首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
痤疮丙酸杆菌的分离鉴定及其对瘤胃微生物发酵的影响   总被引:1,自引:0,他引:1  
摘要:【目的】奶牛围产期能量代谢的特点是能量负平衡,瘤胃发酵产生的丙酸是奶牛糖异生供能的主要底物,对预防奶牛能量负平衡具有重要的意义。本研究旨在从健康奶牛瘤胃液中分离、筛选出以产丙酸为主的痤疮丙酸杆菌,研究其瘤胃发酵特性。【方法】无菌采取装有瘤胃瘘奶牛的瘤胃液,按照厌氧菌分离步骤,通过丙酸生成菌株的特异性培养基SLB进行筛选,提取分离菌的基因组DNA,克隆其16S rRNA基因,进行序列测定,分离出一株痤疮丙酸杆菌。通过体内外发酵试验研究痤疮丙酸杆菌对瘤胃液pH、挥发性脂肪酸和乳酸的影响。【结果】通过形态学观察、生化反应和序列分析证实所分离的一株产丙酸的杆菌为痤疮丙酸杆菌。该菌株在体外发酵过程中,瘤胃液pH先下降,在12h时降至最低,随后上升;乙酸、丙酸、丁酸等挥发性脂肪酸先升高,于12h时升至最高,随后又降低;乳酸浓度和乙酸/丙酸总体上一直下降;在体内发酵过程中,pH总体上下降;乙酸、丙酸、丁酸等挥发性脂肪酸总体上升。【结论】在国内首次从健康牛瘤胃液中成功分离出一株痤疮丙酸杆菌,为今后研发预防奶牛能量负平衡的微生态制剂奠定基础。  相似文献   

2.
【目的】分离与鉴定人肠道乳酸利用菌,研究其乳酸利用的代谢特性。【方法】利用Hungate滚管技术从人粪便中分离厌氧细菌,通过形态、生化和16S r RNA基因鉴定;通过体外发酵技术研究乳酸代谢,并且与乳酸产生菌共培养,研究二者之间交互饲喂。【结果】验证了乳酸可作为代谢中间产物被人肠道混合菌群利用;分离到一株乳酸利用菌,在24 h内消耗乳酸超过50 mmol/L,经鉴定为韦荣氏球菌,并将其形成乙酸和丙酸。当和肠球菌共培养时,可以有效地减缓乳酸的积累。【结论】本株乳酸利用菌可以作为潜在的益生菌,和乳酸菌一起调节人肠道的乳酸动态平衡。  相似文献   

3.
一株瘤胃源乳酸利用菌的分离鉴定及其体外代谢特性   总被引:3,自引:0,他引:3  
龙黎明  毛胜勇  苏勇  朱伟云 《微生物学报》2008,48(12):1571-1577
【目的】从饲喂高精料的本地山羊瘤胃内分离到一株利用乳酸并能产生大量丙酸的菌株L9,并进一步研究了该菌在调控瘤胃微生物发酵中的作用。【方法】采用厌氧培养技术,结合形态、生理生化特性和16SrRNA基因序列分析结果。【结果】该菌株被鉴定为反刍兽新月形单胞菌(Selenomonas ruminantium)。该菌株体外代谢特性研究表明,L9可利用乳酸作为唯一碳源,该菌在24h内可对90mmol/L的乳酸完全降解。体外摸拟瘤胃急性酸中毒的发酵试验结果表明,以淀粉为底物时,与对照组相比,添加菌株L9可显著降低瘤胃微生物体外培养体系中乳酸浓度,提高pH值,提高总挥发性脂肪酸和丙酸浓度,并显著降低乙酸与丙酸的浓度比(P〈0.05)。【结论】结果显示,菌株L9是一株可代谢乳酸,促进丙酸生成,提高总挥发性脂肪酸浓度的有益瘤胃细菌。  相似文献   

4.
林勇  姚文  朱伟云 《微生物学通报》2008,35(10):1606-1610
研究了一株分离自断奶仔猪小肠黏膜的肠乳杆菌L1(Lactobacillus intestinalis)体外发酵特性,及其代谢产物对病原性大肠杆菌Escherichia coli K88和O138存活的影响。体外发酵结果表明:发酵12h后,L,菌液pH值迅速降至3.90,并产生大量乳酸,为104.08mmol/L。L1菌株代谢产物对K88和O138体外生长抑制的动力学研究表明:L1菌株代谢产物对K88和O138存活具有很强的抑制作用;L1菌株发酵液与含相同浓度乳酸的自制培养液比较结果表明:乳酸在L1菌株代谢物对K88和O138存活抑制中发挥了主要作用:K88和O138对pH4.5的MRS培养液具有一定的耐受能力。  相似文献   

5.
林勇  姚文  朱伟云 《微生物学通报》2008,35(10):1606-1610
研究了一株分离自断奶仔猪小肠黏膜的肠乳杆菌L1(Lactobacillus intestinalis)体外发酵特性,及其代谢产物对病原性大肠杆菌Escherichia coli K88和O138存活的影响.体外发酵结果表明:发酵12 h后,L1菌液pH值迅速降至3.90,并产生大量乳酸,为104.08 mmol/L.L1菌株代谢产物对K88和O138体外生长抑制的动力学研究表明:L1菌株代谢产物对K88和O138存活具有很强的抑制作用;L1菌株发酵液与含相同浓度乳酸的自制培养液比较结果表明:乳酸在L1菌株代谢物对K88和O138存活抑制中发挥了主要作用;K88和O138对pH 4.5的MRS培养液具有一定的耐受能力.  相似文献   

6.
【目的】在基因组学水平上,对干酪乳杆菌的碳源代谢特性及调控机制进行研究。【方法】基于BioCyc和MetaCyc数据库,利用Pathway Tools对菌株12A及7株已公布全基因序列的干酪乳杆菌进行全基因组水平的碳源代谢比较分析。【结果】全基因组比较分析结果显示,干酪乳杆菌12A可以将9种糖转运到细胞内代谢利用;可以将多种寡糖和多糖在细胞外水解成半乳糖和葡萄糖;干酪乳杆菌12A可经异型乳酸发酵或混合酸发酵途径生成乙醇及其副产物。【结论】干酪乳杆菌12A可以代谢多种类型碳源,底物选择范围宽泛,而且可以作为工业乙醇发酵的特定菌株;利用比较基因组学方法建立基因结构与细菌代谢能力的联系是可靠的。  相似文献   

7.
【背景】耐受乙酸的乳酸菌是传统谷物醋醋酸发酵过程中产生乳酸及其风味衍生物的重要功能微生物。【目的】从镇江香醋醋醅中分离鉴定具有耐乙酸特性的乳酸菌,并评价不同条件下该菌株的产乳酸能力。【方法】利用4%(体积比)乙酸含量的MRS培养基分离耐乙酸乳酸菌;对其进行16S rRNA基因鉴定、基因组测序、形态观察以及生理生化特性研究;考察不同乙酸浓度、葡萄糖浓度、发酵温度和时间对菌株产乳酸能力的影响。【结果】分离得到一株可耐受6%乙酸的乳杆菌Lactobacillus sp. JN500903;在厌氧静置、接种量5%、乙酸浓度5%、葡萄糖浓度40 g/L、发酵温度37°C、发酵时间10 d条件下,该菌株乳酸产量为16.1 g/L。【结论】乳杆菌JN500903能够耐受6%乙酸浓度,具有在酸性环境下合成乳酸的能力,有一定的应用潜力。  相似文献   

8.
一株油藏嗜热厌氧杆菌的分离、鉴定及代谢产物特征   总被引:1,自引:0,他引:1  
黎霞  承磊  汪卫东  邓宇  尹小波  张辉 《微生物学报》2008,48(8):995-1000
[目的]了解油藏环境中细菌的生理生化特性及代谢产物.[方法]采用Hungate厌氧操作技术从胜利油田罗801区块油层采出水中分离到一株厌氧杆菌SC-2.采用生理生化鉴定结合16S rDNA序列的系统发育学分析确定该菌株的系统发育地位,用气相色谱分析其代谢产物.[结果]菌株SC-2为严格厌氧的革兰氏阴性杆菌,菌体大小为0.38 um×1.7um-3.9um,单生、成对或成串生长,产端生芽孢.温度生长范围40℃-75℃(最适温度70℃);pH范围5.5-9.5(最适pH 6.5);NaCl浓度范围0%~5%(最适NaCl浓度0%).能够利用葡萄糖、麦芽糖、甘露糖、木糖等多种碳水化合物,发酵葡萄糖的产物是乙醇、乙酸、丙酸、H2、CO2及少量的乳酸.菌株SC-2的(G C)mol%含量为30.8%,与Thermoanaerobacter mathranii subsp.mathranii的16S rDNA序列相似性为99.85%.菌株利用葡萄糖产乙酸、乙醇的最佳初始pH为8.0;酵母粉能刺激生长并显著提高发酵葡萄糖的产酸、产醇率;培养基中添加4%(V/V)的乙醇能明显抑制菌体生长.[结论]菌株SC-2是从特殊生境(油层采出水)中分离到的一株嗜热、耐盐的厌氧菌,其发酵葡萄糖产生的代谢产物有利于改善油藏中的微环境.菌株SC-2与T.mathranii subsp.mathranii 11426T的最适pH和最大耐受NaCl浓度有所不同,且二者的(G C)mol%含量差异较大.  相似文献   

9.
【目的】研究断奶前给仔猪饲喂植物乳杆菌和干酪乳杆菌对断奶前、后肠道菌群组成、数量和短链脂肪酸(SCFA)浓度的影响,分析仔猪生长性能与肠道形态、微生物菌群及SCFAs的相关性,探讨测试菌株缓解仔猪断奶应激的可能机制。【方法】选取15窝7 d龄杜长大仔猪,随机分为3组,分别灌喂2 mL去离子水(对照组)、0.5×10~9 CFU/mL植物乳杆菌(LP组)或干酪乳杆菌(LC组)的菌液,每组以窝为单位5个重复,于21 d(断奶)、24 d和35 d屠宰,采集回肠和结肠食糜,分析菌群组成和数量的变化,测定SCFAs浓度。【结果】测试菌株均能显著提高断奶2周后回肠、结肠菌群多样性(P0.05),促进乳酸杆菌和双歧杆菌增殖;显著促进断奶前回肠和结肠中乙酸、丙酸、丁酸和总SCFA生成,促进断奶后乙酸和总SCFA产生;相关分析显示,测试菌株组仔猪腹泻率下降与SCFAs浓度上升、回肠绒毛高度增加和总菌数量上升显著相关,日增重提高与结肠乙酸和TSCFA浓度增加显著相关。【结论】测试菌株促进乳酸杆菌、双歧杆菌等有益菌增殖,增加肠道菌群多样性,促进肠道SCFAs生成。  相似文献   

10.
目的研究糖尿病小鼠粪便中肠道菌群代谢产物与血糖之间的相关性,探讨肠道菌群与糖尿病之间的关系。方法采用高脂饮料喂养加腹腔注射链脲佐菌素(STZ)的方法建立糖尿病小鼠模型;将实验动物随机分为正常组、高脂组、糖尿病组及模型给药组,连续给药5周后,采血测血糖血脂,同步收集动物粪便,测粪便中短链脂肪酸(Short-chain fatty acids,SCFA)及D-乳酸。SCFA的检测使用气相色谱法,D-乳酸的检测使用紫外酶促法。结果糖尿病组小鼠粪便中乙酸、丙酸和正丁酸含量明显低于正常组及高脂组(P<0.01),D-乳酸含量明显高于正常组及高脂组(P<0.01);给药组乙酸、丙酸和正丁酸含量明显高于糖尿病组(P<0.01),D-乳酸含量明显低于糖尿病组(P<0.01)。给药组丙酸、正丁酸的含量与正常组间差异无统计学意义(P>0.05),但乙酸的含量仍低于正常组(P<0.01),D-乳酸的含量仍高于正常组(P<0.01)。结论糖尿病小鼠粪便中的肠道菌群代谢产物与血糖之间存在着密切的关系,代谢产物的差异性,提示肠道菌群的差异性,反映出糖尿病小鼠存在肠道菌群紊乱。  相似文献   

11.
Butyrivibrio fibrisolvens strains D1 and A38 produced little lactate, but strain 49 converted as much as 75% of its glucose to lactate. Strain 49 had tenfold more lactate dehydrogenase activity than strains D1 or A38, this activity was stimulated by fructose 1,6-bisphosphate, and had a pH optimum of 6.25. A role for fructose 1,6-bisphosphate or pH regulation of lactate production in strain 49 was, however, contradicted by the observations that very low concentrations (< 0.2 mM) of fructose 1,6-bisphosphate gave maximal activity, and continuous cultures did not produce additional lactate when the pH was decreased. The lactate production of strain 49 was clearly inhibited by the presence of acetate in the growth medium. When strain 49 was supplemented with as little as 5 mM acetate, lactate production decreased dramatically, and most of the glucose was converted to butyrate. Strain 49 did not possess butyrate kinase activity, but it had a butyryl-CoA/acetate CoA transferase that converted butyryl-CoA directly to butyrate, using acetate as an acceptor. The transferase had a low affinity for acetate (K m of 5 mM), and this characteristic explained the acetate stimulation of growth and butyrate formation. Strains D1 and A38 had butyrate kinase but not butyryl-CoA/acetate CoA transferase, and it appeared that this difference could explain the lack of acetate stimulation and lactate production. Based on these results, it is unlikely that B. fibrisolvens would ever contribute significantly to the pool of ruminal lactate. Since relatives of strain 49 (strains Nor37, PI-7, VV1, and OB156, based on 16S rRNA sequence analysis) all had the same method of butyrate production, it appeared that butyryl-CoA/acetate CoA transferase might be a phylogenetic characteristic. We obtained a culture of strain B835 (NCDO 2398) that produced large amounts of lactate and had butyryl-CoA/acetate CoA transferase activity, but this strain had previously been grouped with strains A38 and D1 based on 16S rRNA sequence analysis. Our strain B835 had a 16S rRNA sequence unique from the one currently deposited in GenBank, and had high sequence similarity with strains 49 and Nor37 rather than with strains A38 or D1. Received: 3 December 1998 / Accepted: 18 February 1999  相似文献   

12.
The human intestine harbors both lactate-producing and lactate-utilizing bacteria. Lactate is normally present at <3 mmol liter(-1) in stool samples from healthy adults, but concentrations up to 100 mmol liter(-1) have been reported in gut disorders such as ulcerative colitis. The effect of different initial pH values (5.2, 5.9, and 6.4) upon lactate metabolism was studied with fecal inocula from healthy volunteers, in incubations performed with the addition of dl-lactate, a mixture of polysaccharides (mainly starch), or both. Propionate and butyrate formation occurred at pH 6.4; both were curtailed at pH 5.2, while propionate but not butyrate formation was inhibited at pH 5.9. With the polysaccharide mix, lactate accumulation occurred only at pH 5.2, but lactate production, estimated using l-[U-(13)C]lactate, occurred at all three pH values. Lactate was completely utilized within 24 h at pH 5.9 and 6.4 but not at pH 5.2. At pH 5.9, more butyrate than propionate was formed from l-[U-(13)C]lactate in the presence of polysaccharides, but propionate, formed mostly by the acrylate pathway, was the predominant product with lactate alone. Fluorescent in situ hybridization demonstrated that populations of Bifidobacterium spp., major lactate producers, increased approximately 10-fold in incubations with polysaccharides. Populations of Eubacterium hallii, a lactate-utilizing butyrate-producing bacterium, increased 100-fold at pH 5.9 and 6.4. These experiments suggest that lactate is rapidly converted to acetate, butyrate, and propionate by the human intestinal microbiota at pH values as low as 5.9, but at pH 5.2 reduced utilization occurs while production is maintained, resulting in lactate accumulation.  相似文献   

13.
The growth of Megasphaera elsdenii on lactate with acrylate and acrylate analogues was studied under batch and steady-state conditions. Under batch conditions, lactate was converted to acetate and propionate, and acrylate was converted into propionate. Acrylate analogues 2-methyl propenoate and 3-butenoate containing a terminal double bond were similarly converted into their respective saturated acids (isobutyrate and butyrate), while crotonate and lactate analogues 3-hydroxybutyrate and (R)-2-hydroxybutyrate were not metabolized. Under carbon-limited steady-state conditions, lactate was converted to acetate and butyrate with no propionate formed. As the acrylate concentration in the feed was increased, butyrate and hydrogen formation decreased and propionate was increasingly generated, while the calculated ATP yield was unchanged. M. elsdenii metabolism differs substantially under batch and steady-state conditions. The results support the conclusion that propionate is not formed during lactate-limited steady-state growth because of the absence of this substrate to drive the formation of lactyl coenzyme A (CoA) via propionyl-CoA transferase. Acrylate and acrylate analogues are reduced under both batch and steady-state growth conditions after first being converted to thioesters via propionyl-CoA transferase. Our findings demonstrate the central role that CoA transferase activity plays in the utilization of acids by M. elsdenii and allows us to propose a modified acrylate pathway for M. elsdenii.  相似文献   

14.
1. Solutions containing acetate, [2-(14)C]propionate and butyrate were placed into the ruminoreticulum of calves to measure the extent to which propionate is metabolized by ruminoreticulum epithelium. In response to five different combinations of pH and total volatile fatty acid concentrations, propionate absorption rates ranged from 89 to 341mmol/h. 2. The extent of propionate conversion into lactate, calculated from both concentration and specific radioactivity in portal and arterial blood, averaged 4.9 (range 2.5-9.1)%. 3. Circulating glucose synthesized from propionate had a higher specific radioactivity than arterial lactate and was converted into lactate by gastrointestinal tissues. Thus conversion of propionate into lactate was overestimated but was corrected to average 2.3 (1.0-4.6)%. 4. The estimates of propionate conversion into lactate were negatively correlated with its rate of absorption.  相似文献   

15.
Seven strains of Roseburia sp., Faecalibacterium prausnitzii, and Coprococcus sp. from the human gut that produce high levels of butyric acid in vitro were studied with respect to key butyrate pathway enzymes and fermentation patterns. Strains of Roseburia sp. and F. prausnitzii possessed butyryl coenzyme A (CoA):acetate-CoA transferase and acetate kinase activities, but butyrate kinase activity was not detectable either in growing or in stationary-phase cultures. Although unable to use acetate as a sole source of energy, these strains showed net utilization of acetate during growth on glucose. In contrast, Coprococcus sp. strain L2-50 is a net producer of acetate and possessed detectable butyrate kinase, acetate kinase, and butyryl-CoA:acetate-CoA transferase activities. These results demonstrate that different functionally distinct groups of butyrate-producing bacteria are present in the human large intestine.  相似文献   

16.
Megasphaera elsdenii T81 grew on either dl-lactate or d-glucose at similar rates (0.85 h?1) but displayed major differences in the fermentation of these substrates. Lactate was fermented at up to 210-mM concentration to yield acetic, propionic, butyric, and valeric acids. The bacterium was able to grow at much higher concentrations of d-glucose (500 mM), but never removed more than 80 mM of glucose from the medium, and nearly 60 % the glucose removed was sequestered as intracellular glycogen, with low yields of even-carbon acids (acetate, butyrate, caproate). In the presence of both substrates, glucose was not used until lactate was nearly exhausted, even by cells pregrown on glucose. Glucose-grown cultures maintained only low extracellular concentrations of acetate, and addition of exogenous acetate increased yields of butyrate, but not caproate. By contrast, exogenous acetate had little effect on lactate fermentation. At pH 6.6, growth rate was halved by exogenous addition of 60 mM propionate, 69 mM butyrate, 44 mM valerate, or 33 mM caproate; at pH 5.9, these values were reduced to 49, 49, 18, and 22 mM, respectively. The results are consistent with this species’ role as an effective ruminal lactate consumer and suggest that this organism may be useful for industrial production of volatile fatty acids from lactate if product tolerance could be improved. The poor fermentation of glucose and sensitivity to caproate suggests that this strain is not practical for industrial caproate production.  相似文献   

17.
Seven strains of Roseburia sp., Faecalibacterium prausnitzii, and Coprococcus sp. from the human gut that produce high levels of butyric acid in vitro were studied with respect to key butyrate pathway enzymes and fermentation patterns. Strains of Roseburia sp. and F. prausnitzii possessed butyryl coenzyme A (CoA):acetate-CoA transferase and acetate kinase activities, but butyrate kinase activity was not detectable either in growing or in stationary-phase cultures. Although unable to use acetate as a sole source of energy, these strains showed net utilization of acetate during growth on glucose. In contrast, Coprococcus sp. strain L2-50 is a net producer of acetate and possessed detectable butyrate kinase, acetate kinase, and butyryl-CoA:acetate-CoA transferase activities. These results demonstrate that different functionally distinct groups of butyrate-producing bacteria are present in the human large intestine.  相似文献   

18.
An endospore-forming, butyrate-degrading bacterium (strain BH) was grown on butyrate in monoxenic coculture with a methanogen. The culture formed dense aggregates when Methanobacterium formicicum was the methanogenic partner, but the culture was turbid when Methanospirillum hungatei was the partner. In contrast, a propionate-degrading, lemon-shaped bacterium (strain PT) did not form aggregates with Methanobacterium formicicum unless an acetate-degrading Methanosaeta sp. was also included in the culture. Fatty acid-degrading methanogenic granules were formed in a laboratory-scale upflow reactor at 35(deg)C fed with a medium containing a mixture of acetate, propionate, and butyrate by using defined cultures of Methanobacterium formicicum T1N, Methanosaeta sp. strain M7, Methanosarcina mazei T18, propionate-degrading strain PT, and butyrate-degrading strain BH. The maximum substrate conversion rates of these granules for acetate, propionate, and butyrate were 43, 9, and 17 mmol/g (dry weight)/day, respectively. The average size of the granules was about 1 mm. Electron microscopic observation of the granules revealed that the cells of Methanobacterium formicicum, Methanosaeta sp., butyrate-degrading, and propionate-degrading bacteria were dispersed in the granules. Methanosarcina mazei existed inside the granules as aggregates of its own cells, which were associated with the bulk of the granules. The interaction of different species in aggregate formation and granule formation is discussed in relation to polymer formation of the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号