首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The metabolite 5-aminolevulinic acid (ALA) is an early committed intermediate in the biosynthetic pathway of heme and chlorophyll formation. In plants, 5-aminolevulinic acid is synthesized via a two-step pathway in which glutamyl-tRNA(Glu) is reduced by glutamyl-tRNA(Glu) reductase (GluTR) to glutamate 1-semialdehyde, followed by transformation to 5-aminolevulinic acid catalyzed by glutamate 1-semialdehyde aminotransferase. Using an Escherichia coli cell-based high-throughput assay to screen small molecule libraries, we identified several chemical classes that specifically inhibit heme/chlorophyll biosynthesis at this point by demonstrating that the observed cell growth inhibition is reversed by supplementing the medium with 5-aminolevulinic acid. These compounds were further tested in vitro for inhibition of the purified enzymes GluTR and glutamate 1-semialdehyde aminotransferase as confirmation of the specificity and site of action. Several promising compounds were identified from the high-throughput screen that inhibit GluTR with an I(0.5) of less than 10 microM. Our results demonstrate the efficacy of cell-based high-throughput screening for identifying inhibitors of 5-aminolevulinic acid biosynthesis, thus representing the first report of exogenous inhibitors of this enzyme.  相似文献   

2.
A strategy is described for the development of high-throughput screening assays against targets of unknown function that involves the use of nuclear magnetic resonance (NMR) spectroscopy. Using this approach, molecules that bind to the protein target are identified from an NMR-based screen of a library of substrates, cofactors, and other compounds that are known to bind to many proteins and enzymes. Once a ligand has been discovered, a fluorescent or radiolabeled analog of the ligand is synthesized that can be used in a high-throughput screen. The approach is illustrated in the development of a high-throughput screening assay against HI-0033, a conserved protein from Haemophilus influenzae whose function is currently unknown. Adenosine was found to bind to HI-0033 by NMR, and fluorescent analogs were rapidly identified that bound to HI-0033 in the submicromolar range. Using these fluorescent compounds, a fluorescence polarization assay was developed that is suitable for high-throughput screening and obtaining detailed structure-activity relationships for lead optimization.  相似文献   

3.
The rapid spread on multidrug-resistant strains of Staphylococcus aureus requires not just novel treatment options, but the development of faster methods for the identification of new hits for drug development. The exponentially increasing speed of computational methods makes a more extensive use in the early stages of drug discovery attractive if sufficient accuracy can be achieved. Computational target identification using systems-level methods suggested the histidine biosynthesis pathway as an attractive target against S. aureus. Potential inhibitors for the pathway were identified through docking, followed by ensemble rescoring, that is sufficiently accurate to justify immediate testing of the identified compounds by whole-cell assays, avoiding the need for time-consuming and often difficult intermediary enzyme assays. This novel strategy is demonstrated for three key enzymes of the S. aureus histidine biosynthesis pathway, which is predicted to be essential for bacterial biomass productions. Virtual screening of a library of ~106 compounds identified 49 potential inhibitors of three enzymes of this pathway. Eighteen representative compounds were directly tested on three S. aureus- and two Escherichia coli strains in standard disk inhibition assays. Thirteen compounds are inhibitors of some or all of the S. aureus strains, while 14 compounds weakly inhibit growth in one or both E. coli strains. The high hit rate obtained from a fast virtual screen demonstrates the applicability of this novel strategy to the histidine biosynthesis pathway.  相似文献   

4.
Exploiting the genetic potential of polyketide producing streptomycetes   总被引:4,自引:0,他引:4  
Streptomycetes are the most important bacterial producers of bioactive secondary metabolites such as antibiotics or cytostatics. Due to the emerging resistance of pathogenic bacteria to all commonly used antibiotics, new and modified natural compounds are required for the development of novel drugs. In addition to the classical screening for natural compounds, genome driven approaches like combinatorial biosynthesis are permanently gaining relevance for the generation of new structures. This technology utilizes the combination of genes from different biosynthesis pathways resulting in the production of novel or modified metabolites. The basis for this strategy is the access to a significant number of genes and the knowledge about the activity and specificity of the enzymes encoded by them. A joint initiative was started to exploit the biosynthesis gene clusters from streptomycetes. In this publication, an overview of the strategy for the identification and characterization of numerous biosynthesis gene clusters for polyketides displaying interesting functions and particular structural features is given.  相似文献   

5.
A simple, optical density-based assay for inhibitors of the mevalonate-dependent pathway for isoprenoid biosynthesis was developed. The assay uses pathway-sensitized Staphylococcus aureus strains and is fully compatible with high-density screening in a 1536-well format. S. aureus strains were constructed in which genes required for mevalonate-dependent isopentenyl pyrophosphate (IPP) synthesis were regulated by an isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible promoter. Inhibitors of the target enzymes displayed greater antibacterial potency in media containing low concentrations of IPTG, and therefore less induction of mevalonate pathway genes, than in media with high IPTG conditions. This differential growth phenotype was exploited to bias the cell-based screening hits toward specific inhibitors of mevalonate-dependent IPP biosynthesis. Screens were run against strains engineered for regulation of the enzymes HMG-CoA synthase (MvaS) and mevalonate kinase (mvaK1), mevalonate diphosphate decarboxylase (mvaD), and phosphomevalonate kinase (mvaK2). The latter three enzymes are regulated as an operon. These assays resulted in the discovery of potent antibacterial hits that were progressed to an active hit-to-lead program. The example presented here demonstrates that a cell sensitization strategy can be successfully applied to a 1.3-million compound high-throughput screen in a high-density 1536-well format.  相似文献   

6.
Homocitrate synthase (HCS) catalyzes the first step of l-lysine biosynthesis in fungi by condensing acetyl-coenzyme A and 2-oxoglutarate to form 3R-homocitrate and coenzyme A. Due to its conservation in pathogenic fungi, HCS has been proposed as a candidate for antifungal drug design. Here we report the development and validation of a robust fluorescent assay for HCS that is amenable to high-throughput screening for inhibitors in vitro. Using this assay, Schizosaccharomyces pombe HCS was screened against a diverse library of approximately 41,000 small molecules. Following confirmation, counter screens, and dose–response analysis, we prioritized more than 100 compounds for further in vitro and in vivo analysis. This assay can be readily adapted to screen for small molecule modulators of other acyl-CoA-dependent acyltransferases or enzymes that generate a product with a free sulfhydryl group, including histone acetyltransferases, aminoglycoside N-acetyltransferases, thioesterases, and enzymes involved in lipid metabolism.  相似文献   

7.
The methymycin/pikromycin (Pik) macrolide pathway represents a robust metabolic system for analysis of modular polyketide biosynthesis. The enzymes that comprise this biosynthetic pathway display unprecedented substrate flexibility, combining to produce six structurally diverse macrolide antibiotics in Streptomyces venezuelae. Thus, it is appealing to consider that the pikromycin biosynthetic enzymes could be leveraged for high-throughput production of novel macrolide antibiotics. Accordingly, efforts over the past decade have focused on the detailed investigation of the six-module polyketide synthase, desosamine sugar assembly and glycosyl transfer, and the cytochrome P450 monooxygenase that is responsible for hydroxylation. This review summarizes the advances in understanding of pikromycin biosynthesis that have been gained during the course of these investigations.  相似文献   

8.
Understanding protein-protein interactions that occur between ACP and KS domains of polyketide synthases and fatty acid synthases is critical to improving the scope and efficiency of combinatorial biosynthesis efforts aimed at producing non-natural polyketides. Here, we report a facile strategy for rapidly reporting such ACP-KS interactions based on the incorporation of an amino acid with photocrosslinking functionality. Crucially, this photocrosslinking strategy can be applied to any polyketide or fatty acid synthase regardless of substrate specificity, and can be adapted to a high-throughput format for directed evolution studies.  相似文献   

9.
The enormous pool of chemical diversity found in nature serves as an excellent inventory for accessing biologically active compounds. This chemical inventory, primarily found in microorganisms and plants, is generated by a broad range of enzymatic pathways under precise genetic and protein-level control. In vitro pathway reconstruction can be used to characterize individual pathway enzymes, identify pathway intermediates, and gain an increased understanding of how pathways can be manipulated to generate natural product analogs. Moreover, through in vitro approaches, it is possible to achieve a diversification that is not restricted by toxicity, limited availability of intracellular precursors, or preconceived (by nature) regulatory controls. Additionally, combinatorial biosynthesis and high-throughput techniques can be used to generate both known natural products and analogs that would not likely be generated naturally. This current opinion review will focus on recent advances made in performing in vitro pathway-driven natural product diversification and opportunities for exploiting this approach for elucidating and entering this new chemical biology space.  相似文献   

10.
The development of new antibacterial agents to combat worsening antibiotic resistance is still a priority area in anti-infectives research, but in the post-genomic era it has been more difficult than expected to identify new lead compounds from high-throughput screening, and very challenging to obtain antibacterial activity for lead compounds. Bacterial cell-wall peptidoglycan biosynthesis is a well-established target for antibacterial chemotherapy, and recent developments enable the entire biosynthetic pathway to be reconstituted for detailed biochemical study and high-throughput inhibitor screening. This review article discusses recent developments in the availability of peptidoglycan biosynthetic intermediates, the identification of lead compounds for both the earlier cytoplasmic steps and the later lipid-linked steps, and the application of new methods such as structure-based drug design, phage display and surface science.  相似文献   

11.
Menaquinone is an essential component of the electron transport chain in many pathogens and consequently enzymes in the menaquinone biosynthesis pathway are potential drug targets for the development of novel antibacterial agents. In order to identify leads that target MenB, the 1,4-dihydroxy-2-naphthoyl-CoA synthase from Mycobacterium tuberculosis, a high-throughput screen was performed. Several 1,4-benzoxazines were identified in this screen and subsequent SAR studies resulted in the discovery of compounds with excellent antibacterial activity against M. tuberculosis H37Rv with MIC values as low as 0.6 μg/ml. The 1,4-benzoxazine scaffold is thus a promising foundation for the development of antitubercular agents.  相似文献   

12.
Malignant transformation is accompanied by altered cell surface glycosylation. N-Linked oligosaccharides carrying beta1-6GlcNAc branches are associated with tumor invasion and metastasis. Therefore, compounds that can enter cells and block biosynthesis of beta1-6GlcNAc-branched glycans without overt cytotoxicity are potential anticancer agents. We have developed a homogeneous cell-based assay for detection of such compounds. The method enables identification of agents that block beta1-6GlcNAc-branched glycan expression after incubation for 16-20 h with MDAY-D2 tumor cells, thereby protecting the cells from the subsequent addition of leukoagglutinin, a cytotoxic plant lectin. We observed that MDAY-D2 cell number is directly proportional to the level of endogenous alkaline phosphatase activity measured spectrophotometrically in cultures after the addition of substrate. The alkaline phosphatase assay was capable of detecting as few as 1,500 cells. The assay was readily adapted for high-throughput screening as reagent costs are low and no cell harvesting and washing steps are required. Under high-throughput operating conditions, the coefficient of variation for controls was found to be 4.2%. The results suggest that measurement of alkaline phosphatase in this cell assay format may be adapted for wider applications in high-throughput screenings for compounds that relieve cells from other growth inhibitors.  相似文献   

13.
Nonribosomally and ribosomally synthesized bioactive peptides constitute a source of molecules of great biomedical importance, including antibiotics such as penicillin, immunosuppressants such as cyclosporine, and cytostatics such as bleomycin. Recently, an innovative mass-spectrometry-based strategy, peptidogenomics, has been pioneered to effectively mine microbial strains for novel peptidic metabolites. Even though mass-spectrometric peptide detection can be performed quite fast, true high-throughput natural product discovery approaches have still been limited by the inability to rapidly match the identified tandem mass spectra to the gene clusters responsible for the biosynthesis of the corresponding compounds. With Pep2Path, we introduce a software package to fully automate the peptidogenomics approach through the rapid Bayesian probabilistic matching of mass spectra to their corresponding biosynthetic gene clusters. Detailed benchmarking of the method shows that the approach is powerful enough to correctly identify gene clusters even in data sets that consist of hundreds of genomes, which also makes it possible to match compounds from unsequenced organisms to closely related biosynthetic gene clusters in other genomes. Applying Pep2Path to a data set of compounds without known biosynthesis routes, we were able to identify candidate gene clusters for the biosynthesis of five important compounds. Notably, one of these clusters was detected in a genome from a different subphylum of Proteobacteria than that in which the molecule had first been identified. All in all, our approach paves the way towards high-throughput discovery of novel peptidic natural products. Pep2Path is freely available from http://pep2path.sourceforge.net/, implemented in Python, licensed under the GNU General Public License v3 and supported on MS Windows, Linux and Mac OS X.
This is a PLOS Computational Biology Software Article.
  相似文献   

14.
The glycan chains of the surface layer (S-layer) glycoprotein from the gram-positive, thermophilic bacterium Aneurinibacillus (formerly Bacillus) thermoaerophilus strain DSM 10155 are composed of L-rhamnose- and D-glycero-D-manno-heptose-containing disaccharide repeating units which are linked to the S-layer polypeptide via core structures that have variable lengths and novel O-glycosidic linkages. In this work we investigated the enzymes involved in the biosynthesis of thymidine diphospho-L-rhamnose (dTDP-L-rhamnose) and their specific properties. Comparable to lipopolysaccharide O-antigen biosynthesis in gram-negative bacteria, dTDP-L-rhamnose is synthesized in a four-step reaction sequence from dTTP and glucose 1-phosphate by the enzymes glucose-1-phosphate thymidylyltransferase (RmlA), dTDP-D-glucose 4,6-dehydratase (RmlB), dTDP-4-dehydrorhamnose 3,5-epimerase (RmlC), and dTDP-4-dehydrorhamnose reductase (RmlD). The rhamnose biosynthesis operon from A. thermoaerophilus DSM 10155 was sequenced, and the genes were overexpressed in Escherichia coli. Compared to purified enterobacterial Rml enzymes, the enzymes from the gram-positive strain show remarkably increased thermostability, a property which is particularly interesting for high-throughput screening and enzymatic synthesis. The closely related strain A. thermoaerophilus L420-91(T) produces D-rhamnose- and 3-acetamido-3,6-dideoxy-D-galactose-containing S-layer glycan chains. Comparison of the enzyme activity patterns in A. thermoaerophilus strains DSM 10155 and L420-91(T) for L-rhamnose and D-rhamnose biosynthesis indicated that the enzymes are differentially expressed during S-layer glycan biosynthesis and that A. thermoaerophilus L420-91(T) is not able to synthesize dTDP-L-rhamnose. These findings confirm that in each strain the enzymes act specifically on S-layer glycoprotein glycan formation.  相似文献   

15.
An automated fluorescence microscopy assay using a nontoxic cholesterol binding protein, toxin domain 4, (D4), was developed in order to identify chemical compounds modifying intracellular cholesterol metabolism and distribution. Using this method, we screened a library of 1,056 compounds and identified 35 compounds that decreased D4 binding to the cell surface. Among them, 8 compounds were already reported to alter the biosynthesis or the intracellular distribution of cholesterol. The remaining 27 hit compounds were further analyzed biochemically and histochemically. Cell staining with another fluorescent cholesterol probe, filipin, revealed that 17 compounds accumulated cholesterol in the late endosomes. Five compounds decreased cholesterol biosynthesis, and two compounds inhibited the binding of D4 to the membrane. This visual screening method, based on the cholesterol-specific probe D4 in combination with biochemical analyses, is a cell-based, sensitive technique for identifying new chemical compounds and modifying cholesterol distribution and metabolism. Furthermore, it is suitable for high-throughput analysis for drug discovery.  相似文献   

16.
Exocyclic olefin variants of thymidylate (dTMP) recently have been proposed as reaction intermediates for the thymidyl biosynthesis enzymes found in many pathogenic organisms, yet synthetic reports on these materials are lacking. Here we report two strategies to prepare the exocyclic olefin isomer of dTMP, which is a putative reaction intermediate in pathogenic thymidylate biosynthesis and a novel nucleotide analog. Our most effective strategy involves preserving the existing glyosidic bond of thymidine and manipulating the base to generate the exocyclic methylene moiety. We also report a successful enzymatic deoxyribosylation of a non-aromatic nucleobase isomer of thymine, which provides an additional strategy to access nucleotide analogs with disrupted ring conjugation or with reduced heterocyclic bases. The strategies reported here are straightforward and extendable towards the synthesis of various pyrimidine nucleotide analogs, which could lead to compounds of value in studies of enzyme reaction mechanisms or serve as templates for rational drug design.  相似文献   

17.
Cyanobacteria produce numerous bioactive compounds including potent neuro‐ and hepatotoxins. The genes for the biosynthesis of microcystin, a hepatotoxic, cyclic heptapeptide, have been identified. Sequence analysis of these genes revealed that cyanobacteria ossess, like some other bacteria and lower eukaryotes, giant protein complexes consisting of peptide synthetases, olyketide synthases and tayloring enzymes involved in the biosynthesis of nonribosomal peptides and polyketides. Cyanobacteria represent a rich source of modules and domaines for the molecular design of new enzymes for the synthesis of bioactive compounds.  相似文献   

18.
《Trends in microbiology》2023,31(6):571-585
Novel approaches are required to address the looming threat of pan-resistant Gram-negative pathogens and forestall the rise of untreatable infections. Unconventional targets that are uniquely important during infection and tractable to high-throughput drug discovery methods hold high potential for innovation in antibiotic discovery programs. In this context, inhibitors of bacterial nutrient stress are particularly exciting candidates for future antibiotic development. Amino acid, nucleotide, and vitamin biosynthesis pathways are critical for bacterial growth in nutrient-limiting conditions in the laboratory and the host. Although historically dismissed as dispensable for pathogens, a wealth of transposon mutagenesis and single-mutant studies have emerged which demonstrate that several such pathways are critical for infection. Indeed, high-throughput screens of diverse synthetic compounds and natural products have uncovered inhibitors of nutrient biosynthesis. Herein, we review bacterial nutrient biosynthesis and its role during host infection. Further, we explore screening platforms developed to search for inhibitors of these targets and highlight successes among these. Finally, we feature important and sometimes surprising connections between bacterial nutrient biosynthesis, antibiotic activity, and antibiotic resistance.  相似文献   

19.
Palmitoylated proteins have been implicated in several disease states including Huntington's, cardiovascular, T-cell mediated immune diseases, and cancer. To proceed with drug discovery efforts in this area, it is necessary to: identify the target enzymes, establish efficient assays for palmitoylation, and conduct high-throughput screening to identify inhibitors. The primary objectives of this review are to examine the types of assays used to study protein palmitoylation and to discuss the known inhibitors of palmitoylation. Six main palmitoylation assays are currently in use. Four assays, radiolabeled palmitate incorporation, fatty acyl exchange chemistry, MALDI-TOF MS and azido-fatty acid labeling are useful in the identification of palmitoylated proteins and palmitoyl acyltransferase (PAT) enzymes. Two other methods, the in vitro palmitoylation (IVP) assay and a cell-based peptide palmitoylation assay, are useful in the identification of PAT enzymes and are more amenable to screening for inhibitors of palmitoylation. To date, two general types of palmitoylation inhibitors have been identified. Lipid-based palmitoylation inhibitors broadly inhibit the palmitoylation of proteins; however, the mechanism of action of these compounds is unknown, and each also has effects on fatty acid biosynthesis. Conversely, several non-lipid palmitoylation inhibitors have been shown to selectively inhibit the palmitoylation of different PAT recognition motifs. The selective nature of these compounds suggests that they may act as protein substrate competitors, and may produce fewer non-specific effects. Therefore, these molecules may serve as lead compounds for the further development of selective inhibitors of palmitoylation, which may lead to new therapeutics for cancer and other diseases.  相似文献   

20.
The nonmevalonate pathway (NMP) of isoprene biosynthesis is an exciting new route toward novel antibiotic development. Inhibitors against several enzymes in this pathway are currently under examination. A significant liability of many of these agents is poor cell penetration. To overcome and improve our understanding of this problem, we have synthesized a series of lipophilic, prodrug analogs of fosmidomycin and FR900098, inhibitors of the NMP enzyme Dxr. Several of these compounds show improved antibacterial activity against a panel of organisms relative to the parent compound, including activity against Mycobacterium tuberculosis (Mtb). Our results show that this strategy can be an effective way for improving whole cell activity of NMP inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号