首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vogel EW  Nivard MJ 《Mutation research》2000,455(1-2):141-153
Loss of heterozygosity (LOH) of the wild-type allele by structural chromosome aberrations (SCAs), homologous mitotic recombination (HMR) or intra-chromosomal (deletion/amplification) recombination (ICR) plays a crucial role in multistage carcinogenesis. We describe here an in vivo system, enabling the detection of all three chromosome breakage-related events in the same genetic experiment, with eye tissue of Drosophila as targets. This modification of the white/white(+) system enables to measure, simultaneously, HMR and ICR on the X-chromosome, and loss of a ring-shaped X-chromosome, utilizing the eye color gene white. Optimal conditions for the detection and quantification of SCAs (ring-X loss) compared to HMR are discussed in detail. Emerging new techniques comprise the parallel detection of HMR on chromosomes X and 3, using the tumor suppressor gene warts in addition to the X-linked marker white. Another modification of the white/white(+) system measures, again in parallel, HMR and chromosome duplication (non-disjunction).  相似文献   

2.
Loss of heterozygosity (LOH) is a common genetic alteration in tumors and often extends several megabases to encompass multiple genetic loci or even whole chromosome arms. Based on marker and karyotype analysis of tumor samples, a significant fraction of LOH events appears to arise from mitotic recombination between homologous chromosomes, reminiscent of recombination during meiosis. As DNA double-strand breaks (DSBs) initiate meiotic recombination, a potential mechanism leading to LOH in mitotically dividing cells is DSB repair involving homologous chromosomes. We therefore sought to characterize the extent of LOH arising from DSB-induced recombination between homologous chromosomes in mammalian cells. To this end, a recombination reporter was introduced into a mouse embryonic stem cell line that has nonisogenic maternal and paternal chromosomes, as is the case in human populations, and then a DSB was introduced into one of the chromosomes. Recombinants involving alleles on homologous chromosomes were readily obtained at a frequency of 4.6 x 10(-5); however, this frequency was substantially lower than that of DSB repair by nonhomologous end joining or the inferred frequency of homologous repair involving sister chromatids. Strikingly, the majority of recombinants had LOH restricted to the site of the DSB, with a minor class of recombinants having LOH that extended to markers 6 kb from the DSB. Furthermore, we found no evidence of LOH extending to markers 1 centimorgan or more from the DSB. In addition, crossing over, which can lead to LOH of a whole chromosome arm, was not observed, implying that there are key differences between mitotic and meiotic recombination mechanisms. These results indicate that extensive LOH is normally suppressed during DSB-induced allelic recombination in dividing mammalian cells.  相似文献   

3.
Allelic loss and translocation are critical mutational events in human tumorigenesis. Allelic loss, which is usually identified as loss of heterozygosity (LOH), is frequently observed at tumor suppressor loci in various kinds of human tumors. It is generally thought to result from deletion or mitotic recombination between homologous chromosomes. In this report, we demonstrate that illegitimate (nonhomologous) recombination strongly contributes to the generation of allelic loss in p53-mutated cells. Spontaneous and X-ray-induced LOH mutations at the heterozygous thymidine kinase (tk) gene, which is located on the long arm of chromosome 17, from normal (TK6) and p53-mutated (WTK-1) human lymphoblastoid cells were cytogenetically analyzed by chromosome 17 painting. We observed unbalanced translocations in 53% of LOH mutants spontaneously arising from WTK-1 cells but none spontaneously arising from TK6 cells. We postulate that illegitimate recombination was occurring between nonhomologous chromosomes after DNA replication, leading to allelic loss and unbalanced translocations in p53-mutated WTK-1 cells. X-ray irradiation, which induces DNA double-strand breaks (DSBs), enhanced the generation of unbalanced translocation more efficiently in WTK-1 than in TK6 cells. This observation implicates the wild-type p53 protein in the regulation of homologous recombination and recombinational DNA repair of DSBs and suggests a possible mechanism by which loss of p53 function may cause genomic instability.  相似文献   

4.
5.
We have stimulated mitotic and meiotic gene conversion between non-tandem direct repeats of ADE4 by a defined double-strand break imparted in vivo to one of two copies of the gene. The experimental design permitted us to distinguish unambiguously between reciprocal intra-chromosomal crossing over and non-reciprocal break-join events that could accompany the induced conversions. We observed that (1) less than 10% of the induced conversion events are accompanied by intra-chromosomal crossing over in both mitosis and meiosis; (2) non-reciprocal break-join is not stimulated by the double-strand breaks; (3) a double-strand break in meiosis is repaired off intra-chromosomal homology (if available) with approximately sevenfold preference over repair off the homologous chromosome. Our observations, analyzed in the light of previous investigations of spontaneous inter and intra-chromosomal crossing over and gene conversion, lead to the view that chromosomal configuration constrains intra-chromosomal crossing over accompanying conversion between closely spaced repeated genes during resolution of the conversion intermediate.  相似文献   

6.
DNA topoisomerase I (Top1) generates transient DNA single-strand breaks via the formation of cleavage complexes in which the enzyme is linked to the 3'-phosphate of the cleavage strand. The anticancer drug camptothecin (CPT) poisons Top1 by trapping cleavage complexes, thereby inducing Top1-linked single-strand breaks. Such DNA lesions are converted into DNA double-strand breaks (DSBs) upon collision with replication forks, implying that DSB repair pathways could be involved in the processing/repair of Top1-mediated DNA damage. Here we report that Top1-mediated DNA damage is repaired primarily by homologous recombination, a major pathway of DSB repair. Unexpectedly, however, we found that nonhomologous end joining (NHEJ), another DSB repair pathway, has no positive role in the relevant repair; notably, DT40 cell mutants lacking either of the NHEJ factors (namely, Ku70, DNA-dependent protein kinase catalytic subunit, and DNA ligase IV) were resistant to killing by CPT. In addition, we showed that the absence of NHEJ alleviates the requirement of homologous recombination in the repair of CPT-induced DNA damage. Our results indicate that NHEJ can be a cytotoxic pathway in the presence of CPT, shedding new light on the molecular mechanisms for the formation and repair of Top1-mediated DNA damage in vertebrates. Thus, our data have significant implications for cancer chemotherapy involving Top1 inhibitors.  相似文献   

7.
Topoisomerase II is a ubiquitous enzyme that removes knots and tangles from the genetic material by generating transient double-strand DNA breaks. While the enzyme cannot perform its essential cellular functions without cleaving DNA, this scission activity is inherently dangerous to chromosomal integrity. In fact, etoposide and other clinically important anticancer drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. Cells rely heavily on recombination to repair double-strand DNA breaks, but the specific pathways used to repair topoisomerase II-generated DNA damage have not been defined. Therefore, Saccharomyces cerevisiae was used as a model system to delineate the recombination pathways that repair DNA breaks generated by topoisomerase II. Yeast cells that expressed wild-type or a drug-hypersensitive mutant topoisomerase II or overexpressed the wild-type enzyme were examined. Based on cytotoxicity and recombination induced by etoposide in different repair-deficient genetic backgrounds, double-strand DNA breaks generated by topoisomerase II appear to be repaired primarily by the single-strand invasion pathway of homologous recombination. Non-homologous end joining also was triggered by etoposide treatment, but this pathway was considerably less active than single-strand invasion and did not contribute significantly to cell survival in S.cerevisiae.  相似文献   

8.
Structural maintenance of chromosomes (SMC) complexes and DNA topoisomerases are major determinants of chromosome structure and dynamics. The cohesin complex embraces sister chromatids throughout interphase, but during mitosis most cohesin is stripped from chromosome arms by early prophase, while the remaining cohesin at kinetochores is cleaved at anaphase. This two-step removal of cohesin is required for sister chromatids to separate. The cohesin-related Smc5/6 complex has been studied mostly as a determinant of DNA repair via homologous recombination. However, chromosome segregation fails in Smc5/6 null mutants or cells treated with small interfering RNAs. This also occurs in Smc5/6 hypomorphs in the fission yeast Schizosaccharomyces pombe following genotoxic and replication stress, or topoisomerase II dysfunction, and these mitotic defects are due to the postanaphase retention of cohesin on chromosome arms. Here we show that mitotic and repair roles for Smc5/6 are genetically separable in S. pombe. Further, we identified the histone variant H2A.Z as a critical factor to modulate cohesin dynamics, and cells lacking H2A.Z suppress the mitotic defects conferred by Smc5/6 dysfunction. Together, H2A.Z and the SMC complexes ensure genome integrity through accurate chromosome segregation.  相似文献   

9.
Replication stress from stalled or collapsed replication forks is a major challenge to genomic integrity. The anticancer agent camptothecin (CPT) is a DNA topoisomerase I inhibitor that causes fork collapse and double-strand breaks amid DNA replication. Here we report that hMSH5 promotes cell survival in response to CPT-induced DNA damage. Cells deficient in hMSH5 show elevated CPT-induced γ-H2AX and RPA2 foci with concomitant reduction of Rad51 foci, indicative of impaired homologous recombination. In addition, CPT-treated hMSH5-deficient cells exhibit aberrant activation of Chk1 and Chk2 kinases and therefore abnormal cell cycle progression. Furthermore, the hMSH5-FANCJ chromatin recruitment underlies the effects of hMSH5 on homologous recombination and Chk1 activation. Intriguingly, FANCJ depletion desensitizes hMSH5-deficient cells to CPT-elicited cell killing. Collectively, our data point to the existence of a functional interplay between hMSH5 and FANCJ in double-strand break repair induced by replication stress.  相似文献   

10.
Although homologous recombination is an important pathway for the repair of double-stranded DNA breaks in mitotically dividing eukaryotic cells, these events can also have negative consequences, such as loss of heterozygosity (LOH) of deleterious mutations. We mapped about 140 spontaneous reciprocal crossovers on the right arm of the yeast chromosome IV using single-nucleotide-polymorphism (SNP) microarrays. Our mapping and subsequent experiments demonstrate that inverted repeats of Ty retrotransposable elements are mitotic recombination hotspots. We found that the mitotic recombination maps on the two homologs were substantially different and were unrelated to meiotic recombination maps. Additionally, about 70% of the DNA lesions that result in LOH are likely generated during G1 of the cell cycle and repaired during S or G2. We also show that different genetic elements are associated with reciprocal crossover conversion tracts depending on the cell cycle timing of the initiating DSB.  相似文献   

11.
DNA palindromes are hotspots for DNA double strand breaks, inverted duplications and intra-chromosomal translocations in a wide spectrum of organisms from bacteria to humans. These reactions are mediated by DNA secondary structures such as hairpins and cruciforms. In order to further investigate the pathways of formation and cleavage of these structures, we have compared the processing of a 460 base pair (bp) perfect palindrome in the Escherichia coli chromosome with the same construct interrupted by a 20 bp spacer to form a 480 bp interrupted palindrome. We show here that the perfect palindrome can form hairpin DNA structures on the templates of the leading- and lagging-strands in a replication-dependent reaction. In the presence of the hairpin endonuclease SbcCD, both copies of the replicated chromosome containing the perfect palindrome are cleaved, resulting in the formation of an unrepairable DNA double-strand break and cell death. This contrasts with the interrupted palindrome, which forms a hairpin on the lagging-strand template that is processed to form breaks, which can be repaired by homologous recombination.  相似文献   

12.
Radiation-induced chromosome aberrations, particularly exchange-type aberrations, are thought to result from misrepair of DNA double-strand breaks. The relationship between individual pathways of break repair and aberration formation is not clear. By electrophoretic karyotyping of single-cell clones derived from irradiated cells, we have analyzed the induction of stable aberrations in haploid yeast cells mutated for the RAD52 gene, the RAD54 gene, the HDF1(= YKU70) gene, or combinations thereof. We found low and comparable frequencies of aberrational events in wildtype and hdf1 mutants, and assume that in these strains most of the survivors descended from cells that were in G2 phase during irradiation and therefore able to repair breaks by homologous recombination between sister chromatids. In the rad52 and the rad54 strains, enhanced formation of aberrations, mostly exchange-type aberrations, was detected, demonstrating the misrepair activity of a rejoining mechanism other than homologous recombination. No aberration was found in the rad52 hdf1 double mutant, and the frequency in the rad54 hdf1 mutant was very low. Hence, misrepair resulting in exchange-type aberrations depends largely on the presence of Hdf1, a component of the nonhomologous end-joining pathway in yeast.  相似文献   

13.
In diploid eukaryotes, repair of double-stranded DNA breaks by homologous recombination often leads to loss of heterozygosity (LOH). Most previous studies of mitotic recombination in Saccharomyces cerevisiae have focused on a single chromosome or a single region of one chromosome at which LOH events can be selected. In this study, we used two techniques (single-nucleotide polymorphism microarrays and high-throughput DNA sequencing) to examine genome-wide LOH in a diploid yeast strain at a resolution averaging 1 kb. We examined both selected LOH events on chromosome V and unselected events throughout the genome in untreated cells and in cells treated with either γ-radiation or ultraviolet (UV) radiation. Our analysis shows the following: (1) spontaneous and damage-induced mitotic gene conversion tracts are more than three times larger than meiotic conversion tracts, and conversion tracts associated with crossovers are usually longer and more complex than those unassociated with crossovers; (2) most of the crossovers and conversions reflect the repair of two sister chromatids broken at the same position; and (3) both UV and γ-radiation efficiently induce LOH at doses of radiation that cause no significant loss of viability. Using high-throughput DNA sequencing, we also detected new mutations induced by γ-rays and UV. To our knowledge, our study represents the first high-resolution genome-wide analysis of DNA damage-induced LOH events performed in any eukaryote.  相似文献   

14.
Etoposide, a nonintercalative antitumor drug, is known to inhibit topoisomerase II. Its effects have been tested in concanavalin A stimulated splenocytes, a system of cell proliferation in which topoisomerase II is induced. The primary effect of etoposide was a strong inhibition of DNA synthesis and the production of reversible DNA breaks, presumably associated with topoisomerase II. However, prolonged (20 h) contact with the drug resulted in a secondary fragmentation by irreversible double-strand breaks that yielded unusually small DNA fragments. Surprisingly, the same effect was obtained with novobiocin, which does not produce topoisomerase II associated DNA breaks. Moreover, long-term treatment with camptothecin, a specific inhibitor of topoisomerase I which is known to induce single-strand breaks in vitro and in vivo, also produced double-strand breaks and DNA fragmentation into small pieces. These findings suggest that prolonged treatment of proliferating splenocytes by etoposide and other topoisomerase inhibitors induced DNA fragmentation by a mechanism that does not directly involve topoisomerases.  相似文献   

15.
Liaw H  Lee D  Myung K 《PloS one》2011,6(6):e21424
Hyperphosphorylation of RPA2 at serine 4 and serine 8 (S4, S8) has been used as a marker for activation of the DNA damage response. What types of DNA lesions cause RPA2 hyperphosphorylation, which kinase(s) are responsible for them, and what is the biological outcome of these phosphorylations, however, have not been fully investigated. In this study we demonstrate that RPA2 hyperphosphorylation occurs primarily in response to genotoxic stresses that cause high levels of DNA double-strand breaks (DSBs) and that the DNA-dependent protein kinase complex (DNA-PK) is responsible for the modifications in vivo. Alteration of S4, S8 of RPA2 to alanines, which prevent phosphorylations at these sites, caused increased mitotic entry with concomitant increases in RAD51 foci and homologous recombination. Taken together, our results demonstrate that RPA2 hyperphosphorylation by DNA-PK in response to DSBs blocks unscheduled homologous recombination and delays mitotic entry. This pathway thus permits cells to repair DNA damage properly and increase cell viability.  相似文献   

16.
Mitotic death is a delayed response of p53 mutant tumours that are resistant to genotoxic damage. Questions surround why this response is so delayed and how its mechanisms serve a survival function. After uncoupling apoptosis from G1 and S phase arrests and adapting these checkpoints, p53 mutated tumour cells arrive at the G2 compartment where decisions regarding survival and death are made. Missed or insufficient DNA repair in G1 and S phases after severe genotoxic damage results in cells arriving in G2 with an accumulation of point mutations and chromosome breaks. Double strand breaks can be repaired by homologous recombination during G2 arrest. However, cells with excessive chromosome lesions either directly bypass the G2/M checkpoint, starting endocycles from G2 arrest, or are subsequently detected by the spindle checkpoint and present with the features of mitotic death. These complex features include apoptosis from metaphase and mitosis restitution, the latter of which can also facilitate transient endocycles, producing endopolyploid cells. The ability of cells to initiate endocycles during G2 arrest and mitosis restitution most likely reflects their similar molecular environments, with down-regulated mitosis promoting factor activity. Resulting endocycling cells have the ability to repair damaged DNA, and although mostly reproductively dead, in some cases give rise to mitotic progeny. We conclude that the features of mitotic death do not simply represent aberrations of dying cells but are indicative of a switch to amitotic modes of cell survival that may provide additional mechanisms of genotoxic resistance.  相似文献   

17.
Homologous recombination is an important DNA repair mechanism in vegetative cells. During the repair of double-strand breaks, genetic information is transferred between the interacting DNA sequences (gene conversion). This event is often accompanied by a reciprocal exchange between the homologous molecules, resulting in crossing over. The repair of DNA damage by homologous recombination with repeated sequences dispersed throughout the genome might result in chromosomal aberrations or in the inactivation of genes. It is therefore important to understand how the suitable homologous partner for recombination is chosen. We have developed a system in the yeast Saccharomyces cerevisiae that can monitor the fate of a chromosomal double-strand break without the need to select for recombinants. The broken chromosome is efficiently repaired by recombination with one of two potential partners located elsewhere in the genome. One of the partners has homology to the broken ends of the chromosome, whereas the other is homologous to sequences distant from the break. Surprisingly, a large proportion of the repair is carried out by recombination involving the sequences distant from the broken ends. This repair is very efficient, despite the fact that it requires the processing of a large chromosomal region flanking the break. Our results imply that the homology search involves extensive regions of the broken chromosome and is not carried out exclusively by sequences adjacent to the double-strand break. We show that the mechanism that governs the choice of homologous partners is affected by the length and sequence divergence of the interacting partners, as well as by mutations in the mismatch repair genes. We present a model to explain how the suitable homologous partner is chosen during recombinational repair. The model provides a mechanism that may guard the integrity of the genome by preventing recombination between dispersed repeated sequences.  相似文献   

18.
Certain chromosomal regions called common fragile sites are prone to difficulty during replication. Many tumors have been shown to contain alterations at fragile sites. Several models have been proposed to explain why these sites are unstable. Here we describe work to investigate models of fragile site instability using a yeast artificial chromosome carrying human DNA from a common fragile site region. In addition, we describe a yeast system to investigate whether repair of breaks at a naturally occurring fragile site in yeast, FS2, involves mitotic recombination between homologous chromosomes, leading to loss of heterozygosity (LOH). Our initial evidence is that repair of yeast fragile site breaks does lead to LOH, suggesting that human fragile site breaks may similarly contribute to LOH in cancer. This work is focused on gaining understanding that may enable us to predict and prevent the situations and environments that promote genetic changes that contribute to tumor progression.  相似文献   

19.
Three adenine derivatives (R,S)-9-(2,3-dihydroxypropyl)adenin (DHPA), D-eritadine (EA), and 9-(2-phosphonylmethoxyethyl)adenine (PMEA), prospective antiviral drugs, were subjected to genotoxicity analysis using the somatic mutation and recombinatino test in Drosophila melanogaster. All three compounds were found to be very potent inducers of mosaic spots on Drosophila wings in a dose-related fashion. Data obtained in inversion-free flies revealed that the compounds, in particualr DHPA and EA (nucleoside analogues), are highly effective in the induction of mitotic recombination. PMEA, a nucleotide, exhibited a rather different genotoxic profile from those of DHPA and EA, indicating a different mechanism of genetic action of this compound. Of somatic mutations, chromosome aberrations, rather than point mutations seem to play a major role in the genotoxicity of PMEA. In flies carrying an inversion chromosome, which eliminates most products of mitotic recombination, reduced spot frequencies were obtained, which, however, were still unexpectedly high for compounds with strong recombinagenic activities. Most probably, in additino to structural mutations of chromosomes, double mitotic crossing-over and non-reciprocal recombinatino events similar to unequal sister-strand recombination of gene conversion significantly contributed to spot induction in the inversion heterozygous flies. Concerning the mechanism of genotoxic action, we suggest that these adenine derivatives can be incorporated into DNa chains during replication. This would result, via breaks and DNa repair mechanisms, either in various recombination events or in chromosome aberrations.  相似文献   

20.
Topoisomerases form a covalent enzyme-DNA intermediate after initial DNA cleavage. Trapping of the cleavage complex formed by type IIA topoisomerases initiates the bactericidal action of fluoroquinolones. It should be possible also to identify novel antibacterial lead compounds that act with a similar mechanism on type IA bacterial topoisomerases. The cellular response and repair pathways for trapped topoisomerase complexes remain to be fully elucidated. The RuvAB and RecG proteins could play a role in the conversion of the initial protein-DNA complex to double-strand breaks and also in the resolution of the Holliday junction during homologous recombination. Escherichia coli strains with ruvA and recG mutations are found to have increased sensitivity to low levels of norfloxacin treatment, but the mutations had more pronounced effects on survival following the accumulation of covalent complexes formed by mutant topoisomerase I defective in DNA religation. Covalent topoisomerase I and DNA gyrase complexes are converted into double-strand breaks for SOS induction by the RecBCD pathway. SOS induction following topoisomerase I complex accumulation is significantly lower in the ruvA and recG mutants than in the wild-type background, suggesting that RuvAB and RecG may play a role in converting the initial single-strand DNA-protein cleavage complex into a double-strand break prior to repair by homologous recombination. The use of a ruvB mutant proficient in homologous recombination but not in replication fork reversal demonstrated that the replication fork reversal function of RuvAB is required for SOS induction by the covalent complex formed by topoisomerase I.DNA topoisomerases can modulate DNA superhelicity and help overcome topological barriers in cellular processes by cleaving the DNA backbone phosphodiester linkage to allow topological changes in DNA substrates. The ends of the cleaved DNA are covalently linked to an active-site tyrosine on the topoisomerase proteins in cleavage complex intermediates. Covalent protein-DNA complexes exist only transiently during catalysis because the cleaved DNA is rapidly religated. The stabilization of covalent complexes formed by human topoisomerase I or II due to the action of certain anticancer drugs results in the apoptotic death of cancer cells. Quinolone antibiotics are highly bactericidal because they cause the accumulation of covalent complexes formed by bacterial DNA gyrase and topoisomerase IV enzymes. Although a similar topoisomerase poison inhibitor remains to be identified for bacterial type IA topoisomerases, bacterial topoisomerase I complex accumulation due to mutations that inhibit DNA religation has also been shown to cause rapid bacterial cell death (4, 36). The requirement of a DNA cleavage step in the mechanism of action of topoisomerases increases the vulnerability of cells to conditions that would trap the covalent protein-DNA complex. These conditions include the presence of DNA intercalators, toxic metabolites, and DNA lesions, as well as protein thiolation (9, 28-31, 38). Response to and repair of the trapped covalent topoisomerase-DNA complex are thus needed for cell survival. In eukaryotes, 3′-tyrosyl DNA phosphodiesterase (TDP1) and 5′-tyrosyl DNA phosphodiesterase (TDP2), which can cleave the covalent linkage between topoisomerases and DNA, have been identified (8, 15, 27). Tyrosyl DNA phosphodiesterases have not been identified in bacteria. Repair of covalent bacterial topoisomerase-DNA complexes may require the action of endonucleases to remove the DNA-bound topoisomerase proteins, similar to the Rad1-Rad10 repair pathway characterized in yeast (37). In Escherichia coli, covalent topoisomerase I and DNA gyrase complexes have been shown to be processed into double-strand DNA breaks (DSB), which are then repaired via the RecBCD-mediated RecA homologous recombination pathway with induction of the SOS regulon (24, 34). The RuvABC and RecG activities could play significant roles in the response to the covalent topoisomerase complexes. They are both capable of resolving the Holliday junctions following DSB formation in the later stages of homologous recombination repair (11). SbcCD has been shown previously to remove protein from a protein-bound DNA end with nucleolytic activity to create a DSB (7). In addition, it is also possible that RuvAB and RecG might act at arrested forks to process replication forks blocked by the covalently bound topoisomerase proteins and generate DSB substrates for RecBCD (1, 32). Previous studies have not clearly elucidated the roles of RuvABC and RecG in the response to covalent topoisomerase complexes. We examine here the effects of mutations in the ruvA and recG genes on both bacterial survival and SOS induction following the accumulation of covalent topoisomerase I or gyrase complexes with cleaved DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号