首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ts cells from mice tolerized with dinitrobenzene sulfonate produce a DNP-specific, MHC-restricted soluble suppressor factor (SSF) which regulates contact sensitivity to 2,4-dinitro-fluorobenzene. Previous studies have shown that the SSF-producing T cells and the soluble factor have the same hapten/MHC specificity suggesting that SSF may represent a secreted form of the Ts membrane receptor. The relationship between TCR proteins and SSF was investigated by examining the structural and serologic properties of a monoclonal DNP/H-2Kd-specific suppressor molecule produced by a Ts hybridoma. Reduction followed by alkylation abrogated the ability of the 3-10 molecule to inhibit transfer of contact sensitivity to 2,4-dinitro-fluorobenzene, indicating that intact disulfide bonds were a required structural property for suppression. Reduction of the 3-10 molecule followed by affinity chromatography on DNP-coupled Sepharose beads indicated that the 3-10 suppressor molecule is a dimer and that one of its chains binds to cell-free DNP. Serologic properties of the 3-10 molecule were examined by determining the ability of pan-reactive rabbit anti-TCR antibodies and anti-V beta 8 mAb KJ16.133 and F23.1 to adsorb suppressor activity from 3-10 culture supernatant and affinity purified 3-10 ascites material. All three reagents adsorbed the suppressor activity whereas control antibodies had no effect. When 3-10 material was passed through a F23.1-conjugated Sepharose affinity column, suppressor activity was recovered in the column eluate but not in the effluent fraction. When the 3-10 molecule was reduced and separated into its two chains (i.e., DNP-binding and non-DNP-binding chains), it was found that the anti-V beta 8 antibody F23.1-bound to the non-DNP-binding chain of the suppressor molecule. Collectively, these results indicate that the monoclonal 3-10 suppressor molecule is structurally similar to the alpha/beta TCR and suggest that the 3-10 molecule expresses a determinant encoded by the V beta 8 family of TCR genes. These results are consistent with our hypothesis that these suppressor molecules represent a secreted form of the TCR expressed on the surface of the DNP-specific Ts.  相似文献   

2.
When cultured with DNP-labeled I-A+ cells, Lyt 2+ T suppressor cells (Ts) from 2,4,-dinitrobenzene sulfonate (DNBS)-tolerized mice are activated to synthesize and release a suppressor factor (SSF) which suppresses the transfer of contact sensitivity to DNFB. The signals required to activate the DNBS-primed Ts to produce SSF were studied in greater detail. As previously observed with fixed DNP-labeled spleen cell stimulators, the supernatants from cultures of DNBS-primed spleen cells and glutaraldehyde-fixed DNP-labeled P388D1 cell monolayers did not contain SSF. When the tolerant cells were harvested from these monolayers and were treated with IL-1, the Ts released the synthesized SSF. Synthesis and release of SSF required Ts recognition of DNP/class I MHC on the hapten-presenting cells followed by interaction with the costimulator IL-1. When the tolerant cells were cultured with fixed DNP-labeled I-A+ or I-A- stimulators to induce SSF synthesis, release was induced by adding either unlabeled or TNP-labeled unprimed spleen cells to the cultures. The release of SSF was blocked when the second stimulators were pretreated with anti-I-A antibody but not with anti-DNP or anti-class I MHC antibodies. These results indicate that the release of SSF by DNBS-primed Lyt 2+ Ts is regulated by the activity of a self-I-A-reactive (i.e., autoreactive) T cell in the tolerant spleen cell population.  相似文献   

3.
Coculture of spleen cells from mice tolerized with 2,4-dinitrobenzenesulfonate (DNBS) and DNP-labeled spleen cells (DNP-SC) activates Lyt-2+ T suppressor cells (Ts) to synthesize and release a suppressor factor (SSF) into the supernatant, which suppresses the transfer of contact sensitivity to DNFB. The purpose of the present study was to examine in greater detail the signals required to activate DNBS-primed Ts to produce SSF. The supernatant from cultures of tolerant cells and glutaraldehyde-fixed DNP-SC did not have SSF. In contrast, the soluble cell lysate from these cultures did contain the suppressive activity. Pretreatment of glutaraldehyde-fixed DNP-SC with either anti-DNP or anti-class I, but not anti-class II MHC, antibodies blocked SSF synthesis. The addition of IL 1 to cultures of DNBS-tolerant cells and glutaraldehyde fixed DNP-SC restored the ability of the Ts to release the synthesized factor. These results indicate that Ts recognition of the hapten/class I MHC determinant stimulates the synthesis of SSF, and a costimulator is required to induce the release of the factor. The supernatants from cultures of either L3T4-depleted tolerant cells and DNP-SC or tolerant cells and anti-I-A antibody-treated DNP-SC had no SSF activity. The addition of a costimulator (IL 1) also restored the ability of the Ts to release the synthesized factor in cultures of L3T4-depleted tolerant cells and DNP-SC. These results suggest that an L3T4 cell in the DNBS-primed cell population interacts with I-A determinants on a cell in the DNP-stimulator population to initiate the generation of the mediator required for SSF release. This further suggests that the Ts is unable to induce the costimulator from the hapten-presenting cell during interaction with the DNP/class I MHC ligand. Therefore, the production of SSF is regulated not only by the presentation of the appropriate hapten/MHC determinant but also by the interactions of cells that function in generating the costimulator needed to induce release of the suppressor factor.  相似文献   

4.
Cloned Ts cells specific for the Ag, human monoclonal (myeloma) IgG, were derived from spleen cells of mice that had been immunosuppressed by treatment with a tolerogenic conjugate of HIgG and monomethoxypolyethylene glycol. The cloned Ts cells (clone 23.32) suppressed in vitro antibody responses in an Ag-specific and MHC-restricted manner. By FMF with appropriate antibody reagents, these cells were shown to be Thy-1+, CD4-, CD5-, and CD8+ and to express CD3 and the alpha beta-TCR. These results are consistent with the view that Ts cells use Ag recognition structures similar to those reported for Th cells and CTL. A soluble factor (TsF) extracted from the cloned Ts cells also suppressed in vitro antibody responses in an Ag-specific and H-2Kd-restricted manner, i.e., restricted to MHC class I molecules. The suppressive activity of this TsF could be abrogated by addition of mAb H28-710 that reacts with a determinant on the alpha-chain of TCR. Moreover, the TsF bound to and could be recovered from an immunosorbent consisting of the anti-alpha-TCR mAb H28-710 coupled to Sepharose 4B. In contrast, the TsF was not bound by immunosorbents consisting of mAb to the beta-chain of TCR (H57-597) or to V beta 8 (F23.1). It was, therefore, concluded that the TsF of clone 23.32 is serologically related to the alpha-chain of the TCR; however, it is not identical to TCR, because it lacks the determinants expressed on the TCR beta-chain that are recognized by the two anti-beta mAbs used in this study.  相似文献   

5.
Two signals are required for the in vitro activation of Lyt2+ T suppressor cells (Ts) from mice tolerized with 2,4-dinitrobenzene sulfonate (DNBS) to produce soluble suppressor factors (SSF) which suppress the transfer of contact sensitivity to dinitrofluorobenzene (DNFB). Recognition of DNP/class I MHC (signal one) stimulates the Ts to synthesize SSF. Release of SSF requires a soluble mediator (signal two) produced by the interaction of L3T4+ T cells from tolerant mice with I-A on metabolically functional cells in the DNP-presenting cell population. The purpose of this study was to examine the nature of this second Ts activation signal. Coculture of tolerant spleen cells and glutaraldehyde-fixed (Glu-) DNP-labeled spleen cells (DNP-SC) resulted in the synthesis but not release of SSF. Addition of either IL-1 or IL-2 to these cultures induced SSF release. Treatment of such cultured cells with the anti-murine IL-2 receptor antibody PC 61.5.3 blocked the IL-2- and IL-1-stimulated release of SSF. Release of SSF was also blocked when tolerant cells were cultured with (unfixed) DNP-SC in the presence of a monoclonal anti-IL-2 antibody. IL-2 but not IL-1 was able to stimulate the Ts to release synthesized SSF in the absence of L3T4+ TH activity. First, addition of IL-2 to cocultures of tolerant cells and DNP-presenting I-A- cells induced release of the synthesized SSF, whereas addition of IL-1 did not. Second, IL-2 also stimulated SSF release in cocultures of L3T4+ T cell-depleted tolerant cells and Glu-DNP-SC, whereas IL-1 did not. Tolerant cells pretreated with IL-2 and then washed were able to synthesize and release SSF upon culture with Glu-DNP-SC. Pretreatment of tolerant cells with IL-1 did not stimulate SSF release upon subsequent culture with Glu-DNP-SC. These results indicate that the Lyt2+ Ts from DNBS-tolerant mice express IL-2 receptors and IL-2 is the lymphokine which induces the Ts to release synthesized SSF. Thus, IL-2 provides a differentiative signal during the functional activation of these regulatory T cells.  相似文献   

6.
Eight different Ts cell hybridomas (including inducer (Ts1) and effector (Ts3) suppressor cells) specific for the 4-hydroxy-3-nitrophenyl acetyl (NP) hapten were tested for their ability to respond to Ag or anti-CD3 antibody in a growth-inhibition assay. Results suggest that the expression of the TCR-CD3 complex on Ts hybridomas is required for the Ag or anti-CD3-mediated growth inhibition. One of the CD3+, Ts hybridomas (CKB-Ts3-9.H3) was tested in detail; this CD4- effector suppressor cell hybridoma showed specific inhibition of growth in the presence of NP or NIP-coupled protein conjugates but not in the presence of other irrelevant hapten-protein conjugates. In addition, growth of this hybridoma was specifically inhibited by anti-CD3 and anti-TCR-alpha/beta antibodies but not by control hamster antibodies. In order to study the role of MHC molecules in Ag-mediated growth inhibition, Ts cell hybridomas were incubated with Ag (NP-keyhole limpet hemocyanin) in the presence of spleen cells from various H-2 congenic strains. The results suggest that the Ts hybridomas that express donor Ts-derived TCR beta-chain recognize Ag in an MHC-restricted manner, whereas the two Ts3 hybridomas that utilize BW5147-derived TCR-beta recognize Ag in H-2 unrestricted way. Co-incubation of anti-CD3 and anti-TCR-alpha/beta antibodies with specific Ag enhanced the Ag-mediated growth inhibition, whereas anti-LFA-1 antibody completely blocked the Ag-mediated effect. The combined data suggest that, like Th hybridomas, expression of CD3-associated-TCR complex is essential for the Ag responsiveness of Ts cell hybridomas.  相似文献   

7.
This report defines a methodology for the production and characterization of an antigen-specific, monoclonal T cell hybrid-derived suppressor T cell factor (TsF) that suppresses the passive transfer of 2,4-dinitrofluorobenzene (DNFB) contact hypersensitivity. Fusion of T cells from BALB/c (H-2d) mice tolerized with syngeneic DNP-spleen cells to BW 5147 thymoma cells resulted in several hybrids that constitutively produce a soluble regulatory molecule. One of these hybrids, 26.10.2, was subsequently cloned, and its soluble factor was characterized with respect to its antigen specificity, biochemical nature, MHC restriction pattern, and identity of its target cell. 26.10.2 TsF suppresses the passive transfer of delayed-type hypersensitivity (DTH) mediated by DNP- but not trinitrochlorobenzene- or oxazalone-primed DTH T cells (TDH) after a 1 hr incubation at 37 degrees C. In contrast, 26.10.2 TsF had no suppressive effect on secondary in vitro DNP-specific T cell proliferative responses. 26.10.2 TsF therefore represents an antigen-specific factor with effector (efferent-acting) function. The monoclonal TsF was shown to consist of a two-chain, disulfide-bonded molecule, and to bear a receptor(s) specific for DNP and determinants encoded by the I region of the H-2 complex. Effector suppressive activity of 26.10.2 TsF was restricted by Class I H-2Dd determinants. One cellular target of this monoclonal factor was shown to be the DNP-specific TDH cell, because DNFB-primed lymph node cells from cyclophosphamide-pretreated donors (lacking Ts-auxiliary (Ts-aux) cells) were efficiently suppressed. The TsF appears to focus on passively bound, TDH receptor-associated, DNP-Class I determinants, as suggested by the observation that freshly prepared, but not overnight cultured, DNP-specific TDH cells were susceptible to suppression.  相似文献   

8.
The induction of antigen-specific tolerance in mice by conjugates of ovalbumin (OVA) and monomethoxypolyethylene glycol (mPEG) previously had been shown to be associated with the generation of antigen-specific suppressor T (Ts) cells. For the elucidation of the nature of these Ts cells, five nonhybridized OVA-specific Ts cell clones were generated from the spleen cells of a BDF1 mouse which had been immunosuppressed by the tolerogenic conjugate, OVA(mPEG)12. The cloned Ts cells were maintained in vitro by periodic stimulation with OVA and feeder cells and were able to suppress the in vitro antibody production in an OVA-specific and MHC class I (H-2Kd or H-2Dd)-restricted manner. All these Ts cell clones were shown to be Thy1.2+, CD4-, CD5-, CD8+, and to express CD3 and the alpha beta heterodimer of the T cell receptor. The cell-free extracts of these cells contained soluble suppressor factors which could mimic in vitro the suppressive activity of the intact cells. In contrast to cytotoxic T lymphocytes (CTL), none of the cloned Ts cells were endowed with cytolytic activity as revealed in the perforin-mediated microhemolysis and in the 18-hr51Cr release assays. These results demonstrate that (i) OVA-specific Ts cell clones can be generated from mice pretreated with OVA(mPEG)12 by employing conventional T cell culture techniques, and (ii) these Ts cells are functionally different from conventional CD8+ CTL.  相似文献   

9.
Ts1, or inducer suppressor T cells, share many phenotypic and functional characteristics with helper/inducer subset of T cells. In order to evaluate the relationship between these cell types, we made a series of new Ts1 hybridomas by the fusion of Ts1 cells with the functionally TCR alpha/beta-negative BW thymoma (BW 1100). Three Ts1 hybridomas (CKB-Ts1-38, CKB-Ts1-53, and CKB-Ts1-81) were established that express TCR and produce Ag-specific suppressor factors constitutively, thus making it possible to study the nature and specificity of Ag receptors, MHC restriction, and lymphokine production by the Ts1 hybridomas. Results presented in this report demonstrate that all the Ts1 hybridomas described here express CD3-associated TCR-alpha beta. These three Ts1 hybridomas recognize Ag (NP-KLH) specifically in a growth inhibition assay and this recognition is restricted by IE molecules. Two of the hybridomas also produce IL-2 or IL-2 and IL-4 upon Ag-specific activation. Thus, by these three criteria the Ts1 hybridomas appear indistinguishable from Th cells. These three Ts1 hybridomas, however, release suppressor factors (TsF1) in the supernatant that suppress both in vivo DTH and in vitro PFC responses in an Ag-specific manner. Like the TsF1 factors characterized previously, the suppression mediated by these factors are Igh restricted and lack H-2 restriction. These factors mediate suppression when given in the induction phase but not during the effector phase of the immune response. The TsF1 factors are absorbed by Ag (NP-BSA), and anti-TCR affinity columns and the suppressor activity can be recovered by elution. The data are consistent with the interpretation that Ts1 inducer-suppressor T cells are related to Th cells; the feature that distinguishes these cells is the ability to produce Ag-binding factors that specifically suppress immune responses.  相似文献   

10.
NK cell recognition of targets is strongly affected by MHC class I specific receptors. The recently published structure of the inhibitory receptor Ly49A in complex with H-2Dd revealed two distinct sites of interaction in the crystal. One of these involves the alpha1, alpha2, alpha3, and beta2-microglobulin (beta2m) domains of the MHC class I complex. The data from the structure, together with discrepancies in earlier studies using MHC class I tetramers, prompted us to study the role of the beta2m subunit in MHC class I-Ly49 interactions. Here we provide, to our knowledge, the first direct evidence that residues in the beta2m subunit affect binding of MHC class I molecules to Ly49 receptors. A change from murine beta2m to human beta2m in three different MHC class I molecules, H-2Db, H-2Kb, and H-2Dd, resulted in a loss of binding to the receptors Ly49A and Ly49C. Analysis of the amino acids involved in the binding of Ly49A to H-2Dd in the published crystal structure, and differing between the mouse and the human beta2m, suggests the cluster formed by residues Lys3, Thr4, Thr28, and Gln29, as a potentially important domain for the Ly49A-H-2Dd interaction. Another possibility is that the change of beta2m indirectly affects the conformation of distal parts of the MHC class I molecule, including the alpha1 and alpha2 domains of the heavy chain.  相似文献   

11.
The T cell response to microbial T cell mitogens (MTM) such as enterotoxins from Staphylococcus aureus (SE) and the soluble mitogen from Mycoplasma arthritidis, resemble the minor lymphocyte stimulatory locus (Mls) response in several aspects. An important feature of the Mls response is it restriction to CD4+ cells. This study demonstrates that in contrast to Mls, the MTM response includes both CD4+ and CD8+ subsets. Both CD4+ and CD8+ cells expanded in IL-2 after stimulation with SEB showed preferential expression of T cell receptors bearing V beta 8 domains. Mouse and human target cells could be lysed in the presence of MTM both by MTM-stimulated CD8+ lymphocytes and by MHC class I-restricted CTL clones of defined Ag specificity. MTM-induced lysis required the expression of MHC class II, but not class I Ag, on the target cells. Inhibition studies of SEB and Ag-dependent cytolysis by CTL clones underlined the crucial role of CD3 and LFA-1 in both instances, but showed CD8 dependence only for AG-dependent cytolysis. Together these findings suggest important differences between the putative MTM-mediated interaction of TCR with MHC molecules and the classical TCR/MHC interaction involved in MHC-restricted Ag recognition.  相似文献   

12.
Heterodimeric class I major histocompatibility complex (MHC) molecules consist of a putative 45-kDa heavy chain and a 12-kDa beta2-microglobulin (beta2m) light chain. The knowledge about MHC genes in Atlantic salmon accumulated during the last decade has allowed us to generate soluble and stable MHC class I molecules with biological activity. We report here the use of a bacterial expression system to produce the recombinant single-chain MHC molecules based on a specific allele Sasa-UBA*0301. This particular allele was selected because previous work has shown its association with the resistance to infectious salmon anaemia virus. The single-chain salmon MHC class I molecule has been designed and generated, in which the carboxyl terminus of beta2m is joined together with a flexible 15 or 20 amino acid peptide linker to the amino terminus of the heavy chain (Sasabeta2mUBA*0301). Monoclonal antibodies were successfully produced against both the MHC class I heavy chain and beta(2)m, and showed binding to the recombinant molecule. The recombinant complex Sasabeta2mUBA*0301 was expressed and isolated; the production was scaled up by adjusting to its optimal conditions. Subsequently, the recombinant proteins were purified by affinity chromatography using mAb against beta2m and alpha3. Eluates were analyzed by Western blot and refolded by the removal of denaturant. The correct folding was confirmed by measuring its binding capacity against mAb produced to recognize the native form of MHC molecules by biosensor analysis. This production of sufficient amounts of class I MHC proteins may represent a useful tool to study the peptide-binding specificity of MHC class I molecules, in order to design a peptide vaccine against viral pathogens.  相似文献   

13.
Herein we described the direct suppressive effects of a monoclonal T cell hybridoma-derived, DNP-specific suppressor T cell factor (26.10.2 TsF) on the local transfer of delayed-type hypersensitivity (DTH) by a DNP-specific BALB/c T cell clone (dD1.9). The L3T4+, Lyt-2- dD1.9 T cell clone proliferated in response to DNP-OVA and DNBS, but not TNP-OVA or TNBS, in association with I-Ed determinants present on antigen-presenting cells. Similarly, local injection of histopaque-purified dD1.9 cell blasts resulted in DNP-specific, radioresistant, I-Ed-restricted, mononuclear cell-rich ear swelling responses. Incubation in 26.10.2 TsF specifically suppressed local transfer of DNP-specific DTH by dD1.9, but not local DTH responses transferred by BALB/c T cell clones specific for TNP or GAT. The suppressive effect of 26.10.2 TsF correlated with targeting on DNP-major histocompatibility complex determinants associated with the DTH T cell (TDH) targets. 26.10.2 TsF-mediated suppression was most pronounced after exposure of dD1.9 target cells to antigen (after the stimulation phase of the T cell clone maintenance procedure), and greatly reduced when dD1.9 was cultured for long periods in the absence of DNP (after the rest phase of clone maintenance). In additional support of this hypothesis, GAT-specific TDH, normally resistant to 26.10.2 TsF-mediated suppression, were rendered susceptible to suppression after surface DNPylation. The results demonstrate a direct, antigen-specific, effector phase regulatory effect of a monoclonal TsF on a cloned, antigen-specific T cell target, and strongly suggest that suppression is mediated via targeting on DNP determinants associated with the TDH target. Simplification of complex Ts circuitry operating in suppression of the efferent limb of DTH by the use of monoclonal TsF and cloned T cell targets should provide a basis for the future study of the molecular mechanisms of immune suppression.  相似文献   

14.
To determine the requirements underlying the antigen specificity observed in T cell-mediated immune response suppression, cloned major histocompatibility complex (MHC)-restricted T suppressor (Ts) cells specific for keyhole limpet hemocyanin (KLH) and cloned MHC-restricted T helper (Th) cells specific for fowl gamma-globulin (FGG) were employed to study the regulation of trinitrophenyl (TNP)-specific B cell responses. Neither antigen bridging between Ts cells and Th cells (FGG=KLH) nor bridging between Ts cells and B cells (TNP-KLH) was sufficient to allow suppression; a mixture of FGG=KLH and TNP-KLH was also insufficient for suppression. In contrast, suppression was induced by KLH-specific Ts cells only when suppressor determinants (KLH), helper determinants (FGG), and B cell determinants (TNP) were covalently linked on the same molecule (TMP-FGG)=(TNP-KLH) or TNP-(FGG=KLH)). These findings imply that a tripartite antigen-mediated interaction of Ts cells, Th cells, and responding B cells is necessary for the mediation of this antigen-specific suppression.  相似文献   

15.
Chimeric histocompatibility genes encoding the amino-terminal (beta 1) domain of the class II Ak beta polypeptide and the carboxy-terminal (C2, transmembrane, and intracytoplasmic) domains of either the class I H-2Ld or H-2Dd molecules were stably introduced into mouse L cells. Although both were transcribed, only 5' Ak beta/3' H-2Dd transformants had significant cell membrane expression of a 30-40 kd, heterogeneous glycoprotein containing Ak beta 1 and H-2Dd (C2) serological epitopes. These transformants had a unique pattern of reactivity with monoclonal antibodies previously identified as requiring the Ak beta 1 domain for recognition of complete I-A molecules. These results allow new insight into the structural requirements for cell surface expression of proteins and provide unique cellular reagents for the dissection of humoral and cell-mediated recognition of MHC molecules.  相似文献   

16.
To study further soluble factors which regulate contact sensitivity (CS) to 2,4-dinitrofluorobenzene (DNFB), hapten-primed spleen cells from BALB/c mice were used to make T-cell hybridomas. A hybrid constitutively producing a suppressor factor was identified and cloned (clone 3-10). Incubation of BALB/c DNFB immune lymph node cells (LNC) in the 3-10 supernatant suppressed the ability of the immune cells to transfer CS to DNFB. The passive transfer of CS to oxazalone or to 2,4,6-trinitrochlorobenzene (TNCB) was not suppressed by the 3-10 factor. The hapten specificity of the 3-10 factor further was demonstrated by the ability of DNFB immune LNC but not LNC from unsensitized or from TNCB-sensitized mice to absorb the factor. The 3-10 factor also was adsorbed by DNFB-immune LNC from mice that were syngeneic with BALB/c mice at the K locus of the MHC (e.g., B10.D2 and D2.GD). Pretreatment of DNFB-immune LNC with monoclonal anti-Kd antibody or with anti-DNP antibodies blocked the ability to adsorb the factor. These results indicated that the 3-10 suppressor factor binds to DNP/H-2Kd complexes on immune LNC. Nylon wool-purified T cells (83% Thy-1.2+) from DNFB-immune LNC were able to adsorb the factor as well as unseparated immune LNC. Furthermore, treatment of immune LNC with anti-Thy-1.2 plus C' abrogated the ability of the cells to adsorb the factor, indicating that the cellular target of the 3-10 factor is a T cell. In addition, treatment of the immune LNC with an autoantiidiotypic antiserum (CS 231) plus C', which depletes DNP-specific delayed-type hypersensitivity effector T (TDH) cells, also abrogated the ability of the cells to adsorb the factor. Finally, the suppressor factor was adsorbed and eluted from DNP affinity columns but was not adsorbed by TNP affinity columns. Collectively, these results indicate that although the monoclonal 3-10 suppressor factor has affinity for DNP, focusing of the factor on the TDH cells requires recognition of DNP in the context of the appropriate MHC determinant, Kd.  相似文献   

17.
A chimeric T-cell receptor (TCR) alpha-chain gene was produced by shuffling the immunoglobulin VDJH from a 40-140 digoxin-specific hybridoma onto alpha-chain constant region (C alpha) exons. This hybrid immunoglobulin-TCR gene was used to produce transgenic mice. Previous results indicated that this chimeric gene encoded a polypeptide that associated with endogenously encoded beta chains to form a hybrid TCR. T cells expressing this receptor could be stimulated with antibodies specific for CD3 or the 40-140 idiotype (Id40-140), and also with digoxin coupled to bovine serum albumin (digoxin-BSA). We were interested in determining whether a hybrid receptor such as this could also recognize the natural ligand of T cells, namely allelic variants of major histocompatibility complex (MHC) molecules. A T-cell hybridoma was produced that expressed a hybrid receptor with specificity for an IAk-encoded determinant, digoxin-BSA, or staphyloccocal enterotoxin B. Transfection experiments showed that the specificity for MHC determinants was dependent on both the hybrid alpha chain and a particular beta chain. These results indicate that a V beta domain combined with a VH domain can produce a receptor capable of reacting with MHC molecules, and at the same time retain specificities mediated by the beta chain and alpha chain alone. A conclusion is that the pervasive MHC specificity of the TCR is not unique to the family of TCR heterodimers, but is selected, and can be mediated by immunoglobulin domains.  相似文献   

18.
Soluble forms of the mouse MHC class I molecule, Dd, were produced in which the peptide binding groove was uniformly occupied by peptides attached via a covalent flexible peptide linker to the N terminus of the associated beta2-microglobulin. The MHC heavy chain and beta2-microglobulin were firmly associated, and the molecules displayed an Ab epitope requiring proper occupancy of the peptide binding groove. Soluble Dd containing a covalent version of a well-characterized Dd-binding peptide from HIV stimulated a T cell hybridoma specific for this combination. Furthermore, a tetravalent version of this molecule bound specifically with apparent high avidity to this hybridoma.  相似文献   

19.
A few cases have been described of antigenic determinants that are broadly presented by multiple class II MHC molecules, especially murine I-E or human DR, in which polymorphism is limited to the beta chain, and the alpha chain is conserved. However, no similar cases have been studied for presentation by class I MHC molecules. Because both domains of the MHC peptide binding site are polymorphic in class I molecules, exploring permissiveness in class I presentation would be of interest, and also such broadly presented antigenic determinants would clearly be useful for vaccine development. We had defined an immunodominant determinant, P18, of the HIV-1 gp160 envelope protein recognized by human and murine CTL. To determine the range of class I MHC molecules that could present this peptide and to determine whether two HIV-1 gp160 Th cell determinants, T1 and HP53, could also be presented by class I MHC molecules, we attempted to generate CTL specific for these three peptides in 10 strains of B10 congenic mice, representing 10 MHC types, and BALB/c mice. P18 was presented by at least four different class I MHC molecules from independent haplotypes (H-2d, p, u, and q to CD8+ CTL. In H-2d and H-2q the presentation was mapped to the D-end class I molecule, and for Dd, a requirement for both the alpha 1 and alpha 2 domains of Dd, not Ld, was found. HP53 was also presented by the same four different class I MHC molecules to CD8+ CTL although at higher concentrations. T1 was presented by class I molecules in three different strains of distinct MHC types (B10.M, H-2f; B10.A, H-2a; and B10, H-2b) to CTL. The CTL specific for P18 and HP53 were shown to be CD8+ and CD4- and to kill targets expressing endogenously synthesized whole gp160 as well as targets pulsed with the corresponding peptide. To compare the site within each peptide presented by the different class I molecules, we used overlapping and substituted peptides and found that the critical regions of each peptide are the similar for all four MHC molecules. Thus, antigenic sites are broadly or permissively presented by class I MHC molecules even without a nonpolymorphic domain as found in DR and I-E, and these sequences may be of broad usefulness in a synthetic vaccine.  相似文献   

20.
We have examined the expression of TCR genes in 4-hydroxy-3-nitrophenyl-acetyl (NP)-specific Ts cell hybridomas. Each of three independently isolated hybridomas expressed in-frame TCR alpha-chain rearrangements derived from the original suppressor Ts cell. Different V alpha and J alpha gene segments were rearranged and expressed in each Ts cell line. The only TCR beta-chain expressed in these cells was derived from the BW5147 fusion partner. Expression of the BW5147 beta-chain was found to correlate with cell surface Ag binding, inasmuch as subclones derived from one of the original Ts lines expressed greatly reduced levels of beta-chain mRNA and no longer bound to NP-coupled RBC. Subclones that continued to express beta-chain mRNA did bind to NP-coupled RBC. This suggests that the Ag receptor on Ts hybridomas is a TCR-alpha beta dimer composed of a unique alpha-chain and the BW5147 beta-chain. Ag binding could be modulated by preincubation of Ts hybridoma cells with anti-TCR-alpha beta antibody, thereby supporting this conclusion. Suppressor factor activity was measured in the conditioned media of Ts subclones that differed by 250-fold in levels of beta-chain mRNA expression. No difference in suppressor factor activity was found; conditioned media from these subclones suppressed both plaque-forming cell responses and delayed-type hypersensitivity responses at approximately equivalent dilutions. Suppressor factor activity in the conditioned media of both a beta-chain negative subclone and a beta-chain positive subclone could be absorbed with an antibody that recognizes the TCR alpha-chain, but not with an antibody that recognizes the TCR beta-chain. We conclude that suppressor factor activity in the conditioned media of these Ts hybridomas is not derived from surface TCR-alpha beta receptors, although it does share TCR alpha-chain determinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号