首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Picard G 《Genetics》1979,91(3):455-471
Strains of Drosophila melanogaster can be divided into two main classes, inducer and reactive, in relation to non-Mendelian female sterility. The genetic element responsible for the inducer condition (I factor) is chromosomal and may be linked to any inducer-strain chromosome. Each chromosome carrying the I factor (i(+) chromosome) can produce females showing more-or-less reduced fertility when it is introduced by paternal gametes into a reactive oocyte. As long as i(+) chromosomes are transmitted through heterozygous males with reactive originating chromosomes (r chromosomes), I factor strictly follows Mendelian segregation. In contrast, in heterozygous i(+)/r females, a varying proportion of r chromosomes may acquire I factor independently of classical genetic recombination, by a process called chromosomal contamination. This paper reports investigation of the characteristics of the three kinds of chromosomes produced by females in which contamination occurs. It appears that the contaminated reactive chromosomes have irreversibly acquired I factor and behave like i(+) chromosomes, while the i(+) chromosomes used as contaminating elements and the reactive originating chromosomes that have not been contaminated have not undergone any change.  相似文献   

2.
A Pélisson 《Heredity》1979,43(3):423-428
A specific kind of sterile F1 female, denoted SF, arises when females from strains known as reactive are crossed with males from the complementary class of strains (inducer). It has been shown that this sterility results from the interaction between the maternal reactive cytoplasm and any one of the paternal inducer chromosomes. This interaction yields other dysgenic traits including non-disjunction and mutations. In this note, the abilities of paternal gametes containing various combinations of inducer and reactive chromosomes to give more or less sterile SF females when fertilising standard reactive oocytes were compared. Although they did not cause SF sterility, reactive chromosomes, when present in sperm containing at least one inducer chromosome, were found to influence the intensity of sterility: variations of SF sterility were observed between SF females which differed only by one paternally inherited reactive chromosome. Reactive chromosomes are known to control the cytoplasmic state of reactive females. The present results suggest that this chromosomal control also takes place in SF females.  相似文献   

3.
Summary In relation to non Mendelian female sterility, Drosophila melanogaster strains can be divided into two main classes, inducer and reactive. The genetic element responsible for the inducer condition (I factor) is chromosomal and may be linked to any chromosome of inducer strains. Each chromosome carrying the I factor (i + chromosome) can produce females (denoted SF ) showing more or less reduced fertility when introduced by paternal gametes into reactive oocytes. The amount of fertility reduction of SF females depends chiefly on the level of reactivity of their reactive mother i.e. on the particular state of the cytoplasm in the oocytes from which they are issued. As long as i + chromosomes are transmitted through heterozygous males with reactive originating chromosomes (r chromosomes), the I factor strictly follows Mendelian segregations. In contrast, in heterozygous i +/r females, a varying proportion of r chromosomes may acquire irreversibly I factor, independently of classical genetic recombination, by a process denoted chromosomal contamination. The contaminated r chromosomes behave like i + chromosomes.The experiments reported in this paper show that chromosomal contamination is a chance event which arises independently in individual r chromosomes. r chromosomes may differ in their ability to be contaminated and there is a systematic difference between chromosomes X and 2. In addition, it is demonstrated that the efficiency of contamination increases with the level of reactivity of the mothers of SF females and therefore is closely correlated with the amount of fertility reduction of SF females.  相似文献   

4.
Summary When Drosophila melanogaster males coming from a class of strains known as inducer are crossed with females from the complementary class (reactive), a quite specific kind of sterility is observed in the F1 female progeny (denoted SF). The inducer chromosomes differ from the reactive chromosomes by the presence of a transposable element (called the I factor) that is responsible for the induction of this dysgenic symptom. In the germ line of dysgenic females, up to 100% of the reactive chromosomes may be contaminated, i.e. they acquire I factor(s) owing to very frequent replicative transpositions. A contaminated reactive stock was obtained by reconstructing the reactive genotype in the offspring of SF females and its kinetics of invasion by I elements was followed in the successive inbred dysgenic generations. The results show that the mean copy number of I elements increased very quickly up to the level of inducer strains and then stayed in equilibrium even though the dysgenic state was perpetuated by selection for SF sterility at every generation. The possible mechanisms of this copy number limitation are discussed.  相似文献   

5.
Alain Bucheton 《Genetics》1979,93(1):131-142
Crosses between various strains of Drosophila melanogaster may give rise to a female sterility of non-Mendelian determination. Reduced fertility is observed in females, known as SF females, bred from crosses between females of "reactive" strains and males of "inducer" strains. The reduced fertility of the SF females is the result of an interaction between an extrachromosomal property varies considerably in its ability to reduce fertility. The fertility reduction of the SF females corresponds to what is known as the reactivity level of their reactive mothers. Two nongenetic factors can modify the level of reactivity: aging and temperature. The action of aging is cumulative. When the flies of a reactive strain are submitted at each generation to the action of this factor, the level of reactivity of this strain is gradually modified. The modifications induced are reversible. Indeed, when such a modified strain is returned to standard breeding conditions, the reactivity returns progressively to its initial level. The effect of thermic treatments also seems to be cumulative and reversible.  相似文献   

6.
To correlate the chromosomal constitution of meiotic cells with possible disturbances in spindle function and the etiology of nondisjunction, we examined the spindle apparatus and chromosome behavior in maturing oocytes and analyzed the chromosomal constitution of metaphase II-arrested oocytes of CD/Cremona mice, which are heterozygous for a large number of Robertsonian translocation chromosomes (18 heterobrachial metacentrics in addition to two acrocentric chromosomes 19 and two X chromosomes). Spreading of oocytes during prometaphase 1 revealed that nearly all oocytes of the heterozygotes contained one large ring multivalent, apart from the bivalents of the two acrocentric chromosomes 19 and the X chromosomes, indicating that proper pairing and crossing-over between the homologous chromosome arms of all heterobrachial chromosomes took place during prophase. A large proportion of in vitro-matured oocytes arrested in metaphase II exhibited numerical chromosome aberrations (26.5% hyperploids, 40.8% hypoploids, and 6.1% diploids). In addition, some of the oocytes with euploid chromosome numbers (26.5% of the total examined) appeared to be nullisomic for one chromosome and disomic for another chromosome, so that aneuploidy levels may even be higher than expected on the basis of chromosome counts alone. Although oocytes of the complex heterozygous mice seemed able initially to form a bipolar spindle during first prometaphase, metaphase I spindles were frequently asymmetrical. Chromosomes in the multivalent did not align properly at the equator, centromeres of neighboring chromosomes in the multivalent remained maloriented, and pronounced lagging of chromosomes was observed at telophase I in oocytes obtained from the Robertsonian translocation heterozygotes. Therefore, disturbance in spindle structure and chromosome behavior appear to correlate with the chromosomal constitution in these oocytes and, ultimately, with failures in proper chromosome separation. In particular, reorientation appears to be a rare event, and malorientation of chromosomes may remain uncorrected throughout prometaphase, as we could not find many typical metaphase I stages in heterozygotes. This, in turn, could be the basis for malsegregation at anaphase and may ultimately induce a high rate of nondisjunction and aneuploidy in the oocytes of CD/Cremona mice, leading to total sterility in heterozygous females.  相似文献   

7.
8.
9.
A Bucheton 《Heredity》1978,41(3):357-369
Crosses between certain Drosophila melanogaster strains may give rise to female sterility of non-Mendelian determination. Reduced fertility is observed in F1 females, known as SF females, from crosses between females of "reactive" strains and males of "inducer" strains. The extent of this reduction of fertility depends on the strains which are used in the cross and on two non-genetic factors: age and temperature. The fertility of SF females increases with ageing. Also, exposing them for a short period to a high temperature (29 degrees C) either increases or decreases the probability of hatching of the eggs according to the stage of oogenesis at which the heat treatment is applied. A very striking point is that qualitatively quite similar, though attenuated, effects are observed when the two factors (ageing and temperature) are applied not directly to SF females, but to their maternal ancestors: mothers and grandmothers.  相似文献   

10.
John A. Sved 《Genetics》1987,115(1):121-127
A two-generation crossing program was used to replace the entire chromosome complement of P strains by M strain chromosomes, the maternal contribution being from the P strain. The cytotype of chromosomally substituted females was indistinguishable from M strain cytotype, judged by the sterility of offspring from the cross of such females to P strain males. In addition, following replacement of the chromosomes, the level of DNA homologous to the P factor was sufficiently low to be explicable by low levels of P factor transposition. These results are consistent with immediate chromosomal control for the switching from P to M cytotype. However, the reverse chromosome substitution, replacing all chromosomes of an M strain with P chromosomes, did not usually lead to immediate change of cytotype properties, showing that there is a true maternal effect in the M to P direction. The absence of true maternal inheritance for P cytotype argues against models of P factor repression which depend on autonomous replication of a nonchromosomal element. The repression could still be explained by nonchromosomal copies of the P factor, provided that these are replenished from chromosomal P factors. A model is put forward in which P cytotype is due to the presence of circular P factors carrying a P factor target sequence, leading to preferential transposition of chromosomal P factors to nonchromosomal target sites.  相似文献   

11.
Analysis of meiotic chromosomes from hybrids betweenAedes atropalpus andAe. epactius has revealed that the two species are fixed for alternate arrangements of four inversions: a paracentric inversion of chromosome 1, two paracentric inversions of chromosome 2, and a pericentric inversion of chromosome 3. This chromosomal heterozygosity in the interspecific hybrids has resulted in extensive meiolic chromosomal asynapsis. Dicentric bridges, acentric fragments, and chromosomal breakage were also associated with the heterozygous inversions. This disruption of meiosis was sufficient to account for the partial sterility observed in interspecific hybrids. No chromosomal polymorphisms, aberrations, or reduction in fertility was observed in parental strains of intraspecific hybrids of the two species.  相似文献   

12.
The purpose of this paper is the genetic visualization by in situ hybridization of 130 sex-linked recessive lethals plus a non-lethal induced by I-R dysgenesis. This collection of lethals involves inducer strains which differ in the position of the I elements on the X chromosomes. The I-R interaction was strong. Our previous results have shown that about 30% of the induced recessive lethals are associated with cytologically visible chromosomal rearrangements. (1) The rearrangements induced by I-R-type hybrid dysgenesis often exhibit homology with the I factor at the level of one or both junction points, depending on the types of chromosome rearrangements. These results suggest that the chromosome rearrangements arise directly from the transposition of I elements. However, the breakpoints of some types of cytologically non-visible deficiencies and of 2 small cytologically visible deficiencies do not present detectable homology with the I factor. (2) The majority of rearrangements do not involve the I elements already present on the paternal X chromosome. (3) The hybridization signal distributions on the X chromosome are not uniform. They present peaks of various heights which may correspond to specific anchoring areas of copies of I in the course of integration. (4) The data presented here agree with the literature with respect to the mean number of copies of I per X chromosome and to the excess of copies of I at locus 1A. Two rearrangement formation mechanisms are envisaged: crossing-over and 'target' exchanges.  相似文献   

13.
The I-R hybrid dysgenesis syndrome is characterized by a high level of sterility and I element transposition, occurring in the female offspring of crosses between males of inducer (I) strains, which contain full-length transposable I elements, and females of reactive (R) strains, devoid of functional I elements. The intensity of the syndrome in the dysgenic cross is essentially dependent on the reactivity level of the R females, which is ultimately controlled by still unresolved polygenic chromosomal determinants. In the work reported here, we have introduced a transposition-defective I element with a 2.6 kb deletion within its second open reading frame into a highly reactive R strain, by P-mediated transgenesis. We demonstrate that this defective I element gradually alters the level of reactivity in the three independent transgenic lines that were obtained, over several generations. After > 15 generations, the transgenicDrosophila show strongly reduced reactivity, and finally become refractory to hybrid dysgenesis, without, however, acquiring the inducer phenotype. Induction of a low reactivity level is reversible reactivity again increases upon transgene removal and is maternally inherited, as observed for the control of reactivity in natural R strains. These results demonstrate that defective I elements introduced as single-copy transgenes can act as regulators of reactivity, and suggest that some of the ancestral defective pericentromeric I elements that can be found in all reactive strains could be the molecular determinants of reactivity.  相似文献   

14.
The I-R hybrid dysgenesis syndrome is characterized by a high level of sterility and I element transposition, occurring in the female offspring of crosses between males of inducer (I) strains, which contain full-length transposable I elements, and females of reactive (R) strains, devoid of functional I elements. The intensity of the syndrome in the dysgenic cross is essentially dependent on the reactivity level of the R females, which is ultimately controlled by still unresolved polygenic chromosomal determinants. In the work reported here, we have introduced a transposition-defective I element with a 2.6 kb deletion within its second open reading frame into a highly reactive R strain, by P-mediated transgenesis. We demonstrate that this defective I element gradually alters the level of reactivity in the three independent transgenic lines that were obtained, over several generations. After > 15 generations, the transgenicDrosophila show strongly reduced reactivity, and finally become refractory to hybrid dysgenesis, without, however, acquiring the inducer phenotype. Induction of a low reactivity level is reversible reactivity again increases upon transgene removal and is maternally inherited, as observed for the control of reactivity in natural R strains. These results demonstrate that defective I elements introduced as single-copy transgenes can act as regulators of reactivity, and suggest that some of the ancestral defective pericentromeric I elements that can be found in all reactive strains could be the molecular determinants of reactivity.  相似文献   

15.
Kidwell MG 《Genetics》1983,104(2):317-341
The two interacting components of the P-M system of hybrid dysgenesis are chromosomally associated elements called P factors and a susceptible cytoplasmic state referred to as M cytotype. Previous experiments have indicated that P factors are a family of multiple-copy transposable genetic elements dispersed throughout the genome of P strains but absent in long-established M strains.—Evidence is presented that the sterility and male recombination-inducing potential of P elements may be acquired by X chromosomes, derived from M strains, through nonhomologous association with P strain autosomes, a process referred to as "chromosomal contamination." The frequencies of chromosomal contamination of X chromosomes by P strain autosomes were highly variable and depended on a number of factors. M cytotype (as opposed to P cytotype) was essential for high frequencies of P factor contamination. There were large differences in contamination potential among individual female families, and a weak negative correlation existed between family size and contamination frequency. Chromosomal contamination in the P-M system was shown to be independent of that in the I-R system.—Frequency distributions suggested that the relationship between sterility production and P factor insertion is complex. The majority of P element transpositions, identified by in situ hybridization in one X chromosome, were not associated with gonadal sterility. However, high sterility potential was found to be associated with the presence of at least one P element inserted into the X chromosome. This potential was lost at a rate of about one-sixth per generation in M cytotype but was stabilized in P cytotype. Various hypotheses concerning the relationship between transposition and chromosomal contamination are discussed.  相似文献   

16.
17.
M. G. Kidwell  K. Kimura    D. M. Black 《Genetics》1988,119(4):815-828
P elements were introduced into M strain genomes by chromosomal contamination (transposition) from P strain chromosomes under conditions of P-M hybrid dysgenesis. A number of independently maintained contaminated lines were subsequently monitored for their ability to induce gonadal (GD) sterility in the progeny of reference crosses, over a period of 60 generations, in two experiments. The efficiency of chromosomal contamination was high; all tested lines acquired P elements following the association of M and P chromosomes in the same genome for a single generation. All the contaminated lines also sustained an initial unstable phase, marked by high frequencies of transposition and sterility within lines, in the absence of P element regulation. Subsequently, each of the lines rapidly evolved to one of three relatively stable strain types whose phenotypic and molecular properties correspond rather closely to those of the P, Q and M' strains that have previously been characterized. The numbers and structures of P elements and the presence or absence of P element regulation during the early generations appeared to be critical factors determining the subsequent course of evolution. On the basis of GD sterility frequencies, both the mean level of P activity, and the average capacity for P element regulation, were reduced in lines raised at 25 degrees, relative to those raised at 20 degrees, during the early generations. This latter result is consistent with the expectation that natural selection will tend to modify the manifestation of dysgenic traits, such as high temperature sterility, which cause a reduction of fitness. However, overall, stochastic factors appeared to predominate in determining the course of evolution of individual lines.  相似文献   

18.
It was shown that the translocation in study is X-linked. After testcrossing translocation heterozygous males they generally only produce translocation heterozygous daughters and normal sons. The small acrocentric chromosomes involved in the translocation appeared to be the sex-chromosomes. The X-chromosome has a secondary constriction which is missing in the (male determining) Y-chromosome. Meiotic orientation was studied in translocation heterozygous males and females. The alternate and adjacent I orientations were found in about equal frequencies. Further, numerical meiotic non-disjunction (two types) occurred in translocation heterozygous males (about 2%), but is much higher in females (18.7%). In (achiasmate) males the homologous centromeres predominantly regulate meiotic pairing, coorientation and disjunction, apparently independently of the chromosomal rearrangement. Disturbed telomere pairing in particular leading to reduced chiasma frequency most probably explains the high numerical non-disjunction in chiasmate females. A rather good relationship exists between the percentage “semi”-sterility (28%), scored as late embryonic lethals (eggs, 72 hrs.) and the percentage karyotypes (20%) in young eggs (8–16 hrs.) with a large chromosomal deficiency. The remaining sterility (8%) can be explained by the somewhat decreased viability of tertiary trisomics and duplication karyotypes at the end of the egg stage. This translocation behaves like a “simple” one.  相似文献   

19.
I factor is a functional LINE (long interspersed nucleotidic element) which is mobilized in the germ-line of dysgenic SF females during I-R hybrid dysgenesis. Such females are obtained when an oocyte from a reactive stock, devoid of I factors but characterized by a level of reactivity, i.e. its potential for hybrid dysgenesis, is fertilized by a spermatozoon from an I factor-containing inducer stock. In a previous paper we described the expression of an I factor-lacZ fusion. Expression was detected in the ovaries of reactive and dysgenic flies only. In this paper we show that this transgenic activity can be quantified and depends upon the maternally inherited reactivity. Reactivity is not just a permissive state and modifiers of the reactivity level such as heat treatment and ageing change the level of expression of our transgenic fusion accordingly. Moreover, ageing through generations has the same cumulative and reversible effect on both reactivity and I factor expression. Using our fusion as a test for reactivity we show that the silencing of I factor after its introduction into a reactive genome may not be established in a single generation.  相似文献   

20.
I factor is a functional LINE (long interspersed nucleotidic element) which is mobilized in the germ-line of dysgenic SF females during I-R hybrid dysgenesis. Such females are obtained when an oocyte from a reactive stock, devoid of I factors but characterized by a level of reactivity, i.e. its potential for hybrid dysgenesis, is fertilized by a spermatozoon from an I factor-containing inducer stock. In a previous paper we described the expression of an I factor-lacZ fusion. Expression was detected in the ovaries of reactive and dysgenic flies only. In this paper we show that this transgenic activity can be quantified and depends upon the maternally inherited reactivity. Reactivity is not just a permissive state and modifiers of the reactivity level such as heat treatment and ageing change the level of expression of our transgenic fusion accordingly. Moreover, ageing through generations has the same cumulative and reversible effect on both reactivity and I factor expression. Using our fusion as a test for reactivity we show that the silencing of I factor after its introduction into a reactive genome may not be established in a single generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号