首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological integrity of managed forests includes the ability of an ecosystem to support a community of organisms with a similar species composition and functional organization as found in nearby natural systems. We developed an indicator system for ecological integrity based on simulated natural disturbance and indicator species to test if forest condition and habitat in managed forests are similar to that found or expected in natural systems. We then applied the method in an area of the boreal forest (Ontario, Canada) where the objective of Ontario's strategic forest management planning approach is, in part, to conserve ecological integrity through the emulation of the natural disturbance process. Forest condition controls the supply of habitat to support the diversity of native organisms, and historically in boreal forests the natural disturbance process drove forest condition. We selected indicators of forest condition (landscape pattern and compositional mosaic) and habitat function (occupancy rates for a broad range of forest birds), and applied our assessment system to test whether indicators of forest condition and habitat function reflect outcomes expected if natural disturbance processes were successfully emulated. We collected occupancy data in natural and managed forest disturbance types using autonomous acoustic recorders, applied occupancy/detection modeling to estimate corrected occupancy rates (ψ), and then tested for differences in ψ between disturbance types. Some indicators of forest condition were within the range expected under natural disturbance, but we found relatively less old conifer, more young deciduous and greater edge density in managed forests relative to forests of natural disturbance origin. Most species (11 of 14) occurred with equal ψ in habitat originating from the two disturbance types. Brown creeper (Certhia americana), bay-breasted warbler (Mniotilta varia) and red-eyed vireo (Vireo olivaceus) differed between disturbance types. Brown creeper uses older conifer and occurred at lower rates in managed forest, while red-eyed vireo uses a range of deciduous forest ages, and occurred at higher rates in managed forest. Differences in quantity and/or quality of specific habitat types likely explain the responses. The results suggest what directional changes in the forest pattern and compositional mosaic would improve ecological similarity with natural systems, but also indicate what further research is required. We believe this approach to assessing ecological integrity can be adapted to study the effectiveness of conservation management strategies in other systems, and will contribute to adaptive management approaches and evidence-based policy development.  相似文献   

2.
3.
Coastal wetlands are considered to be amongst the most productive ecosystems and can provide invaluable ecological services. However, coastal wetlands are listed amongst the most threatened ecosystems suffering from anthropogenic activities. The loss or degradation of coastal wetlands has drawn a high level of attention to wetland restoration. Improvement of the structure and function of degraded, damaged and destroyed wetlands may be achieved through ecological restoration. Large numbers of restoration projects have been conducted worldwide based on different restoration goals and different methods. It is undoubtedly important to evaluate whether coastal wetland restoration is successful. However, coastal wetland restoration assessment has become challenging because of current disagreement on definitions and concepts of restoration evaluation. We reviewed the methodology of coastal wetland restoration and criteria for success evaluation, and then summarized the issues for current wetland restoration and success evaluation based on literature review. Moreover, we used an estuarine wetland affected by urbanization as a sample to demonstrate how to establish a success indicator system for guiding wetland restoration and evaluating the success of wetland restoration.  相似文献   

4.
1. Modification of natural landscapes and land‐use intensification are global phenomena that can result in a range of differing pressures on lotic ecosystems. We analysed national‐scale databases to quantify the relationship between three land uses (indigenous vegetation, urbanisation and agriculture) and indicators of stream ecological integrity. Boosted regression tree modelling was used to test the response of 14 indicators belonging to four groups – water quality (at 578 sites), benthic invertebrates (at 2666 sites), fish (at 6858 sites) and ecosystem processes (at 156 sites). Our aims were to characterise the ecological response curves of selected functional and structural metrics in relation to three land uses, examine the environmental moderators of these relationships and quantify the relative utility of metrics as indicators of stream ecological integrity. 2. The strongest indicators of land‐use effects were nitrate + nitrite, delta‐15 nitrogen value (δ15N) of primary consumers and the Macroinvertebrate Community Index (a biotic index of organic pollution), while the weakest overall indicators were gross primary productivity, benthic invertebrate richness and fish richness. All indicators declined in response to removal of indigenous vegetation and urbanisation, while variable responses to agricultural intensity were observed for some indicators. 3. The response curves for several indicators suggested distinct thresholds in response to urbanisation and agriculture, specifically at 10% impervious cover and at 0.1 g m?3 nitrogen concentration, respectively. 4. Water quality and ecosystem process indicators were influenced by a combination of temperature, slope and flow variables, whereas for macroinvertebrate indicators, catchment rainfall, segment slope and temperature were significant environmental predictor variables. Downstream variables (e.g. distance to the coast) were significant in explaining residual variation in fish indicators, not surprisingly given the preponderance of diadromous fish species in New Zealand waterways. The inclusion of continuous environmental variables used to develop a stream typology improved model performance more than the inclusion of stream type alone. 5. Our results reaffirm the importance of accounting for underlying spatial variation in the environment when quantifying relationships between land use and the ecological integrity of streams. Of distinctive interest, however, were the contrasting and complementary responses of different indicators of stream integrity to land use, suggesting that multiple indicators are required to identify land‐use impact thresholds, develop environmental standards and assign ecological scores for reporting purposes.  相似文献   

5.
6.
Cryptosporidium and Salmonella are pathogenic microorganisms that can cause severe gastrointestinal illness in humans. Because these organisms are potentially transmitted through natural waters, this study was carried out to estimate the concentrations of both pathogens in a French coastal watershed and to determine the relationships with fecal indicators. Water samples from nine wastewater treatment plants and eight rivers were analyzed. Although both pathogens and indicators are released from sewage effluents, no clear correlation was found between the two enteric pathogens nor between a given pathogen and fecal indicators. These results suggest that fecal indicators do not adequately indicate the presence of Cryptosporidium and Salmonella in natural waters and that pathogens and indicators may have different behaviors in the aquatic environment.  相似文献   

7.
In transitional environments, the intertidal zones represent a peculiar case characterized by halophile vegetation and by a low diversity benthic community. On these areas just a few particular foraminiferal species, a class of Protoctista secreting a shell called test, can survive for a certain time out of water. They are distributed in well-defined vertical zonations with respect to mean sea level and they correspond to analogous marsh floral zonations. In particular, the Trochammina macrescens Brady + Trochammina inflata (Montagu) association characterizes the salt marsh zone above mean high water level. The potential of these taxa as bioindicators is tested, since their presence-absence-dominance differentiates the subtidal/supratidal environments. Over the last few centuries, various engineering works generated major physical changes in the Venetian Lagoon. These changes affected the natural evolution of the intertidal morphologies, the surface of which is decreasing. In an attempt to reverse this tendency, numerous artificial salt marshes have been constructed and more are under construction. In this study, the Mazzorbo artificial salt marsh, built during the second half of 1999, is considered. On its surface, 16 samples were collected along a transect line in May 2008 to verify the ecological role of this salting within the lagoon ecosystem. The sediment grain size distribution of the salt marsh reflects the dissipative role of the tide and the effect of sediment transport due to the wave and tidal action. However, the presence of only a few Trochammina individuals shows that the foraminiferal fauna did not recognise this morphology as a salt marsh. The lack of Trochammina colonisation can be related to the excessive elevation of the salt marsh surface. This hypothesis is confirmed by the lack of the salt-tolerant plant Spartina. The unsuccessful colonisation by the foraminifera seems to indicate that this artificial salting does not have the natural dynamism of the intertidal morphologies and it may only be classified as land recovery. The supratidal foraminiferal taxa can act as an ecological indicator: through their observation it is possible to verify whether an artificial salt marsh accomplishes its task of functioning as an ecological unit with the community of organisms.  相似文献   

8.
Rapid acceleration of industrial development in north-eastern British Columbia is currently occurring without a comprehensive assessment of the effects it will have on ecological or cultural systems. The cumulative effects of past development are already being felt within the Treaty 8 First Nations of the region but these effects have not been quantified from a landscape point of view. Using habitat modeling and GIS analysis the effects of 35 years of agricultural and industrial development on forest biodiversity and ecological integrity were investigated for a 410,000 ha landscape in north-eastern British Columbia. The study identified a significant increase in area impacted by developments which lead to a shift in landscape structure and significant change in forest biodiversity. Forest fragmentation and habitat loss has resulted in an increase in open, early seral and edge habitats at the expense of contiguous mature forests. The change in landscape structure resulted in a significant increase in species richness as generalist and early seral species responded positively to increases in these habitats. A significant increase in brown-headed cowbird parasitism risk was also detected. Changes in landscape structure, reduction in habitat for 22% of modeled species, increase parasitism and predation risk due to fragmentation, and increased access have resulted in a cumulative effect of recent resource development on ecological integrity that is both additive and synergistic. The propose acceleration of future development will increase the risk to maintaining the biodiversity and ecological integrity in the Peace-Moberly region of British Columbia.  相似文献   

9.
Hernandez AD  Sukhdeo MV 《Oecologia》2008,156(3):613-624
Relatively few published food webs have included parasites, and in this study we examined the animal community in a stream across eight contiguous seasons to test how inclusion of helminth parasites alters the topology or structure of the food web. Food webs constructed for each season and analyzed using common binary matrix measures show that species richness, linkage density, and the number of observed and possible links increased when parasites were included as individual species nodes. With parasite–parasite and predator–parasite links omitted, measures of community complexity, such as connectance (C), generally increased over multiple seasons. However, relative nestedness (n*) decreased when parasites were included, which may be a result of low resolution of basal resources inflating specialist-to-specialist links. Overall, adding parasites resulted in moderate changes in food web measures when compared to those of four other published food webs representing different ecosystems. In addition, including parasites in the food web revealed consistent pathways of energy flow, and the association of parasite life histories along these pathways suggest stable evolutionary groups of interacting species within the community. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Import of allochthonous material in terms of litterfall in a 3rd order stream in Mississippi coastal plain was 386g dry wt/m2/yr. Litter materials consisting of deciduous leaves, pine needles, and woody twigs collected during different seasons showed some differences in ash-free dry weight, caloric, carbon, hydrogen, nitrogen and phosphorus contents. In situ decomposition to particulate form of deciduous and pine litter enclosed in nylon litter bags showed 15% and 65%, respectively, of the litter remaining after 334 days. Downstream net transport of suspended particulate organic material in the river averaged 688,290 kg dry wt/yr with a range of 456,061 to 920,518 kg dry wt/yr. There was a tendency for the particulate organic matter load of the water to increase during ebbtide and to decrease during floodtide.Supported by the National Aeronautics and Space Administration (NASA Grant No. NGL-25-001-40) and by the National Science Foundation Biological Oceanography Section (NSF Grant No. GA-35715).  相似文献   

11.
The health of fish populations and assemblagesin two degraded streams in south-westernGermany were investigated in order to validatethe use of biomarkers for the assessment ofsmall streams as part of the Valimar project.In the more severely polluted stream,recruitment was impaired and populationabundances were low. Extinction ofsite-specific species and appearance of nonsite-specific species has resulted in a shiftin the species composition from thatcharacteristic of unpolluted reference streams.In the less severely degraded stream, abundantrecruitment and relatively high densities ofadults indicated healthy, self sustaining fishpopulations. Missing species, however,indicated some effects of human influenceswithin the reference stream. The reproductivestatus of adult stone loach, Barbatulabarbatula, was not affected in any stream asreflected by normal production of eggs andreproductive behavior. Indices of energystorage differed between the investigated sitesbut could not be related to pollution. Theevaluation of biological integrity based onfish assemblages revealed that both sites inthe more severely impacted stream were in poorcondition. The two reference sites wereclassified in moderate and good condition,respectively. By excluding effects of migrationbarriers on the fish assemblage there was astronger correlation between chemical waterquality and biomarker responses. The resultsindicate the importance of assessing theeffects of pollution within the content oflongitudinal gradients in streams and theusefulness of measuring health effects overseveral levels of biological organization.  相似文献   

12.
Aarts  Bram G.W.  Nienhuis  Piet H. 《Hydrobiologia》2003,500(1-3):157-178
Longitudinal zonation concepts describe the downstream changes in chemico-physical and biological properties of rivers. Including information on ecological fish guilds can enhance the usefulness of fish zonation concepts, in a way that they can be used as tools for assessment and management of the ecological integrity of large rivers. We present an ecological characterization of fish zones and fish communities in near-natural and in regulated large rivers in Europe (the River Doubs in France and the Rivers Rhine and Meuse in the Netherlands), using guild classifications of several life-history traits of fish and national Red Lists of threatened species. The Doubs data set was also analyzed using indices of the sensitivity of fish species to environmental degradation and indices for eurytopy. In these rivers, the number of ecological guilds per zone increases downstream, and there are clear shifts in the structure of the guilds. Flow preference and reproduction ecology of river fish are closely linked. The proportion of rheophilic species in the fish community decreases downstream, and the proportions of limnophilic and eurytopic species increase. Lithophilic and psammophilic spawners are dominant in the upper zones, whereas the lower zones are dominated by phytophilic and phytolithophilic spawners. The proportion of zoobenthivorous and periphytivorous species decreases downstream, and the proportion of zooplanktivorous and phytivorous species increases. However, because the European fish fauna mainly consists of feeding generalists, the discriminative abilities of simplistic feeding guild classifications are not very high. Guilds of sensitive, stenoecious species that share life history strategies that are highly adapted to specific riverine conditions (rheophils and limnophils) have declined far more than generalist species that can survive in a wide range of habitats that are not characteristic of natural river ecosystems. Because of the subsequent over-abundance of the eurytopic species the original longitudinal fish zonations are hardly recognizable anymore in heavily impacted large rivers such as the River Rhine. Hence these rivers do not meet the criteria for ecological integrity. Within a specific fish region, a suitable way of analyzing and monitoring the impact of human disturbance on the structure of the fish community is by comparing the guild structure of the present state of a fish zone with that of the reference situation.  相似文献   

13.
The life histories, densities and distribution patterns of the most abundant macroinvertebrates, exclusive of chironomids and oligochaetes, are reported for a low-gradient, second-order, blackwater stream on the Coastal Plain of South Carolina, USA. Univoltine life histories were found for all species of Coleoptera (Ancyronyx variegata, Macronychus glabratus, Dubiraphia quadrinotata and Hydroporus clypealis) and most species of Ephemeroptera (Eurylophella temporalis, Paraleptophlebia volitans and Hexagenia munda), although the mayfly Stenonema modestum was at least bivoltine. Both univoltinism (Macrostemum carolina and Pycnopsyche luculenta), partial bivoltinism (Nyctiophylax affinis) and complete bivoltinism (Hydropsyche decalda, Cheumatopsyche sp., Phylocentropus placidus and probably Chimarra florida) were found among the Trichoptera. Odonate species were both univoltine (Calopteryx dimidiata, Enallagma divagans and Epitheca cynosura) and semivoltine (Boyeria vinosa, Gomphus lividus and Macromia georgina). The alderfly Sialis aequalis and the isopod Asellus laticaudatus were univoltine, while the blackfly Simulium taxodium produced at least 6 generations per year. Groups of functionally-related species within the orders Odonata, Trichoptera and Coleoptera each exhibited possible temporal and/or spatial segregation.  相似文献   

14.
Individual physiological response to complex environments is a major factor in the ecological breadth of species. This study compared individual patterns of both long-term and short-term response to controlled, multifactorial environments in four annual Polygonum species that differ in field distribution (P. cespitosum, P. hydropiper, P. lapathifolium, and P. persicaria). To test long-term response, instantaneous net photosynthetic rate and stomatal conductance were measured in situ on one full-sib replicate from five inbred lineages from each of five field populations per species, raised in all possible combinations of low or high light; dry, moist, or flooded soil; and poor or rich nutrient status. Short-term plastic adjustment to changes in light level was examined by switching individual plants of the four species from one of six multifactorial growth environments to the contrasting light environment, and measuring assimilation rates 1 h after transfer. The Polygonum species differed significantly in their patterns of long-term photosynthetic response to particular resources and resource combinations. The species known to have relatively broad ecological distributions (P. persicaria and P. lapathifolium) maintained high photosynthetic performance in a variety of moisture and nutrient environments when grown in high light, while the more narrowly distributed P. hydropiper maintained such functional levels only if given both high light and ample macronutrients. P. cespitosum, a species limited to shaded habitats, maintained low photosynthetic rates across the environmental range. Complex differences among the species in instantaneous water use efficiency (WUE) reflected their highly specific and to some extent independent patterns of photosynthetic and stomatal response to the multifactorial environments. The species also differed significantly in short-term physiological adjustment to changes in light level. Plants of P. persicaria and P. cespitosum reached 78% and 98%, respectively, of their maximum photosynthetic rates 1 h after transfer from low to high light, but P. hydropiper and P. lapathifolium plants reached only c. 60% of their maximum rates. When switched from high to low light, P. persicaria and P. cespitosum plants maintained 64–76% of their maximum rates, while P. hydropiper and P. lapathifolium plants decreased photosynthetic rates sharply to less than 50% of their maximum rates. These results indicate that the latter two species will be less able to maintain effective functional levels in variable light environments, a result consistent with their distributions in the field. Received: 23 May 1997 / Accepted: 3 March 1998  相似文献   

15.
Forest had varying effects on stream nutrients in two coastal plain basins of the Delmarva Peninsula, USA. In the Choptank basin, forest was strongly associated with low stream total nitrogen (TN) and nitrate (NO3) concentrations (r20.70), and forest placement along first order streams was important in maintaining low stream nitrogen (N) concentrations (r20.35). In addition, a multiple regression model explained 40% of the stream total phosphorus (TP) variance and indicated that forest directly adjacent to streams (0–100 m) acted as a TP source and forest further away (100–300 m) from streams acted as a TP sink. In contrast, stream nutrients in the nearby Chester basin demonstrated a strong relationship with soil hydrologic properties. Forest had no significant effect on stream N and P because the finer-textured soils, higher stream slopes, and higher runoff potential of the Chester basin appeared to result in less baseflow compared to that in the Choptank basin. This reduced the opportunity for forest to intercept N via plant uptake and denitrification in the high runoff potential soils of the Chester basin. The high percentage of stormflow (40%) coupled with high stream slopes resulted in high soil erosion potential, which may explain the higher TP stream concentrations measured in the Chester compared to that in the Choptank. Differences in the hydrologic pathway appear to explain the different effects of forest on water quality in these two basins.  相似文献   

16.
The development of ecologically based indices that respond to disturbances in a predictable manner has been stressed by the EU Water Framework Directive. The seagrass Posidonia oceanica, given its ecological indicator characteristics, has been identified as one of the elements to determine ecological status under the EU Water Framework Directive. The purpose of this study is therefore to develop a biotic index based on P. oceanica (BiPo), focussing on: (i) the necessity of an index that may be applied over the largest geographical extent possible, (ii) the necessity of a tool for a baseline evaluation of P. oceanica status in the Mediterranean, (iii) the compliance with WFD requirements, (iv) the efficiency of the method in terms of reliability and cost. The BiPo index is developed on the basis of all P. oceanica monitoring data available in the western Mediterranean and on a standard assessment of anthropogenic pressures. The index metrics are selected and evaluated on the basis of this pressures assessment, and are subsequently integrated for the evaluation of ecological status. The index is then tested on 15 sites around Corsica (France). The results show that the BiPo well reflects meadow health status and ecological status. Furthermore it is reliable, standard and cost-effective, and can be applied to a wide array of management and conservation purposes.  相似文献   

17.

Bycatch continues to be a challenge to sustainable fisheries management (The term “bycatch” in this paper covers discards and does not include retained incidental catch). Bycatch estimates can inform stock status determinations by improving understanding of fishing mortality, and help managers monitor the effectiveness of regulations. Assessments of the quality of bycatch estimation programs and procedures are necessary to evaluate the precision and limitations of their results over time. NOAA Fisheries experts used a “Tier Classification System” (TCS) to compare the quality of fish bycatch data and estimation methods for U.S. commercial fisheries in 2005 and 2015. The TCS included criteria related to data adequacy and analytical approaches. A comparison of U.S. fishery tier scores demonstrated that most fisheries were classified into higher tiers in 2015 compared to 2005 due to factors including improved sampling design. In addition, this comparison identified region-specific trends (e.g., mostly improvements occurred for Alaska fisheries with more mixed results for Greater Atlantic fisheries). The improvements in bycatch data quality and estimation methods in the United States are a result of financial investments in observer programs by NOAA Fisheries and industry partners, as well as effective conservation measures implemented by regional fishery management councils and NOAA Fisheries. The TCS was also used to assess bycatch data and estimation methods in all of Australia’s fishery jurisdictions for the decade 2010–19, illustrating the international applicability of the method. Overall, Australian state fisheries scored lower than federally managed fisheries in both the United States and Australia, reflecting the fact that the latter fisheries tend to be larger (and more valuable) than those in state jurisdictions, with a larger investment in observer programs. A comparison of tier scores and estimates of discards by fishery may provide a useful input for decision-making processes regarding allocation of resources to improve bycatch monitoring.

  相似文献   

18.
19.
Over the past two decades there has been increasing interest in developing indicators to monitor environmental change. Remote sensing techniques have been primarily used to generate information on land use/land cover changes. The US Fish and Wildlife Service has used this technology to monitor wetland trends and recently developed a set of remotely-sensed indicators to characterize and assess trends in the integrity of natural habitat in watersheds. The indices largely focus on the extent of “natural” cover throughout a given watershed, with an emphasis on locations important to fish, wildlife, and water quality. Six indices address natural habitat extent and four deal with human-caused disturbance. A composite index of natural habitat integrity combining the habitat extent and habitat disturbance indices may be formulated to provide an overall numeric value for a watershed or subbasin. These indices facilitate comparison between watersheds (and subbasins) and assesssment of trends useful for environmental monitoring. This paper describes the indices and presents an example of their application for characterizing and assessing conditions of subbasins within Delaware’s Nanticoke River watershed.  相似文献   

20.
Defining the overall ecological status of lakes according to the Water Framework Directive (WFD) is to be partially based on the species composition of the aquatic macrophyte community. We tested three assessment methods to define the ecological status of the macrophyte community in response to a eutrophication pressure as reflected by total phosphorus concentrations in lake water. An absolute species richness, a trophic index (TI) and a lake trophic ranking (LTR) method were tested at Europe-wide, regional and national scales as well as by alkalinity category, using data from 1,147 lakes from 12 European states. Total phosphorus data were used to represent the trophic status of individual samples and were plotted against the calculated TI and LTR values. Additionally, the LTR method was tested in some individual lakes with a relatively long time series of monitoring data. The TI correlated well with total P in the Northern European lake types, whereas the relationship in the Central European lake types was less clear. The relationship between total P and light extinction is often very good in the Northern European lake types compared to the Central European lake types. This can be one of the reasons for a better agreement between the indices and eutrophication pressure in the Northern European lake types. The response of individual lakes to changes in the abiotic environment was sometimes represented incorrectly by the indices used, which is a cause of concern for the use of single indices in status assessments in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号