首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrins are expressed on the surface of some vertebrate eggs where they are thought to have a role in fertilization. The objective of this study is to determine if integrins are expressed on sea urchin eggs. The alphaB and betaC subunits were cloned using the homology polymerase chain reaction. Monoclonal and polyclonal antibodies were developed against bacterially expressed fragments of the extracellular domains of the betaC subunit and the alphaB subunit. As well, a monoclonal antibody was developed against a synthesized peptide corresponding to part of the cytoplasmic domain of betaC. Analysis of biotinylated egg cortex extracts immunoprecipitated with either anti-betaC or anti-alphaB yields bands of 130 and 225 kDa. Immunoblots confirm that betaC is part of the complex immunoprecipitated with anti-alphaB. Confocal immunofluorescence and immunogold electron microscopy show that betaC is present on the surface of the unfertilized egg at the tips of microvilli and in cortical granules. During the cortical reaction, immunoreactivity with antibodies to the extracellular domains of betaC and alphaB disappears from the egg surface, and microvillar casts on the fertilization envelope become immunoreactive. With antibodies to the cytoplasmic domain of betaC, immunoreactivity is lost from the surface of the egg, but the fertilization envelope does not immediately become immunoreactive. In immunoblots of egg cortex there are immunoreactive bands of the predicted sizes for alphaB and betaC. However, in fertilization envelopes, a second band that is slightly lower in molecular weight is also present. Eggs fertilized in the presence of soybean trypsin inhibitor have elongated microvilli that remain bound to the elevating fertilization envelope and immunoreactive to anti-betaC antibodies. Eggs fertilized in the presence of an ovoperoxidase inhibitor, 3-amino-1,2,4-triazole, have a patchy distribution of betaC immunoreactivity in fertilization envelopes. Together, these data suggest that alphaBbetaC integrins are expressed on the surface of unfertilized eggs and, during the cortical reaction, the extracellular domains are cleaved by proteases and cross-linked into the fertilization envelope by ovoperoxidase. The alphaBbetaC integrin receptors may have several potential functions prior to their removal at fertilization, including attachment of the vitelline envelope to the egg surface and anchoring the cortical cytoskeleton.  相似文献   

2.
At fertilization, the glycocalyx (vitelline layer) of the sea urchin egg is transformed into an elevated fertilization envelope by the association of secreted peptides and the formation of intermolecular dityrosine bonds. Dityrosine cross-links are formed by a secreted ovoperoxidase that exists in a Ca2+-stabilized complex with proteoliaisin in the fertilization envelope. By using purified proteins, we now show that proteoliaisin is necessary and sufficient to link ovoperoxidase to the egg glycocalyx. Specifically, we have found that ovoperoxidase can associate with the vitelline layer only when complexed with proteoliaisin; proteoliaisin binds to the vitelline layer independently of its association with ovoperoxidase; proteolytic modification of the vitelline layer is not required for this interaction to occur; the binding of proteoliaisin to the vitelline layer is mediated by the synergistic action of the two major seawater divalent cations, Ca2+ and Mg2+; the number of proteoliaisin-binding sites on the vitelline layer of unfertilized eggs is equivalent to the amount of proteoliaisin secreted at fertilization; and the binding of ovoperoxidase to the vitelline layer, via proteoliaisin, permits the in vitro cross-linking of these two in vivo substrates. The association of purified ovoperoxidase and proteoliaisin with the vitelline layer of unfertilized eggs reconstitutes part of the morphogenesis of the fertilization envelope.  相似文献   

3.
Fertilization of the sea urchin egg is accompanied by the assembly of an extracellular glycoprotein coat, the fertilization membrane. Assembly of the fertilization membrane involves exocytosis of egg cortical granules, divalent cation-mediated association of exudate proteins with the egg glycocalyx (the vitelline layer), and cross- linking of the assembled structure by ovoperoxidase, a fertilization membrane component derived from the cortical granules. We have identified and isolated a new protein, which we call proteoliaisin, that appears to be responsible for inserting ovoperoxidase into the fertilization membrane. Proteoliaisin is a 250,000-Mr protein that binds ovoperoxidase in a Ca2+-dependent manner, with half-maximal binding at 50 microM Ca2+. Other divalent cations are less effective (Ba2+, Mn2+, and Sr2+) or ineffective (Mg2+ and Cd2+) in mediating the binding interaction. Binding is optimal over the physiological pH range of fertilization membrane assembly (pH 5.5-7.5). Both proteoliaisin and ovoperoxidase are found in isolated, uncross-linked fertilization membranes. We have identified several macromolecular aggregates that are released from uncross-linked fertilization membranes after dilution into divalent cation-free buffer. One of these is an ovoperoxidase- proteoliaisin complex that is further disrupted only upon the addition of EGTA. These results suggest that a Ca2+-stabilized complex of ovoperoxidase and proteoliaisin forms one structural subunit of the fertilization membrane.  相似文献   

4.
Trypsin-like protease in sea urchin eggs is thought to reside in cortical granules since it is secreted at fertilization and has been isolated with cortical granule fractions from unfertilized eggs. A 35-kDa serine protease has been purified from Strongylocentrotus purpuratus eggs by soybean trypsin inhibitor-affinity chromatography. For this report the protease was localized by immunocytochemistry before and after fertilization, and its potential biological activity was examined by application of the isolated enzyme to the unfertilized egg surface. The protease was localized on sections by immunofluorescence and immunoelectron microscopy, and was found to reside in the spiral lamellae of S. purpuratus cortical granules and in the electron-dense stellate core of Arbacia punctulata granules. At fertilization the enzyme is secreted into the perivitelline space and accumulates only very briefly between the hyaline layer and the nascent fertilization envelope. Shortly thereafter the enzyme is lost from the perivitelline space and immunological reactivity is no longer associated with the egg surface. The 35-kDa cortical granule protease has vitelline delaminase activity but does not appear to destroy vitelline envelope sperm receptors as judged by the fertility of protease-treated eggs.  相似文献   

5.
Fertilization of the sea urchin egg leads to the assembly of an extracellular matrix, the fertilization envelope. Ovoperoxidase, the enzyme implicated in hardening the fertilization envelope, is inserted into the assembling structure via a Ca2+-dependent interaction with the protein proteoliasin (P. Weidman and B. M. Shapiro, 1987, J. Cell Biol. 105, 561-567). In the present report, polyclonal antisera were raised to ovoperoxidase and proteoliasin (purified from eggs of Strongylocentrotus purpuratus) and characterized by Western blot analysis and an enzyme-linked immunoabsorbent assay (ELISA). By indirect immunofluorescence microscopy all cortical granules of unfertilized eggs, as well as the fertilization envelope, contained both proteoliasin and ovoperoxidase. At the ultrastructural level both proteins are localized to the electron-dense spiral lamellae of the cortical granules. Western blot analysis revealed that ovoperoxidase and proteoliasin persist in early embryos until hatching, but are absent from later developmental stages. Homogenates of eggs of several other echinoderm species (Strongylocentrotus droebachiensis, Strongylocentrotus franciscanus, Pisaster ochraceus, Dendraster excentricus, and Lytechinus pictus) also contain proteins antigenically similar to ovoperoxidase and proteoliaisin, indicating that many echinoderms utilize a similar strategy for assembly of the fertilization envelope. The results underline the need for postsecretory controls in the extracellular matrix modifications that accompany the cortical reaction.  相似文献   

6.
Ovoperoxidase is one of several oocyte-specific proteins that are stored within sea urchin cortical granules, released during the cortical reaction, and incorporated into the newly formed fertilization envelope. Ovoperoxidase plays a particularly important role in this process, crosslinking the envelope into a hardened matrix that is insensitive to biochemical and mechanical challenges and thus providing a permanent block to polyspermy. Here we present the primary structures of two ovoperoxidases as predicted from cDNAs cloned from the sea urchins Strongylocentrotus purpuratus (AF035380) and Lytechinus variegatus (AF035381). We also present a proposed scheme for the post-translational processing of ovoperoxidase based upon comparisons between the cDNA and protein structures and taking into account previously published reports. The sea urchin ovoperoxidase sequences conform to a profile shared by members of a heme-dependent animal peroxidase family, including the mammalian myelo-, lacto-, eosinophil, and thyroid peroxidases. Using in situ RNA hybridizations, we showed that the mRNA of S. purpuratus ovoperoxidase (4 kb) is present exclusively in oocytes, and is turned over rapidly following germinal vesicle breakdown. Taking into account our immunoblot and N-terminal sequencing data along with reports from similar peroxidases, we propose that ovoperoxidases are synthesized in a pre-pro form and proteolytically processed to result in the 70 and 50 kDa forms that are found in the fertilization envelope. The sequence and structural data presented here will facilitate our continuing studies of the biogenesis of cortical granules and the fertilization envelope. Additionally, since ovoperoxidase activities have been reported in a wide range of animals, these cDNAs will be useful in uncovering similar peroxidases used in the fertilization reactions of other metazoan eggs.  相似文献   

7.
We report the purification and characterization of proteoliaisin, a protein that participates in the assembly of the sea urchin fertilization envelope. Proteoliaisin was purified from egg cortical granule exudate to greater than 99% homogeneity using chromatography on DEAE-Sepharose and on phenyl-Sepharose. Native proteoliaisin is a highly asymmetric protein (f/fo = 2.0) composed of a single Mr approximately 230,000 peptide. Its asymmetry was demonstrated both by analytical ultracentrifugation and by nondenaturing polyacrylamide gel electrophoresis, a novel analysis that detects molecular asymmetry in heterogeneous protein mixtures. Proteoliaisin is enriched in six amino acids: aspartic acid/asparagine, glutamic acid/glutamine, glycine, and cysteine, which account for over 50% of its mass. Nearly all of the cysteine residues are disulfide bonded. The protein contains a small proportion of aromatic amino acids with phenylalanine greater than tyrosine greater than tryptophan. At neutral pH its absorbance maximum is at 274.5 nm, with an extinction coefficient of 0.43 ml mg-1 cm-1. Proteoliaisin forms a 1:1 Ca2+-stabilized complex with ovoperoxidase, another component of the fertilization envelope, with Kd = 1.1 X 10(-6) M. Proteoliaisin, a constituent of the specialized echinoderm extracellular matrix called the fertilization envelope, has certain structural similarities to mammalian extracellular matrix proteins.  相似文献   

8.
N D Holland 《Tissue & cell》1979,11(3):445-455
The egg coats of an ophiuroid echinoderm (Ophiopholis aculeata) are described by electron microscopy before and after fertilization. The unfertilized egg is closely invested by a vitelline coat about 40 A thick, and the peripheral cytoplasm is crowded with cortical granules five or six deep. During the cortical reaction, which rapidly follows insemination, exocytosis of cortical granules takes place. Some of the cortical granule material is evidently added to the vitelline coat to form a composite structure, the fertilization envelope, which is made up of a 400 A thick middle layer separating inner and outer dense layers, each about 50 A thick. The elevation of the fertilization envelope from the egg surface creates a perivitelline space in which the hyaline layer soon forms. The hyaline layer is about 2 micron thick, finely granular, and apparently derived from cortical granule material. The extracellular layers of the early developmental stages of ophiuroids and echinoids are quite similar in comparison to those of asteroids; this finding helps support Hyman's argument that the ophiuroids are more closely related to the echinoids than to the asteroids.  相似文献   

9.
Fertilization of the Xenopus laevis egg causes the conversion of the vitelline envelope to the fertilization envelope, a change reflected in the loss of sperm penetrability of the egg and the appearance of an electron-dense layer on the outer aspect of the fertilization envelope. As seen by one-dimensional gel electrophoresis, two components with molecular weights of 69,000 and 64,000 in the vitelline envelope were converted to 66,000 and 61,000 in the fertilization envelope. By two-dimensional gel electrophoresis, the components in the 69,000 and 64,000 molecular weight regions of the vitelline envelope were seen to shift to more basic isoelectric points upon conversion to the fertilization envelope. Peptide mapping by limited proteolysis suggested that the 69,000 and 64,000 molecular weight components shared the same polypeptide chains but the smaller glycoprotein lacked a carbohydrate side chain found on the larger species. Similar sites on each glycoprotein were affected when the vitelline envelope was converted to the fertilization envelope. No N-terminal amino acids could be identified on the envelope components, indicating that these glycoproteins have blocked N-termini. Ionophore A23187-activation of jellied eggs (but not dejellied eggs) caused the molecular weight changes in the absence of sperm. Thus, factors from the jelly and the cortical granules but not from sperm apparently are involved in the processing of the 69,000 and 64,000 molecular weight components.  相似文献   

10.
Ovoperoxidase, the enzyme that hardens the sea urchin fertilization envelope, is inserted into the assembling extracellular matrix through the action of an intermediary protein, proteoliaisin (PLN). The domain structure of PLN, a large, rod-shaped protein that binds to ovoperoxidase and the vitelline layer, was examined by limited proteolytic cleavage. Purified proteolytic fragments of PLN were tested for their ability to bind ovoperoxidase, inhibit the binding of 125I-PLN to the vitelline layer, or act as substrates for the hardening reaction. Based on these results, the vitelline layer-binding domain can be placed near the amino terminus, followed by the binding site for ovoperoxidase; the distal two-thirds of the protein contain sites for ovoperoxidase-catalyzed dityrosine formation. The pentapeptide GRGDS (but not RGD) inhibited PLN-vitelline layer binding half-maximally at 0.2 mM. Moreover, PLN promoted adhesion of bovine aortic endothelial cells to plastic dishes, a process inhibited by GRGDS. Thus PLN is a new member of the adhesive protein family, the function of which is to coordinate the morphogenesis of a specific, rapidly assembled extracellular matrix.  相似文献   

11.
Although structural studies support the hypothesis that the sea urchin embryo fertilization envelope is derived from the preexisting vitelline envelope template and structural proteins secreted during the cortical reaction, biochemical evidence is minimal. We used an immunological approach to determine the subcellular origin of proteins which were extracted from the fertilization envelope. Fertilization envelopes were isolated from Stronglyocentrotus purpuratus embryos 30 min postinsemination and extracted with 6.0 M urea-0.15 M 2-mercaptoethanol, pH 10.5, for 10 min at 80°C. Extracted proteins were exhaustively dialyzed against 0.015 M 2-mercaptoethanol-0.100 M Tris-HCl at pH 8.6 and mixed with Fruend's complete adjuvant prior to injection into female New Zealand white rabbits. The antiserum which was prepared contained antibodies to six major and two minor polypeptides in the soluble fertilization envelope fraction based on two-dimensional sodium dodecyl sulfate immunoelectrophoresis. Extracts of vitelline envelopes and extracts of unfertilized egg surfaces which are known to contain viteline envelope proteins did not form immunoprecipitates with antiserum against soluble fertilization envelope polypeptides. Extracts of isolated cortical granules and the secreted paracystalline protein fraction formed four and three immunoprecipitates, respectively, which showed complete identity with the soluble fertilization envelope polypeptides based on rocket-line immunoelectrophoresis. Two-dimensional sodium dodecyl sulfate immunoelectrophoresis of cortical granule extract and the secreted paracrystalline protein fraction showed a complex pattern of immunoprecipitates, but a major finding was that cortical granules contain a 193,000-dalton polypeptide which was not found in the paracrystalline protein fraction. These results suggest that proteolytic processing of a cortical granule precursor of the paracrystalline protein fraction occurs during fertilization and that not all of the cortical granule polypeptides are incorporated into the fertilization envelope by means of di- and trityrosine crosslinks with the vitelline envelope proteins.  相似文献   

12.
Interphylum crossing was examined between sea urchin eggs (Temnopleurus hardwicki) and oyster sperm (Crassostrea gigas). The eggs could receive the spermatozoa with or without cortical change. The fertilized eggs that elevated the fertilization envelope began their embryogenesis. Electron microscopy revealed that oyster spermatozoa underwent acrosome reaction on the sea urchin vitelline coat, and their acrosomal membrane fused with the egg plasma membrane after the appearance of an intricate membranous structure in the boundary between the acrosomal process and the egg cytoplasm. Oyster spermatozoa penetrated sometimes into sea urchin eggs without stimulating cortical granule discharge and consequently without fertilization envelope formation. The organelles derived from oyster spermatozoa seemed to be functionally inactive in the eggs whose cortex remained unchanged.  相似文献   

13.
On the contents of the cortical granules from Xenopus laevis eggs   总被引:2,自引:0,他引:2  
The extruded contents of the cortical granules in eggs of Xenopus laevis were solubilized by exposure to divalent metal ion chelators. Chelator extraction of cortical granule (CG) material from intact fertilized or artificially activated eggs was quantitated by fluorescence spectroscopy. The isolated fertilization envelope, formed upon interaction between CG material and the preexisting vitelline envelope, was also subject to extraction. An ultrastructural analysis revealed that chelator exposure resulted in the disruption of the structural integrity of the CG-derived F-component of the fertilization envelope. CG material was isolated from Xenopus ova by three procedures: (1) extrusion from artificially activated, dejellied eggs; (2) extraction of intact, fertilized eggs; and (3) extraction of isolated fertilization envelopes. Only 4–5% of the CG protein recovered by extrusion or by extraction of the intact fertilized egg could be associated with the isolated fertilization envelopes. One predominant polypeptide fraction with an identical relative mobility was demonstrated in all CG preparations upon polyacrylamide gel electrophoresis in SDS. Polymeric forms of CG protein were detected in chelator extracted preparations. The presence of an intact jelly coat during CG breakdown was a prerequisite to the transformation of the vitelline envelope to a fertilization envelope with altered physicochemical characteristics. Further, the CG-derived F-component of the fertilization envelope did not appear to play a critical role in determining the physicochemical properties of the fertilization envelope.  相似文献   

14.
At fertilization, the egg of Carcinus maenas undergoes cortical vesicle exocytosis, in response to the first contacts between the spermatozoon and the egg plasma membrane. This process was observed in vitro and may be connected with a cortical reaction. Carcinus maenas eggs display two populations of cortical vesicles which, during the reaction, successively release two different exudates: a fine granular material and a mass of ring-shaped granules. During the first steps of exocytosis, the two superimposed vitelline envelopes are detached from the egg surface, and the inner one gradually changes. Thus a new coating, derived from the coalescence of the secreted ring-shaped granules, is progressively elaborated under the vitelline envelopes. These events occur over a 7–8 hr period. The morphological uniqueness of the cortical vesicle exudates and the complexity of the related events are discussed in terms of the cortical reaction and of the formation of the fertilization envelope in Carcinus maenas.  相似文献   

15.
The sea urchin fertilization envelope (FE) is an extraembryonic coat which develops from the egg vitelline envelope (VE) and the secreted paracrystalline protein fraction of the cortical granules at fertilization. The FE undergoes further developmental changes postinsemination which are characterized by changes in envelope permeability, solubility in reducing and denaturing solvents, and morphology. We have developed a procedure to uncouple cortical granule exocytosis from assembly of the paracrystalline protein fraction onto the VE template. Egg suspensions were inseminated in normal seawater and diluted into Ca2+- and Mg2+-free seawater at 15 sec postinsemination. Phase-contrast and electron microscopic observations showed that the embryos formed a normally elevated, extremely thin envelope through which the cortical granule exudate permeated. Secretion studies showed that eggs which were diluted into divalent ion-free seawater postinsemination secreted as much protein into the surrounding seawater as eggs which had their VEs removed prior to the experiment. We have termed the envelope elevated in divalent ion-free seawater the VE1 and we believe that it is the VE structural component of the FE based on its thickness and morphology. VE1s were isolated by gentle physical means and the preparations appeared to be greater than 80% pure based on radioactive mixing experiments and on malate dehydrogenase and glucose-6-phosphate dehydrogenase marker studies. VE1s were at least 80% soluble based on extraction of radioiodinated preparations with reducing and denaturing solvents. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of VE1s showed eight major polypeptides which ranged from 30,500 to 270,000 in molecular weight.  相似文献   

16.
Recent evidence suggests roles for egg derived hydrogen peroxide (H2O2) and ovoperoxidase (secreted by cortical granules) in both fertilization envelope hardening and the block to polyspermy in sea urchins. Strongylocentrotus purpuratus eggs were found to release H2O2 during the cortical reaction at fertilization. Treatment of sperm with equivalent concentrations of H2O2 resulted in a rapid loss of sperm fertilizing ability. Attempts were made to induce polyspermy by utilizing ovoperoxidase inhibitors at concentrations known to inhibit fertilization envelope hardening. Eggs fertilized in phenylhydrazine became polyspermic, while 3-amino-1,2,4-triazole-treated eggs did not. These data suggested that a sperm peroxidase might be involved in preventing polyspermy. This hypothesis was tested by the addition of phenylhydrazine or 3-amino-1,2,4-trizaole to H2O2-treated sperm. Phenylhydrazine acted to protect sperm fertility from H2O2, while 3-amino-1,2,4-triazole increased the adverse effect of H2O2. Simultaneous addition of both inhibitors to sperm incubated in H2O2 gave an intermediate value of sperm fertility. These data indicate that (1) H2O2 generated by sea urchin eggs during the cortical reaction at fertilization is used for two separate processes, fertilization envelope hardening and the prevention of polyspermy; (2) ovoperoxidase is probably not involved in preventing polyspermy; and (3) egg-derived H2O2 reacts directly with sperm enzymes to prevent polyspermy. The phenylhydrazine-sensitive enzyme in the sperm is probably a peroxidase that acts to inactivate sperm, while the 3-amino-1,2,4-triazolesensitive enzyme is probably a catalase which protects sperm from H2O2. This hypothesis is consistent with model experiments on horseradish peroxidase and bovine liver catalase.  相似文献   

17.
Cortical granules are specialized organelles whose contents interact with the extracellular matrix of the fertilized egg to form the block to polyspermy. In sea urchins, the granule contents form a fertilization envelope (FE), and this construction is critically dependent upon protease activity. An autocatalytic serine protease, cortical granule serine protease 1 (CGSP1), has been identified in the cortical granules of Strongylocentrotus purpuratus eggs, and here we examined the regulation of the protease activity and tested potential target substrates of CGSP1. We found that CGSP1 is stored in its full-length, enzymatically quiescent form in the granule, and is inactive at pH 6.5 or below. We determined the pH of the cortical granule by fluorescent indicators and micro-pH probe measurements and found the granules to be pH 5.5, a condition inhibitory to CGSP1 activity. Exposure of the protease to the pH of seawater (pH 8.0) at exocytosis immediately activates the protease. Activation of eggs at pH 6.5 or lower blocks activation of the protease and the resultant FE phenotypes are indistinguishable from a protease-null phenotype. We find that native cortical granule targets of the protease are beta-1,3 glucanase, ovoperoxidase, and the protease itself, but the structural proteins of the granule are not proteolyzed by CGSP1. Whole mount immunolocalization experiments demonstrate that inhibition of CGSP1 activity affects the localization of ovoperoxidase but does not alter targeting of structural proteins to the FE. The mistargeting of ovoperoxidase may lead to spurious peroxidative cross-linking activity and contribute to the lethality observed in protease-null cells. Thus, CGSP1 is proteolytically active only when secreted, due to the low pH of the cortical granules, and it has a small population of targets for cleavage within the cortical granules.  相似文献   

18.
At fertilization, the vitelline envelope surrounding the egg of Xenopus laevis is modified by the addition of an electron-dense component termed the “F layer.” The F layer functions as a block to polyspermy and as a block to the escape of macromolecules from the perivitelline space, thereby causing an osmotically driven envelope elevation. F-layer formation has been hypothesized to result from interaction between a cortical-granule lectin, released in the cortical reaction, and a jelly-coat ligand. Evidence for this hypothesis was sought by determining the location of the cortical-granule lectin both before and after fertilization, using a specific antibody conjugated to horseradish peroxidase. The cortical-granule lectin was localized only in the cortical granules of the unfertilized egg and was located predominantly in the perivitelline space and the F layer of a fertilized egg. These observations support the hypothesis that the F layer is formed by a cortical-granule-Iectin–jelly layer-ligand interaction.  相似文献   

19.
Summary

Maturation begins by a cortical reaction, which resembles that of the sea urchin egg, but can precede fertilization. Complete vitelline membrane elevation necessitates the dissolution of the cortical granule matrix (which can be prevented by concanavalin A) and the retraction of the microvilli at the egg surface (which is inhibited by acid pH). Later on, an aster, with centrioles, develops near the nuclear envelope, which becomes undulated before disruption. In contrast to all other species so far studied, nuclear pores do not disappear and can even be observed several minutes later, in remmants of the nuclear envelope. The meiotic spindle has typical centrioles and, at metaphase I, chromosomes are surrounded by endoplasmic reticulum.  相似文献   

20.
The cell surface complex (Detering et al., 1977, J. Cell Biol. 75, 899-914) of the sea urchin egg consists of two subcellular organelles: the plasma membrane, containing associated peripheral proteins and the vitelline layer, and the cortical vesicles. We have now developed a method of isolating the plasma membrane from this complex and have undertaken its biochemical characterization. Enzymatic assays of the cell surface complex revealed the presence of a plasma membrane marker enzyme, ouabain-sensitive Na+/K+ ATPase, as well as two cortical granule markers, proteoesterase and ovoperoxidase. After separation from the cortical vesicles and purification on a sucrose gradient, the purified plasma membranes are recovered as large sheets devoid of cortical vesicles. The purified plasma membranes are highly enriched in the Na+/K+ ATPase but contain only very low levels of the proteoesterase and ovoperoxidase. Ultrastructurally, the purified plasma membrane is characterized as large sheets containing a "fluffy" proteinaceous layer on the external surface, which probably represent peripheral proteins, including remnants of the vitelline layer. Extraction of these membranes with Kl removes these peripheral proteins and causes the membrane sheets to vesiculate. Polyacrylamide gel electrophoresis of the cell surface complex, plasma membranes, and Kl-extracted membranes indicates that the plasma membrane contains five to six major proteins species, as well as a large number of minor species, that are not extractable with Kl. The vitelline layer and other peripheral membrane components account for a large proportion of the membrane-associated protein and are represented by at least six to seven polypeptide components. The phospholipid composition of the Kl-extracted membranes is unique, being very rich in phosphatidylethanolamine and phosphatidylinositol. Cholesterol was found to be a major component of the plasma membrane. Before Kl extraction, the purified plasma membranes retain the same species-specific sperm binding property that is found in the intact egg. This observation indicates that the sperm receptor mechanisms remain functional in the isolated, cortical vesicle-free membrane preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号