首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We determined the interaction between the vestibulosympathetic reflex and the arterial chemoreflex in 12 healthy subjects. Subjects performed three trials in which continuous recordings of muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP), heart rate (HR), and arterial oxygen saturation were obtained. First, in prone subjects the otolith organs were engaged by use of head-down rotation (HDR). Second, the arterial chemoreflex was activated by inspiration of hypoxic gas (10% O2 and 90% N2) for 7 min with HDR being performed during minute 6. Third, hypoxia was repeated (15 min) with HDR being performed during minute 14. HDR [means +/- SE; increase (Delta)7 +/- 1 bursts/min and Delta50 +/- 11% for burst frequency and total MSNA, respectively; P < 0.05] and hypoxia (Delta6 +/- 2 bursts/min and Delta62 +/- 29%; P < 0.05) increased MSNA. Additionally, MSNA increased when HDR was performed during hypoxia (Delta11 +/- 2 bursts/min and Delta127 +/- 57% change from normoxia; P < 0.05). These increases in MSNA were similar to the algebraic sum of the individual increase in MSNA elicited by HDR and hypoxia (Delta13 +/- 1 bursts/min and Delta115 +/- 36%). Increases in MAP (Delta3 +/- 1 mmHg) and HR (Delta19 +/- 1 beats/min) during combined HDR and hypoxia generally were smaller (P < 0.05) than the algebraic sum of the individual responses (Delta5 +/- 1 mmHg and Delta24 +/- 2 beats/min for MAP and HR, respectively; P < 0.05). These findings indicate an additive interaction between the vestibulosympathetic reflex and arterial chemoreflex for MSNA. Therefore, it appears that MSNA outputs between the vestibulosympathetic reflex and arterial chemoreflex are independent of one another in humans.  相似文献   

2.
Aging attenuates the increase in muscle sympathetic nerve activity (MSNA) and elicits hypotension during otolith organ engagement in humans. The purpose of the present study was to determine the neural and cardiovascular responses to otolithic engagement during orthostatic stress in older adults. We hypothesized that age-related impairments in the vestibulosympathetic reflex would persist during orthostatic challenge in older subjects and might compromise arterial blood pressure regulation. MSNA, arterial blood pressure, and heart rate responses to head-down rotation (HDR) performed with and without lower body negative pressure (LBNP) in prone subjects were measured. Ten young (27 +/- 1 yr) and 11 older subjects (64 +/- 1 yr) were studied prospectively. HDR performed alone elicited an attenuated increase in MSNA in older subjects (Delta106 +/- 28 vs. Delta20 +/- 7% for young and older subjects). HDR performed during simultaneous orthostatic stress increased total MSNA further in young (Delta53 +/- 15%; P < 0.05) but not older subjects (Delta-5 +/- 4%). Older subjects demonstrated consistent significant hypotension during HDR performed both alone (Delta-6 +/- 2 mmHg) and during LBNP (Delta-7 +/- 2 mmHg). These data provide experimental support for the concept that age-related impairments in the vestibulosympathetic reflex persist during orthostatic challenge in older adults. Furthermore, these findings are consistent with the concept that age-related alterations in vestibular function might contribute to altered orthostatic blood pressure regulation with age in humans.  相似文献   

3.
Both heat stress and vestibular activation alter autonomic responses; however, the interaction of these two sympathetic activators is unknown. To determine the effect of heat stress on the vestibulosympathetic reflex, eight subjects performed static head-down rotation (HDR) during normothermia and whole body heating. Muscle sympathetic nerve activity (MSNA; peroneal microneurography), mean arterial blood pressure (MAP), heart rate (HR), and internal temperature were measured during the experimental trials. HDR during normothermia caused a significant increase in MSNA (Delta5 +/- 1 bursts/min; Delta53 +/- 14 arbitrary units/min), whereas no change was observed in MAP, HR, or internal temperature. Whole body heating significantly increased internal temperature (Delta0.9 +/- 0.1 degrees C), MSNA (Delta10 +/- 3 bursts/min; Delta152 +/- 44 arbitrary units/min), and HR (Delta25 +/- 6 beats/min), but it did not alter MAP. HDR during whole body heating increased MSNA (Delta16 +/- 4 bursts/min; Delta233 +/- 90 arbitrary units/min from normothermic baseline), which was not significantly different from the algebraic sum of HDR during normothermia and whole body heating (Delta15 +/- 4 bursts/min; Delta205 +/- 55 arbitrary units/min). These data suggest that heat stress does not modify the vestibulosympathetic reflex and that both the vestibulosympathetic and thermal reflexes are robust, independent sympathetic nervous system activators.  相似文献   

4.
Evidence suggests that both the arterial baroreflex and vestibulosympathetic reflex contribute to blood pressure regulation, and both autonomic reflexes integrate centrally in the medulla cardiovascular center. A previous report indicated increased sympathetic baroreflex sensitivity during the midluteal (ML) phase of the menstrual cycle compared with the early follicular (EF) phase. On the basis of this finding, we hypothesize an augmented vestibulosympathetic reflex during the ML phase of the menstrual cycle. Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate responses to head-down rotation (HDR) were measured in 10 healthy females during the EF and ML phases of the menstrual cycle. Plasma estradiol (Delta72 +/- 13 pg/ml, P < 0.01) and progesterone (Delta8 +/- 2 ng/ml, P < 0.01) were significantly greater during the ML phase compared with the EF phase. The menstrual cycle did not alter resting MSNA, MAP, and heart rate (EF: 13 +/- 3 bursts/min, 80 +/- 2 mmHg, 65 +/- 2 beats/min vs. ML: 14 +/- 3 bursts/min, 81 +/- 3 mmHg, 64 +/- 3 beats/min). During the EF phase, HDR increased MSNA (Delta3 +/- 1 bursts/min, P < 0.02) but did not change MAP or heart rate (Delta0 +/- 1 mmHg and Delta1 +/- 1 beats/min). During the ML phase, HDR increased both MSNA and MAP (Delta4 +/- 1 bursts/min and Delta3 +/- 1 mmHg, P < 0.04) with no change in heart rate (Delta0 +/- 1 beats/min). MSNA and heart rate responses to HDR were not different between the EF and ML phases, but MAP responses to HDR were augmented during the ML phase (P < 0.03). Our results demonstrate that the menstrual cycle does not influence the vestibulosympathetic reflex but appears to alter MAP responses to HDR during the ML phase.  相似文献   

5.
Muscle sympathetic nerve activity (MSNA) is altered by vestibular otolith stimulation. This study examined interactive effects of the vestibular system and baroreflexes on MSNA in humans. In study 1, MSNA was measured during 4 min of lower body negative pressure (LBNP) at either -10 or -30 mmHg with subjects in prone posture. During the 3rd min of LBNP, subjects lowered their head over the end of a table (head-down rotation, HDR) to engage the otolith organs. The head was returned to baseline upright position during the 4th min. LBNP increased MSNA above baseline during both trials with greater increases during the -30-mmHg trial. HDR increased MSNA further during the 3rd min of LBNP at -10 and -30 mmHg (Delta32% and Delta34%, respectively; P < 0.01). MSNA returned to pre-HDR levels during the 4th min of LBNP when the head was returned upright. In study 2, MSNA was measured during HDR, LBNP, and simultaneously performed HDR and LBNP. The sum of MSNA responses during individual HDR and LBNP trials was not significantly different from that observed during HDR and LBNP performed together (Delta131 +/- 28 vs. Delta118 +/- 47 units and Delta340 +/- 77 vs. Delta380 +/- 90 units for the -10 and -30 trials, respectively). These results demonstrate that vestibular otolith stimulation can increase MSNA during unloading of the cardiopulmonary and arterial baroreflexes. Also, the interaction between the vestibulosympathetic reflex and baroreflexes is additive in humans. These studies indicate that the vestibulosympathetic reflex may help defend against orthostatic challenges in humans by increasing sympathetic outflow.  相似文献   

6.
Autonomic responses may underlie associations among anxiety, vestibular dysfunction, and unexplained syncope. Mental stress (MS), an anxiety-inducing stimulus, causes forearm vasodilation, whereas the vestibulosympathetic reflex (VSR) causes forearm vasoconstriction. The purpose of this study was to examine the combined effects of mental and vestibular stimulation on neurovascular control in the forearm. Heart rate, arterial pressure (Finapres), and forearm blood flow (Doppler) were measured in 10 healthy volunteers in the prone position during 1) head-down rotation (HDR), 2) MS (mental arithmetic), and 3) HDR + MS. Forearm vascular resistance (FVR) increased during HDR (from 232 +/- 40 to 319 +/- 53 units) and decreased during MS (from 260 +/- 57 to 154 +/- 22 units). During HDR + MS, FVR did not change [change (Delta) = -31 +/- 50 units] and was not significantly different from the algebraic sum of each trial performed alone (Delta = -20 +/- 42 units). Arm muscle sympathetic nerve activity (MSNA; microneurography) was measured in seven additional subjects. MSNA increased during HDR (from 13 +/- 2 to 17 +/- 2 bursts/min) and HDR + MS (from 11 +/- 2 to 16 +/- 2 bursts/min). Increases in MSNA during HDR + MS (Delta = 5 +/- 2 bursts/min) were not different from the algebraic sum of each trial performed alone (Delta = 6 +/- 2 bursts/min). We conclude that an additive neurovascular interaction exists between MS and the VSR in the forearm. Activation of the VSR prevented forearm vasodilation during MS, suggesting that activation of the VSR may help protect against stress-induced syncope.  相似文献   

7.
Otolith organs have been shown to activate the sympathetic nervous system in the prone position by head-down rotation (HDR) in humans. To date, otolithic stimulation by HDR has not been comprehensively studied in the upright posture. The purpose of the present study was to determine whether otolithic stimulation increases muscle sympathetic nerve activity (MSNA) in the upright posture. It was hypothesized that stimulation of the otolith organs would increase MSNA in the upright posture, despite increased baseline sympathetic activation due to unloading of the baroreceptors. MSNA, arterial blood pressure, heart rate, and degree of head rotation were measured during HDR in 18 volunteers (23 +/- 1 yr) in different postures. Study 1 (n = 11) examined HDR in the prone and sitting positions and study 2 (n = 7) examined HDR in the prone and 60 degrees head-up tilt positions. Baseline MSNA was 8 +/- 4, 15 +/- 4, and 33 +/- 2 bursts/min for prone, sitting, and head-up tilt, respectively. HDR significantly increased MSNA in the prone (Delta4 +/- 1 and Delta105 +/- 37% for burst frequency and total activity, respectively), sitting (Delta5 +/- 1 and Delta43 +/- 12%), and head-up tilt (Delta7 +/- 1 and Delta110 +/- 41%; P < 0.05). Sensitivity of the vestibulosympathetic reflex (%DeltaMSNA/DeltaHDR; degree of head rotation) was significantly greater in the sitting and head-up tilt than prone position (prone = 74 +/- 22; sitting = 109 +/- 30; head-up tilt = 276 +/- 103; P < 0.05). These data indicate that stimulation of the otolith organs can mediate increases in MSNA in the upright posture and suggest a greater sensitivity of the vestibulosympathetic reflex in the upright posture in humans.  相似文献   

8.
Activation of the vestibular otolith organs with head-down rotation (HDR) increases muscle sympathetic nerve activity (MSNA) in humans. Previously, we demonstrated this vestibulosympathetic reflex (VSR) elicits increases in MSNA during baroreflex unloading (i.e., lower body negative pressure) in humans. Whether such an effect persists during baroreflex loading is unknown. We tested the hypothesis that the ability of the VSR to increase MSNA is preserved during baroreflex unloading and inhibited during baroreflex loading. Ten subjects (26 +/- 1 yr) performed three trials of HDR to activate the VSR. These trials were performed after a period of sustained saline (control), nitroprusside (baroreflex unloading: 0.8-1.0 microg.kg(-1).min(-1)), and phenylephrine (baroreflex loading: 0.6-0.8 microg.kg(-1).min(-1)) infusion. Nitroprusside infusion decreased (Delta7 +/- 1 mmHg, where Delta is change; P < 0.001) and phenylephrine infusion increased mean arterial pressure (Delta8 +/- 1 mmHg; P < 0.001) at rest. HDR performed during the control [Delta3 +/- 2 bursts/min, Delta314 +/- 154 arbitrary units (au) total activity, Delta41 +/- 18% total activity; P < 0.05] and nitroprusside trials [Delta5 +/- 2 bursts/min, Delta713 +/- 241 au total activity, Delta49 +/- 20% total activity; P < 0.05] increased MSNA similarly despite significantly elevated levels at rest (13 +/- 2 to 26 +/- 3 bursts/min) in the latter. In contrast, HDR performed during the phenylephrine trial failed to increase MSNA (Delta0 +/- 1 bursts/min, Delta-15 +/- 33 au total activity, Delta-8 +/- 21% total activity). These results confirm previous findings that the ability of the VSR to increase MSNA is preserved during baroreflex unloading. In contrast, the ability of the VSR to increase MSNA is abolished during baroreflex loading. These results provide further support for the concept that the VSR may act primarily to defend against hypotension in humans.  相似文献   

9.
The mechanism(s) for post-bed rest (BR) orthostatic intolerance is equivocal. The vestibulosympathetic reflex contributes to postural blood pressure regulation. It was hypothesized that muscle sympathetic nerve responses to otolith stimulation would be attenuated by prolonged head-down BR. Arterial blood pressure, heart rate, muscle sympathetic nerve activity (MSNA), and peripheral vascular conductance were measured during head-down rotation (HDR; otolith organ stimulation) in the prone posture before and after short-duration (24 h; n = 22) and prolonged (36 ± 1 day; n = 8) BR. Head-up tilt at 80° was performed to assess orthostatic tolerance. After short-duration BR, MSNA responses to HDR were preserved (Δ5 ± 1 bursts/min, Δ53 ± 13% burst frequency, Δ65 ± 13% total activity; P < 0.001). After prolonged BR, MSNA responses to HDR were attenuated ~50%. MSNA increased by Δ8 ± 2 vs. Δ3 ± 2 bursts/min and Δ83 ± 12 vs. Δ34 ± 22% total activity during HDR before and after prolonged BR, respectively. Moreover, these results were observed in three subjects tested again after 75 ± 1 days of BR. This reduction in MSNA responses to otolith organ stimulation at 5 wk occurred with reductions in head-up tilt duration. These results indicate that prolonged BR (~5 wk) unlike short-term BR (24 h) attenuates the vestibulosympathetic reflex and possibly contributes to orthostatic intolerance following BR in humans. These results suggest a novel mechanism in the development of orthostatic intolerance in humans.  相似文献   

10.
There are conflicting reports for the role of endogenous opioids on sympathetic and cardiovascular responses to exercise in humans. A number of studies have utilized naloxone (an opioid-receptor antagonist) to investigate the effect of opioids during exercise. In the present study, we examined the effect of morphine (an opioid-receptor agonist) on sympathetic and cardiovascular responses at rest and during isometric handgrip (IHG). Eleven subjects performed 2 min of IHG (30% maximum) followed by 2 min of postexercise muscle ischemia (PEMI) before and after systemic infusion of morphine (0.075 mg/kg loading dose + 1 mg/h maintenance) or placebo (saline) in double-blinded experiments on separate days. Morphine increased resting muscle sympathetic nerve activity (MSNA; 17 +/- 2 to 22 +/- 2 bursts/min; P < 0.01) and increased mean arterial pressure (MAP; 87 +/- 2 to 91 +/- 2 mmHg; P < 0.02), but it decreased heart rate (HR; 61 +/- 4 to 59 +/- 3; P < 0.01). However, IHG elicited similar increases for MSNA, MAP, and HR between the control and morphine trial (drug x exercise interaction = not significant). Moreover, responses to PEMI were not different. Placebo had no effect on resting, IHG, and PEMI responses. We conclude that morphine modulates cardiovascular and sympathetic responses at rest but not during isometric exercise.  相似文献   

11.
The glycerol dehydration test (GDT) has been used to test for the presence of Ménière's disease and elicits acute alterations in vestibular reflexes in both normal and pathological states. Activation of the vestibulosympathetic reflex (VSR) increases muscle sympathetic nerve activity (MSNA) and peripheral vascular resistance. We hypothesized that the GDT would attenuate the VSR through fluid shifts of the inner ear. Sixteen male subjects (26 ± 1 yr) were randomly assigned to be administered either glycerol mixed with cranberry juice (97 ± 3 ml glycerol + equal portion of cranberry juice; n = 9) or a placebo control [water + cranberry juice (100 ml each); n = 7]. Subjects in both groups performed head-down rotation (HDR), which engages the VSR, before and after administration of either the glycerol or placebo. MSNA (microneurography), arterial blood pressure, and leg blood flow (venous occlusion plethysmography) were measured during HDR. Before glycerol administration, HDR significantly increased MSNA burst frequency (Δ8 ± 1 bursts/min; P < 0.01) and total activity (Δ77 ± 18%; P < 0.01) and decreased calf vascular conductance (-Δ20 ± 3%; P < 0.01). However, HDR performed postadministration of glycerol resulted in an attenuated MSNA increase (Δ3 ± 1 bursts/min, Δ22 ± 3% total activity) and decrease in calf vascular conductance (-Δ7 ± 4%). HDR significantly increased MSNA burst frequency (Δ5 ± 1 and Δ5 ± 2 bursts/min) and total activity (Δ58 ± 13% and Δ52 ± 18%) in the placebo group before and after placebo, respectively (P < 0.01). Likewise, decreases in calf vascular conductance during HDR before and after placebo were not different (-Δ13 ± 4% and -Δ14 ± 2%, respectively; P < 0.01). These results suggest that fluid shifts of the inner ear via glycerol dehydration attenuate the VSR. These data provide support that inner ear fluid dynamics can have a significant impact on blood pressure regulation via the VSR in humans.  相似文献   

12.
Studies have suggested that premenopausal women are more prone to orthostatic intolerance than men. Additionally, it has been postulated that the vestibulosympathetic reflex is important in regulating postural-related changes in sympathetic activity. The purpose of the present study was to determine whether men and women differ in their sympathetic and cardiovascular responses to stimulation of the otolith organs elicited by head-down rotation (HDR). Heart rate (HR), arterial pressure, calf blood flow (CBF), and leg muscle sympathetic nerve activity (MSNA) were measured during 3 min of HDR in the prone posture in 33 women and 30 men. With the exception of HR (71 +/- 2 and 63 +/- 1 beats/min for women and men, respectively; P < 0.01), all baseline variables were not different between genders. There were no gender differences in responses to HDR. MSNA increased 72 +/- 33 units (43%) in the men and 88 +/- 15 units (59%) in the women during HDR (P < 0.01). CBF decreased [-0.6 +/- 0.1 (15%) and -0.5 +/- 0.1 (19%) ml. min(-1). 100 ml(-1)] and calf vascular resistance increased [8 +/- 2 (21%) and 11 +/- 3 (25%) units during HDR for men and women, respectively (P < 0.01)]. Both in the men and women, HR increased 2 +/- 1 beats/min (P < 0.01). These results demonstrate that sympathetic activation during HDR in the prone posture is similar in men and women. Therefore, these findings suggest that the vestibulosympathetic reflex is not different between healthy men and women.  相似文献   

13.
Vestibulosympathetic reflex during mental stress.   总被引:2,自引:0,他引:2  
Increases in sympathetic neural activity occur independently with either vestibular or mental stimulation, but it is unknown whether sympathetic activation is additive or inhibitive when both stressors are combined. The purpose of the present study was to investigate the combined effects of vestibular and mental stimulation on sympathetic neural activation and arterial pressure in humans. Muscle sympathetic nerve activity (MSNA), arterial pressure, and heart rate were recorded in 10 healthy volunteers in the prone position during 1) head-down rotation (HDR), 2) mental stress (MS; using arithmetic), and 3) combined HDR and MS. HDR significantly (P < 0.05) increased MSNA (9 +/- 2 to 13 +/- 2 bursts/min). MS significantly increased MSNA (8 +/- 2 to 13 +/- 2 bursts/min) and mean arterial pressure (87 +/- 2 to 101 +/- 2 mmHg). Combined HDR and MS significantly increased MSNA (9 +/- 1 to 16 +/- 2 bursts/min) and mean arterial pressure (89 +/- 2 to 100 +/- 3 mmHg). Increases in MSNA (7 +/- 1 bursts/min) during the combination trial were not different from the algebraic sum of each trial performed alone (8 +/- 2 bursts/min). We conclude that the interaction for MSNA and arterial pressure is additive during combined vestibular and mental stimulation. Therefore, vestibular- and stress-mediated increases of MSNA appear to occur independently in humans.  相似文献   

14.
Blood lipids may detrimentally affect autonomic and circulatory control. We tested the hypotheses that acute elevations in free fatty acids and triglycerides (acute hyperlipidemia) impair baroreflex control of cardiac period [cardiovagal baroreflex sensitivity (BRS)] and muscle sympathetic nerve activity (MSNA: sympathetic BRS), increase MSNA at rest, and augment physiological responses to exercise. Eighteen young adults were examined in this randomized, double-blinded, and placebo-controlled study. BRS was determined using the modified Oxford technique before (pre) and 60 min (post) after initiating infusion of Intralipid (0.8 ml x m(-2) x min(-1)) and heparin (1,000 U/h) (experimental; n = 12) to induce acute hyperlipidemia, or saline (0.8 ml x m(-2) x min(-1)) and heparin (1,000 U/h) (control; n = 6). Responses to isometric handgrip to fatigue (IHG) were also determined. Blood pressure increased more (P < 0.05) in experimental than control subjects during the infusion. MSNA at rest (14 +/- 2 vs. 11 +/- 1 bursts/min), cardiovagal (19.8 +/- 1.8 vs. 19.1 +/- 2.4 ms/mmHg pre and post, respectively) and sympathetic BRS (-5.5 +/- 0.6 vs. -5.2 +/- 0.4 au x beat(-1) x mmHg(-1)), and the neural and cardiovascular responses to IHG were unchanged by acute hyperlipidemia (pre vs. post) in experimental subjects. Similarly, MSNA at rest (10 +/- 2 vs. 12 +/- 2 bursts/min), cardiovagal (22.1 +/- 4.0 vs. 21.0 +/- 4.6 ms/mmHg) and sympathetic BRS (-5.8 +/- 0.5 vs. -5.5 +/- 0.5 au x beat(-1) x mmHg(-1)), and the neural and cardiovascular responses to IHG were unchanged by the infusion in control subjects. These data do not provide experimental support for the concept that acute hyperlipidemia impairs reflex cardiovagal or sympathetic regulation in humans.  相似文献   

15.
Hemodynamics, muscle sympathetic nerve activity (MSNA), and forearm blood flow were evaluated in 12 normal subjects before, during (1 and 7 h), and after ventilatory acclimatization to hypoxia achieved with 8 h of continuous poikilocapnic hypoxia. All results are means +/- SD. Subjects experienced mean oxygen saturation of 84.3 +/- 2.3% during exposure. The exposure resulted in hypoxic acclimatization as suggested by end-tidal CO(2) [44.7 +/- 2.7 (pre) vs. 39.5 +/- 2.2 mmHg (post), P < 0.001] and by ventilatory response to hypoxia [1.2 +/- 0.8 (pre) vs. 2.3 +/- 1.3 l x min(-1).1% fall in saturation(-1) (post), P < 0.05]. Subjects exhibited a significant increase in heart rate across the exposure that remained elevated even upon return to room air breathing compared with preexposure (67.3 +/- 15.9 vs. 59.8 +/- 12.1 beats/min, P < 0.008). Although arterial pressure exhibited a trend toward an increase across the exposure, this did not reach significance. MSNA initially increased from room air to poikilocapnic hypoxia (26.2 +/- 10.3 to 32.0 +/- 10.3 bursts/100 beats, not significant at 1 h of exposure); however, MSNA then decreased below the normoxic baseline despite continued poikilocapnic hypoxia (20.9 +/- 8.0 bursts/100 beats, 7 h Hx vs. 1 h Hx; P < 0.008 at 7 h). MSNA decreased further after subjects returned to room air (16.6 +/- 6.0 bursts/100 beats; P < 0.008 compared with baseline). Forearm conductance increased after exposure from 2.9 +/- 1.5 to 4.3 +/- 1.6 conductance units (P < 0.01). These findings indicate alterations of cardiovascular and respiratory control following 8 h of sustained hypoxia producing not only acclimatization but sympathoinhibition.  相似文献   

16.
Otolith activation increases muscle sympathetic nerve activity (MSNA), and MSNA activation may alter associations among autonomic oscillators, including those modulating cerebral hemodynamics. The purpose of this study was to determine the influence of vestibulosympathetic activation on cerebral and autonomic rhythms. We recorded the ECG, finger arterial pressure, end-tidal CO(2), respiration, cerebral blood flow velocity, and MSNA in eight subjects. Subjects breathed at 0.25 Hz for 5 min in the prone and head-down positions. We analyzed data in time and frequency domains and performed cross-spectral analyses to determine coherence and transfer function magnitude. Head-down rotation increased MSNA from 7 +/- 1.3 to 12 +/- 1.5 bursts/min (P = 0.001) but did not affect R-R intervals, arterial pressures, mean cerebral blood flow velocities (V(mean)), or their power spectra. Vestibular activation with head-down rotation had no effect on mean arterial pressure and V(mean) transfer function magnitude. The two new findings from this study are 1) head-down rotation independently activates the sympathetic nervous system with no effect on parasympathetic activity or V(mean); and 2) frequency-dependent associations between arterial pressures and V(mean) are independent of vestibular activation. These findings support the concept that vestibular-autonomic interactions independently and redundantly serve to maintain steady-state hemodynamics.  相似文献   

17.
Sympathetic adaptations to one-legged training.   总被引:3,自引:0,他引:3  
The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P < 0.01). At rest, heart rate decreased from 77 +/- 3 to 71 +/- 6 beats/min (P < 0.01) with no significant changes in MAP (91 +/- 7 to 91 +/- 11 mmHg) and MSNA (29 +/- 3 to 28 +/- 1 bursts/min). During exercise, both heart rate and MAP were lower after training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P < 0.01). MSNA decreased similarly from rest during the first 2 min of exercise both before and after training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P < 0.01). This training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.  相似文献   

18.
We tested the hypothesis that women have blunted sympathetic neural responses to orthostatic stress compared with men, which may be elicited under hypovolemic conditions. Muscle sympathetic nerve activity (MSNA) and hemodynamics were measured in eight healthy young women and seven men in supine position and during 6 min of 60 degrees head-up tilt (HUT) under normovolemic and hypovolemic conditions (randomly), with approximately 4-wk interval. Acute hypovolemia was produced by diuretic (furosemide) administration approximately 2 h before testing. Orthostatic tolerance was determined by progressive lower body negative pressure to presyncope. We found that furosemide produced an approximately 13% reduction in plasma volume, causing a similar increase in supine MSNA in men and women (mean +/- SD of 5 +/- 7 vs. 6 +/- 5 bursts/min; P = 0.895). MSNA increased during HUT and was greater in the hypovolemic than in the normovolemic condition (32 +/- 6 bursts/min in normovolemia vs. 44 +/- 15 bursts/min in hypovolemia in men, P = 0.055; 35 +/- 9 vs. 45 +/- 8 bursts/min in women, P < 0.001); these responses were not different between the genders (gender effect: P = 0.832 and 0.814 in normovolemia and hypovolemia, respectively). Total peripheral resistance increased proportionately with increases in MSNA during HUT; these responses were similar between the genders. However, systolic blood pressure was lower, whereas diastolic blood pressure was similar in women compared with men during HUT, which was associated with a smaller stroke volume or stroke index. Orthostatic tolerance was lower in women, especially under hypovolemic conditions. These results indicate that men and women have comparable sympathetic neural responses during orthostatic stress under normovolemic and hypovolemic conditions. The lower orthostatic tolerance in women is predominantly because of a smaller stroke volume, presumably due to less cardiac filling during orthostasis, especially under hypovolemic conditions, which may overwhelm the vasomotor reserve available for vasoconstriction or precipitate neurally mediated sympathetic withdrawal and syncope.  相似文献   

19.
Evidence from animalsindicates that skeletal muscle afferents activate the vestibular nucleiand that both vestibular and skeletal muscle afferents have inputs tothe ventrolateral medulla. The purpose of the present study was toinvestigate the interaction between the vestibulosympathetic andskeletal muscle reflexes on muscle sympathetic nerve activity (MSNA)and arterial pressure in humans. MSNA, arterial pressure, and heartrate were measured in 17 healthy subjects in the prone position duringthree experimental trials. The three trials were 2 min of 1)head-down rotation (HDR) to engage the vestibulosympathetic reflex,2) isometric handgrip (IHG) at 30% maximal voluntarycontraction to activate skeletal muscle afferents, and 3)HDR and IHG performed simultaneously. The order of the three trials wasrandomized. HDR and IHG performed alone increased total MSNA by 46 ± 16 and 77 ± 24 units, respectively (P < 0.01). During the HDR plus IHG trial, MSNA increased 142 ± 38 units (P < 0.01). This increase was not significantlydifferent from the sum of the individual trials (130 ± 41 units).This finding was also observed with mean arterial pressure (sum = 21 ± 2 mmHg and HDR + IHG = 22 ± 2 mmHg). Thesefindings suggest that there is an additive interaction for MSNA andarterial pressure when the vestibulosympathetic and skeletal musclereflexes are engaged simultaneously in humans. Therefore, no centralmodulation exists between these two reflexes with regard to MSNA outputin humans.

  相似文献   

20.
Insulin infusion causes muscle vasodilation, despite the increase in sympathetic nerve activity. In contrast, a single bout of exercise decreases sympathetic activity and increases muscle blood flow during the postexercise period. We tested the hypothesis that muscle sympathetic activity would be lower and muscle vasodilation would be higher during hyperinsulinemia performed after a single bout of dynamic exercise. Twenty-one healthy young men randomly underwent two hyperinsulinemic euglycemic clamps performed after 45 min of seated rest (control) or bicycle exercise (50% of peak oxygen uptake). Muscle sympathetic nerve activity (MSNA, microneurography), forearm blood flow (FBF, plethysmography), blood pressure (BP, oscillometric method), and heart rate (HR, ECG) were measured at baseline (90 min after exercise or seated rest) and during hyperinsulinemic euglycemic clamps. Baseline glucose and insulin concentrations were similar in the exercise and control sessions. Insulin sensitivity was unchanged by previous exercise. During the clamp, insulin levels increased similarly in both sessions. As expected, insulin infusion increased MSNA, FBF, BP, and HR in both sessions (23 +/- 1 vs. 36 +/- 2 bursts/min, 1.8 +/- 0.1 vs. 2.2 +/- 0.2 ml.min(-1).100 ml(-1), 89 +/- 2 vs. 92 +/- 2 mmHg, and 58 +/- 1 vs. 62 +/- 1 beats/min, respectively, P < 0.05). BP and HR were similar between sessions. However, MSNA was significantly lower (27 +/- 2 vs. 31 +/- 2 bursts/min), and FBF was significantly higher (2.2 +/- 0.2 vs. 1.8 +/- 0.1 ml.min(-1).100 ml(-1), P < 0.05) in the exercise session compared with the control session. In conclusion, in healthy men, a prolonged bout of dynamic exercise decreases MSNA and increases FBF. These effects persist during acute hyperinsulinemia performed after exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号