of the coastal region of Brazil. We investigated the diel patterns of changes in organic acid levels, leaf conductance and chlorophylla fluorescence for sun-exposed and shaded plants ofClusia hilariana, one of the dominant woody species in the sandy coastal plains of northern Rio de Janeiro state. Both exposed and shaded plants showed a typical CAM pattern with considerable diel oscillations in organic acid levels. The degradation of both malic and citric acids during the midday stomatal closure period could lead to potential CO2 fixation rates of 28 mol m-2 s-1 in exposed leaves. Moreover, exposed leaves exhibited large increases in total non-photochemical quenching (qN) accompanied by a substantial decrease in effective quantum yield during the course of the day. However, these potential high rates of CO2 fixation and the increases inqn of exposed plants were not enough to maintain the primary electron acceptor of photosystem II (qA) in a low reduction state, similar to that of shaded plants. As a result, there was a moderate increase in the reduction state of qA throughout the day. Most of the decline in photochemical efficiency of exposed leaves ofC. hilariana was reversible, as evidenced by the high levels of pre-dawn potential quantum yields (Fv/Fm) and their rapid recovery after sunset. However, the depletion of the organic acid pool in the afternoon resulted in an accentuated subsequent drop in Fv/Fm, suggesting that prolonged periods of water stress accompanied by high irradiance levels may expose plants ofC. hilariana in unprotected habitats to the danger of photoinhibition.  相似文献   

13.
Guan  X.Q.  Zhao  S.J.  Li  D.Q.  Shu  H.R. 《Photosynthetica》2004,42(1):31-36
Four grapevine cultivars, i.e. Cabernet Sauvignon (a member of the Western Europe cultivar group), Rizamat (a member of the East cultivar group), Red Double Taste (a hybridized cultivar from Vitis vinifera L. and V. labrusca L.), and 1103Paulsen (a hybridized rootstock), were treated by three severity orders of drought stress for 25 d. Then net photosynthetic rate (P N), maximal photochemical efficiency (Fv/Fm), actual photochemical efficiency (PS2) of photosystem 2, total electron transport rate (JT), and electron transport flows used in carboxylation (JC) and in oxygenation (JO) reactions catalysed by ribulose-1,5-bisphosphate carboxylase/oxygenase were determined. P N was determined again after re-watering for 2 d by gas exchange measurement. Along with the increase in severity of drought stress, P N, Fv/Fm, PS2, JT, and JC in all four cultivars decreased. The range of decrease differed among cultivars. JO expressed various trends from cultivar to cultivar. In Rizamat that received slight and moderate drought stress, P N evidently decreased, but JO markedly increased, thus maintaining high values of JT and PS2. Prior to the moderate drought stress, the Fv/Fm was high in Rizamat, indicating that the photodamage had not happened ahead of the moderate drought stress given. Under the severe drought stress, the photorespiration rate in Rizamat decreased by 70 %, and JT, PS2, and Fv/Fm also dropped to very low values, i.e. the photodamage of photosynthetic apparatus has taken place. This suggested that the photorespiration has consumed the excessive assimilatory power and the photo-protective function of photorespiration is very important for Rizamat. When Cabernet Sauvignon grew under drought stress, its JO decreased in a small range, thus maintaining higher values of JC, JT, PS2, and Fv/Fm; hence no serious photodamage occurred. Despite of the fact that P N of cv. Red Double Taste decreased markedly under the slight drought stress, JO still increased under the severe drought stress. This suggests that photorespiration is important in photoprotection under drought stress. JO in cv. 1103Paulsen markedly decreased under slight stress. Accordingly, P N, Fv/Fm, PS2, JT, and JC decreased to extremely low values. Thus photorespiration effectively protects the photosynthetic apparatus from photo-damage under drought, assists in maintaining a relatively high PS2, and helps P N to be rapidly recovered after re-watering.  相似文献   

14.
We tested the two empirical models of the relationship between chlorophyll fluorescence and photosynthesis, previously published by Weis E and Berry JA 1987 (Biochim Biophys Acta 894: 198–208) and Genty B et al. 1989 (Biochim Biophys Acta 990: 87–92). These were applied to data from different species representing different states of light acclimation, to species with C3 or C4 photosynthesis, and to wild-type and a chlorophyll b-less chlorina mutant of barley. Photosynthesis measured as CO2-saturated O2 evolution and modulated fluorescence were simultaneously monitored over a range of photon flux densities. The quantum yields of O2 evolution (ØO2) were based on absorbed photons, and the fluorescence parameters for photochemical (qp) and non-photochemical (qN) quenching, as well as the ratio of variable fluorescence to maximum fluorescence during steady-state illumination (F'v/F'm), were determined. In accordance with the Weis and Berry model, most plants studied exhibited an approximately linear relationship between ØO2/qp (i.e., the yield of O2 evolution by open Photosystem II reaction centres) and qN, except for wild-type barley that showed a non-linear relationship. In contrast to the linear relationship reported by Genty et al. for qp×F'v/F'm (i.e., the quantum yield of Photosystem II electron transport) and ØCO2, we found a non-linear relationship between qp×F'v/F'm and ØO2 for all plants, except for the chlorina mutant of barley, which showed a largely linear relationship. The curvilinearity of wild-type barley deviated somewhat from that of other species tested. The non-linear part of the relationship was confined to low, limiting photon flux densities, whereas at higher light levels the relationship was linear. Photoinhibition did not change the overall shape of the relationship between qp×F'v/F'm and ØO2 except that the maximum values of the quantum yields of Photosystem II electron transport and photosynthetic O2 evolution decreased in proportion to the degree of photoinhibition. This implies that the quantum yield of Photosystem II electron transport under high light conditions may be similar for photoinhibited and non-inhibited plants. Based on our experimental results and theoretical analyses of photochemical and non-photochemical fluoresce quenching processes, we conclude that both models, although not universal for all plants, provide useful means for the prediction of photosynthesis from fluorescence parameters. However, we also discuss that conditions which alter one or more of the rate constants that determine the various fluorescence parameters, as well as differential light penetration in assays for oxygen evolution and fluorescence emission, may have direct effect on the relationships of the two models.Abbreviations F0 and F'0 fluorescence when all Photosystem II reaction centres are open in dark- and light-acclimated leaves, respectively - Fm and F'm fluorescence when all Photosystem II reaction centres are closed in dark and light, respectively - Fv variable fluorescence equal to Fm-F0 - Fs steady state level of fluorescence in light - F'v and F'm variable (F'm-F'0) and maximum fluorescence under steady state light conditions - HEPES N-2-hydroxyethylpiperazine-N-2-ethane-sulphonic acid - QA the primary, stabile quinone acceptor of Photosystem II - qN non-photochemical quenching of fluorescence - qp photochemical quenching of fluorescence - ØO2 quantum yield of CO2-saturated O2 evolution based on absorbed photons  相似文献   

15.
Net photosynthetic rate (P N) of tobacco plants grown with NH4-N as the only N source was the lowest all the times, while P N grown only with NO3-N was the greatest until 22nd day, and P N grown with both NO3-N and NH4-N (1 : 1) was the greatest. Maximal photochemical efficiency of photosystem 2 (PS2), Fv/Fm, and actual quantum yield of PS2 under actinic irradiation (ΦPS2) in plants grown with only NH4-N were greatest at early stage and then decreased and were smaller than those of other treatments. Photochemical quenching coefficient (qP) and non-photochemical quenching coefficient (qNP) in the NH4-N plants were the greatest at all times. Hence excessive NH4-N can decrease not only photochemical efficiency but also the efficiency of utilization of photon energy absorbed by pigments for photosynthesis. Therefore, excessive NH4-N is a hindrance to photosynthesis of flue-cured tobacco. On the other hand, tobacco cultured with an appropriate mixture of NO3-N with NH4-N can sufficiently utilize photon energy and increase the efficiency of energy transformation.  相似文献   

16.
Jiang  C.-D.  Gao  H.-Y.  Zou  Q.  Jiang  G.-M. 《Photosynthetica》2004,42(3):409-415
Chlorophyll fluorescence kinetics was used to investigate the effect of 1,4-dithiothreitol (DTT) on the distribution of excitation energy between photosystem 1 (PS1) and photosystem 2 (PS2) in soybean leaves under high irradiance (HI). The maximum PS2 quantum yield (Fv/Fm) was hardly affected by the presence of DTT, however, photon-saturated photosynthesis was depressed distinctly. Photochemical efficiency of open PS2 reaction centres during irradiation (Fv/Fm) was enhanced by about 30–40 % by DTT treatment, whereas photochemical quenching (qP) was depressed by about 40 % under HI. DTT treatment caused a 30 % decrease in allocation of excitation energy to PS1 under HI and a 20 % increase to PS2. An obvious shift in the balance of excitation energy distribution between photosystems was observed in DTT-treated leaves. Though high excitation pressure (1 - qP) resulted from DTT treatment, non-photochemical quenching (qN) was lower. DTT completely inhibited the formation of zeaxanthin and also distinctly depressed the state transition (qT). The shift in the balance of excitation distribution between the two photosystems induced by DTT was mainly due to the enhancement of excitation energy capture by PS2 antenna and the inhibition of state transition. It might be the shift in the balance between the two photosystems that mainly induced the depression of photosynthesis. Thus, to keep high utilization efficiency of absorbed photon energy, it is necessary to maintain the balance of excitation distribution between PS2 and PS1.  相似文献   

17.
Zhao  Hui Jie  Zou  Qi 《Photosynthetica》2002,40(4):523-527
Infiltration of methyl viologen (MV, source of O2 ) and Na-diethyldithiocarbamate (DDC, inhibitor of SOD) into wheat leaves resulted in the accumulation of active oxygen species and photo-oxidative damage to photosynthetic apparatus under both moderate and high irradiance. Exogenous antioxidants, ascorbate (ASA) and mannitol, scavenged active oxygen efficiently, protected the photosynthetic system from MV and DDC induced oxidative damage, and maintained high Fv/Fm [maximal photochemical efficiency of photosystem 2 (PS2) while all PS2 reaction centres are open], Fm/F0 (another expression for the maximal photochemical efficiency of PS2), PS2 (actual quantum yield of PS2 under actinic irradiation), qP (photochemical quenching coefficient), P N (net photosynthetic rate), and lowered qNP (non-photochemical quenching coefficient) of the leaves kept under high irradiance and oxidative stress. Phenolic compounds used in these experiments, catechol (Cat), resorcinol (Res), and tannic acid (Tan), had similar anti-oxidative activity and protective effect on photosynthetic apparatus as ASA and mannitol. The anti-oxidative activity and the protective effect of phenolic compounds increased with increase in their concentration from 100 to 300 g m–3. The number and the position of hydroxyl group in phenolic molecules seemed to influence their antioxidative activity.  相似文献   

18.
Cross stress of heat and high irradiance (HI) resulted in the accumulation of active oxygen species and photo-oxidative damage to photosynthetic apparatus of wheat leaves during grain development. Pre-treatment with calcium ion protected the photosynthetic system from oxidative damage by reducing O-. 2 production, inhibiting lipid peroxidation, and retarding electrolyte leakage from cell. Therefore, high Fv/Fm [maximal photochemical efficiency of photosystem 2 (PS2) while all PS2 reaction centres are open], Fm/F0 (another expression for the maximal photochemical efficiency of PS2), ΦPS2 (actual quantum yield of PS2 under actinic irradiation), qP (photochemical quenching coefficient), and P N (net photosynthetic rate) were maintained, and lower qNP (non-photochemical quenching coefficient) of the leaves was kept under heat and HI stress. EGTA (a chelant of calcium ion) and LaCl3 (a blocker of Ca2+ channel in cytoplasmic membrane) had the opposite effect. Thus Ca ion may help protect the photosynthetic system of wheat leaves from oxidative damage induced by the cross stress of heat and HI.  相似文献   

19.
Influence of manganese (Mn) toxicity on photosynthesis in ricebean (Vigna umbellata) was studied by the measurement of gas exchange characteristics and chlorophyll fluorescence parameters. The net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) were reduced with increasing Mn concentration in nutrient solution. The reduction in g s and E was more pronounced at 6 d of Mn treatment. However, P N declined at 2 d of Mn treatment implying that the reduction in photosynthesis was not due to the direct effect of Mn on stomatal regulation. Mn did not affect the maximum efficiency of photosystem 2 (PS2) photochemistry (Fv/Fm). A reduction in photochemical quenching (qP) and excitation capture efficiency of open PS2 (Fv′/Fm′) with a concomitant increase in qN was observed. This implies that reduced demand for ATP and NADPH due to the reduction in photosynthesis causes a down-regulation of PS2 photochemistry and thus a high pH gradient (increase in qN) and limited electron transport (decreased qP). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Lin  Zhi-Fang  Peng  Chang-Lian  Lin  Gui-Zhu  Ou  Zhi-Ying  Yang  Cheng-Wei  Zhang  Jing-Liu 《Photosynthetica》2003,41(1):61-67
Two yellow rice mutants VG28-1 and VG30-5 were obtained during the tissue culture process from a rice plant (cv. Zhonghua No.11 japonica) with inserted maize Ds transposon element. Absorption spectra and pigment composition showed that two mutants had no chlorophyll (Chl) b and lower Chl a content in comparison to the wild type (WT). Net photosynthetic rate (P N), total electron transport rate (JF), photochemical quenching (qp), quantum yield of PS2 dependent non-cyclic electron transport (PS2), fraction of Prate, and leaf area were lower but Fv/Fm and apparent quantum yield (AQY) remained at similar levels as in the WT plant. Xanthophyll cycle pool size (V+A+Z) on a Chl basis, and de-epoxidation state were enhanced in the mutants. The mutants had larger amounts of soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), especially the small subunit of RuBPCO, than WT. The characteristics of two rice mutants differed somewhat from the other common Chl b-less mutants originating from mutagenic agent treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号